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Abstract: In recent literature, one-loop tests of the higher-spin AdSd+1/CFTd correspondences were
carried out. Here, we extend these results to a more general set of theories in d > 2. First, we consider
the Type B higher spin theories, which have been conjectured to be dual to CFTs consisting of the
singlet sector of N free fermion fields. In addition to the case of N Dirac fermions, we carefully
study the projections to Weyl, Majorana, symplectic and Majorana–Weyl fermions in the dimensions
where they exist. Second, we explore theories involving elements of both Type A and Type B theories,
which we call Type AB. Their spectrum includes fields of every half-integer spin, and they are
expected to be related to the U(N)/O(N) singlet sector of the CFT of N free complex/real scalar and
fermionic fields. Finally, we explore the Type C theories, which have been conjectured to be dual to
the CFTs of p-form gauge fields, where p = d

2 − 1. In most cases, we find that the free energies at
O(N0) either vanish or give contributions proportional to the free-energy of a single free field in the
conjectured dual CFT. Interpreting these non-vanishing values as shifts of the bulk coupling constant
GN ∼ 1/(N − k), we find the values k = −1,−1/2, 0, 1/2, 1, 2. Exceptions to this rule are the Type B
and AB theories in odd d; for them, we find a mismatch between the bulk and boundary free energies
that has a simple structure, but does not follow from a simple shift of the bulk coupling constant.
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1. Introduction

Extensions of the original AdS/CFT correspondence [1–3] to relations between the “vectorial”
d-dimensional CFTs and the Vasiliev higher-spin theories in (d + 1)-dimensional AdS space [4–8] have
attracted considerable attention (for recent reviews of the higher-spin AdSd+1/CFTd correspondence,
see [9,10]). The CFTs in question are quite well understood; their examples include the singlet sector of
the free U(N)/O(N) symmetric theories where the dynamical fields are in the vectorial representation
(rather than in the adjoint representation) or of the vectorial interacting CFTs such as the d = 3
Wilson–Fisher and Gross–Neveu models [11–13]. Some years ago, the singlet sectors of U(N)/O(N)

symmetric d-dimensional CFTs of scalar fields were conjectured to be dual to the Type A Vasiliev
theory in AdSd+1 [11], while the CFTs of fermionic fields to the Type B Vasiliev theory [12,13]. In d = 3,
the U(N)/O(N) singlet constraint is naturally imposed by coupling the massless matter fields to the
Chern–Simons gauge field [14,15]. While the latter is in the adjoint representation, it carries no local
degrees of freedom so that the CFT remains vectorial. More recently, a new similar set of dualities was
proposed in even d and called Type C [16–18]; it involves the CFTs consisting of some number N of(

d
2 − 1

)
-form gauge fields projected onto the U(N)/O(N) singlet sector.

The higher-spin AdS/CFT conjectures were tested through matching of three-point correlation
functions of operators at order N, corresponding to tree level in the bulk [9,19]; further work on the
correlation functions includes [20–25]. Another class of tests, which involves calculations at order N0,
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corresponding to the one-loop effects in the bulk, was carried out in [16–18,26–29]. It concerned the
calculation of one-loop vacuum energy in Euclidean AdSd+1, corresponding to the sphere free energy
F = − log ZSd in CFTd; in even/odd d, this quantity enters the a/F theorems [30–36]. Similar tests
using the thermal AdSd+1, where the Vasiliev theory is dual to the vectorial CFT on Sd−1× S1, have also
been conducted [16–18,28,37]. Such calculations serve as a compact way of checking the agreement
of the spectra in the two dual theories. The quantities of interest are the formula for the thermal free
energies at arbitrary temperature β, as well as the temperature-independent Casimir energy Ec.

In this paper, we continue and extend the earlier work [16–18,26–29] on the one-loop tests of
higher-spin AdS/CFT. In particular, we will compare the Type B theories in various dimensions d and
their dual CFTs consisting of the Dirac fermionic fields (we also consider the theories with Majorana,
symplectic, Weyl or Majorana–Weyl fermions in the dimensions where they are admissible). Let us
also comment on the Sachdev–Ye–Kitaev (SYK) model [38,39], which is a quantum mechanical theory
of a large number N of Majorana fermions with random interactions; it has been attracting a great
deal of attention recently [40–44]. After the use of the replica trick, this model has manifest O(N)

symmetry [40], and it is tempting to look for its gravity dual using some variant of Type B higher spin
theory. Following [45], one may speculate that the SYK model provides an effective IRdescription of a
background of a Type B Vasiliev theory asymptotic to AdS4, which is dual to a theory of Majorana
fermions; this background should describe RGflow from AdS4 to AdS2 (one could also search for RG
flow from HStheory in AdSd+1 to AdS2 with d = 2, 4, . . .).

Two other types of theories with no explicitly-constructed Vasiliev equations are also explored.
First, we consider the theories whose CFT duals are expected to consist of both scalar and fermionic
fields, with a subsequent projection onto the singlet sector. These theories, which we call Type AB,
are then expected to have half-integral spin gauge fields in addition to the integral spin gauge fields of
Type A and Type B theories. Depending on the precise scalar and fermion field content, the Type AB
theories may be supersymmetric in some specific dimension d. For example, the U(N) singlet sector
of one fundamental Dirac fermion and one fundamental complex scalar is supersymmetric in d = 3,
and a similar theory with one fundamental Dirac fermion and two fundamental complex scalars is
supersymmetric in d = 5 [46].1 Second, we study the Type C theories, where the CFT dual consists of
some number of p-form gauge fields, with p = d

2 − 1; the self-duality condition on the field strength
may also be imposed. Such theories were studied in [16–18] for d = 4 and 6, and we extend them to
more general dimensions.

The organization of the paper is as follows. In Section 2, we review how the comparison of the
partition functions of the higher-spin theory and the corresponding CFT allows us to draw useful
conclusions about their duality. We will also go through the various HS theories that will be examined
in this paper. This will allow us to summarize our results in Tables 1, 2 and 6. In Section 3, we present
our results for the free energy of Vasiliev theory in Euclidean AdSd+1 space asymptotic to the round
sphere Sd. In addition, in Appendix A.1, we detail the calculations for the free energy of Vasiliev theory
in the thermal AdSd+1 space, which is asymptotic to Sd−1 × S1.

Note: Shortly before completion of this paper, we became aware of independent forthcoming
work on related topics by M.Gunaydin, E. Skvortsov and T. Tran [47]. After the original submission of
this paper, we also noticed a related paper by Y. Pang, E. Sezgin and Y. Zhu [48].

2. Review and Summary of Results

2.1. Higher Spin Partition Functions in Euclidean AdS Spaces

According to the AdS/CFT dictionary, the CFT partition function ZCFT on the round sphere
Sd has to match the partition function of the bulk theory on the Euclidean AdSd+1 asymptotic to Sd.

1 This theory may be coupled to the U(N) 5dChern–Simons gauge theory to impose the singlet constraint.
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This is the hyperbolic space Hd+1 with the metric, ds2 = dρ2 + sinh2ρ dΩd, where dΩd is the metric
of a unit d-sphere. After defining the free energy F = − log Z, the AdS/CFT correspondence implies
FCFT = Fbulk.

For a vectorial CFT with U(N), O(N) or USp(N) symmetry, the large N expansion is:

FCFT = N f (0) + f (1) +
1
N

f (2) + . . . . (1)

For a CFT consisting of N free fields, one obviously has f (n) = 0 for all n ≥ 1.
For the bulk gravitational theory with Newton constant GN the perturbative expansion of the free

energy assumes the form:

Fbulk =
1

GN
F(0) + F(1) + GN F(2) + . . . (2)

The leading contribution is the on-shell classical action of the theory; it should match the leading
term in the CFT answer which is of order N. Such a matching seems impossible at present due to the
lack of a conventional action for the higher spin theories.2 However, as first noted in [26], the one-loop
correction F(1) requires the knowledge of only the free quadratic actions for the higher-spin fields
in AdSd+1; it can be obtained by summing the logarithms of functional determinants of the relevant
kinetic operators. The latter were calculated by Camporesi and Higuchi [49–52], who derived the
spectral zeta function for fields of arbitrary spin in (A)dS. What remains is to carry out the appropriately
regularized sum over all spins present in a particular version of the higher spin theory.

The corresponding sphere free energy in a free CFT is given by FCFT = NF, where F may be
extracted from the determinant for a single conformal field (see, for example, [35]); the examples of the
latter are conformally coupled scalars, massless fermions, or p-form gauge fields. For vectorial theories
with double-trace interactions, such as the Wilson–Fisher and Gross–Neveu models, the CFT itself has
a non-trivial 1

N expansion, and so FCFT = NF +O(N0). To match the large N scaling, the Newton
constant of the bulk theory must behave as:

1
GN

∝ N, (3)

in the large N limit. If one assumes that 1
GN

F(0) = FCFT, then all the higher-loop corrections to Fbulk
must vanish for FCFT = Fbulk to hold. In [26,27], it was found that for the Vasiliev Type A theories
in all dimensions d, the non-minimal theories containing each integer spin indeed have a vanishing
one-loop correction to F. However, the minimal theories with even spins only were found to have a
non-vanishing one-loop contribution that matched exactly the value of the sphere free-energy of a
single conformal real scalar. This surprising result was then interpreted as a one-loop shift:

1
GN
∼ N − 1, (4)

where the one-loop contribution cancels exactly the shift in the coupling constant. Such an integer shift
is consistent with the quantization condition for 1

GN
established in [20,21]. The rule N → N − 1 does

not apply to all the variants of the HS theory. In [16,17] it was shown that the one-loop calculations in
Type C higher spin theories dual to free U(N)/O(N) Maxwell fields in d = 4 required that 1

GN
∼ N− 1

or N − 2 respectively. If the Maxwell fields are taken to be self-dual then 1
GN
∼ N − 1/2; in view of

this half-integer shift it is not clear if such a theory is consistent.

2 In the collective field approach to the bulk theory the action does exist, and the matching of free energies works by
construction [29]. However, the precise connection of this formalism with the Vasiliev equations remains an open problem.
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2.2. Variants of Higher Spin Theories and Key Results

The simplest and best understood HS theory is the Type A Vasiliev theory in AdSd+1, which
is known at non-linear level for any d [7]. The spectrum consists of a scalar with m2 = −2(d− 2)
and a tower of totally symmetric HS gauge fields (in the minimal theory, only the even spins are
present). This is in one to one correspondence with the spectrum of O(N)/U(N) invariant “single
trace” operators on the CFT side, which consists of the ∆ = d− 2 scalar:

J0 = φ∗i φi (5)

and the tower of conserved currents:

Jµ1···µs = φ∗i ∂(µ1
· · · ∂µs)φ

i + · · · , s ≥ 1. (6)

This spectrum can be confirmed for instance by computing the tensor product of two free scalar
representations, which yields the result [8,53,54]

(
d
2
− 1; 0

)
⊗
(

d
2
− 1; 0

)
= (d− 2; 0, . . . , 0) +

∞

∑
s=1

(d− 2 + s; s, 0, . . . , 0) (7)

where the notation (∆; m1, m2, . . .) indicates a representation of the conformal algebra with conformal
dimension ∆ and SO(d) representation labeled by [m1, m2, . . .] (on the left-hand side, (d/2− 1; 0)
is a shorthand for (d/2− 1; 0, . . . , 0)). Equivalently, one may obtain the same result by computing
the “thermal” partition function of the free CFT on S1 × Sd−1, using a flat connection to impose the
U(N) singlet constraint [28,37]. Similarly one can consider real scalars and O(N) singlet constraint,
where one obtains the same spectrum but with odd spins removed (this corresponds to symmetrizing
the product in (7)).

Another version of the HS theory is the so-called “Type B” theory, which is defined to be the HS
gauge theory in AdSd+1 dual to the free fermionic CFTd restricted to its singlet sector. The field content
of such theories can be deduced from CFT considerations, by deriving the spectrum of singlet operators
which are bilinears in the fermionic fields. In the case of Dirac fermions, one has the following results
for the tensor product of two free fermion representations [8,54]: in even d:

(
d−1

2 ; 1
2

)
⊗
(

d−1
2 ; 1

2

)
= 2(d− 1; 0, . . . , 0) + 2 ∑∞

s=1 [(d− 2 + s; s, 0, . . . , 0) + (d− 2 + s; s, 1, 0, . . . , 0)

+(d− 2 + s; s, 1, 1, 0, . . . , 0) + . . . + (d− 2 + s; s, 1, 1, 1, . . . , 1, 0)

+(d− 2 + s; s, 1, 1, . . . , 1, 1) + (d− 2 + s; s, 1, 1, . . . , 1,−1)]

(8)

and in odd d:
(

d− 1
2

;
1
2

)
⊗
(

d− 1
2

;
1
2

)
= (d− 1; 0, . . . , 0) +

∞

∑
s=1

[(d− 2 + s; s, 0, . . . , 0)+

+(d− 2 + s; s, 1, 0, . . . , 0) + . . . + (d− 2 + s; s, 1, 1, . . . , 1, 0) + (d− 2 + s; s, 1, 1, . . . , 1, 1)] .

(9)

Note that in the case d = 3, the spectra of the Type A and Type B theory are the same, except
for the fact that the m2 = −2 scalar is parity even in the former and parity odd in the latter (and also
quantized with conjugate boundary conditions, ∆ = 1 versus ∆ = 2). In this special case, the fully
non-linear equations for the Type B HS gauge theory in AdS4 are known and closely related to those of
the Type A theory [6]. For all d > 3, however, the spectra of Type B theories differ considerably from
Type A theories, since they contain towers of spins with various mixed symmetries, see (8) and (9),
and the corresponding non-linear equations are not known. As an example, and to clarify the meaning
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of (8) and (9), let us consider d = 4 [28,55–57]. In this case, on the CFT side one can construct the two
scalar operators:

J0 = ψ̄iψ
i, J̃0 = ψ̄iγ5ψi , (10)

as well as (schematically) the totally symmetric and traceless bilinear currents:

Jµ1···µs = ψ̄iγ(µ1
∂µ2 · · · ∂µs)ψ

i + · · · , J̃µ1···µs = ψ̄iγ5γ(µ1
∂µ2 · · · ∂µs)ψ

i + · · · , s ≥ 1 , (11)

and a tower of mixed higher symmetry bilinear current,

Mµ1···µs ,ν = ψ̄iγν(µ1
∂µ2 · · · ∂µs)ψ

i + · · · , s ≥ 1 , (12)

where γνµ1 = γ[νγµ1]
is the antisymmetrized product of the gamma matrices. These operators are dual

to corresponding HS fields in AdS5. In particular, in addition to two towers of Fronsdal fields and
a tower of mixed symmetry gauge fields, there are two bulk scalar fields and a massive antisymmetric
tensor dual to ψ̄iγµνψi. Similarly, in higher dimensions one can construct the tower of mixed symmetry
operators appearing in (8) and (9) by using the antisymmetrized product of several gamma matrices.
In the Young tableaux notation, these operators correspond to the hook type diagrams:

sz }| {

j

8
>>>>><
>>>>>:

....

· · ·

(0.8)

2

(13)

where 1 < j ≤ p, with p = d/2 for even d and p = (d− 1)/2 for odd d. For s > 1, these operators are
conserved currents and are dual to massless gauge fields in the bulk, while for s = 1 they are dual to
massive antisymmetric fields.

For even d, we find evidence that the non-minimal Type B theory is exactly dual to the singlet
sector of the U(N) free fermionic CFT. The one-loop free energy of the Vasiliev theory vanishes exactly.
This generalizes the result given in [16] for the non-minimal Type B theory in AdS5; namely, there is
no shift to the coupling constant in the non-minimal Type B theory dual to the singlet sector of
Dirac fermions.

However, for all odd d, the one-loop free energy does not vanish. Instead, it follows
a surprising formula:

F(1)
type B =− 1

Γ(d + 1)

∫ 1/2

0
du u sin(πu)Γ

(
d
2
+ u

)
Γ
(

d
2
− u

)
, (14)

which has an equivalent form for integer d:

F(1)
type B =

1
2Γ(d + 1)

∫ 1

0
du cos (πu) Γ

(
d + 1

2
+ u

)
Γ
(

d + 1
2
− u

)
, (15)
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For example, for d = 3, 5, 7, one finds:

F(1)
type B = − ζ(3)

8π2 , d = 3 ,

F(1)
type B = − ζ(3)

96π2 −
ζ(5)
32π2 , d = 5 ,

F(1)
type B = − ζ(3)

720π2 −
ζ(5)

192π2 −
ζ(7)

128π2 , d = 7 .

(16)

and similarly for higher d. Obviously, these complicated shifts cannot be accommodated by an integer
shift of N. While the reason for this is not fully clear to us, it may be related to the fact that the
imposition of the singlet constraint requires introduction of other terms in F. For example, in d = 3
the theory also contains a Chern–Simons sector, whose leading contribution to F is of order N2.
Perhaps a detailed understanding of these additional terms holds the key to resolving the puzzle for
the fermionic theories in odd d.

We note that (14) always produces only linear combinations of ζ(2k + 1)/π2 with rational
coefficients. Interestingly, these formulas are related to the change in F due to certain double-trace
deformations [58]. In particular, the first formula gives (up to sign) the change in free energy due to the
double-trace deformation ∼

∫
ddxO2

∆, where O∆ is a scalar operator of dimension ∆ = d−1
2 , and the

second formula is proportional to the change in free energy due to the deformation ∼
∫

ddxΨ̄∆Ψ∆,
where Ψ∆ is a fermionic operator of dimension ∆ = d−2

2 . The reason for this formal relation to the
double-trace flows is unclear to us.

We also consider bulk Type B theories where various truncations have been imposed on the
non-minimal Type B theory and we provide evidence that they are dual to the singlet sectors of various
free fermionic CFTs. In d = 2, 3, 4, 8, 9 mod 8 we study the CFT of N Majorana fermions with the
O(N) singlet constraint, while in d = 5, 6, 7 mod 8 we study the theory of N symplectic Majorana
fermions with the USp(N) singlet constraint.3 We also study the CFT of Weyl fermions in even d,
and of Majorana–Weyl fermions when d = 2 mod 8. We will discuss these truncations in more detail in
Section 3.2.1. For even d, we find that under the Weyl truncation, the Type B theories have vanishing
F at the one-loop level. Under the Majorana/symplectic Majorana condition, the free energy of the
truncated Type B theory gives (up to sign) the free energy of one free conformal fermionic field on
Sd. This is logarithmically divergent due to the CFT a-anomaly, FSd

f = a f log(µR), where the anomaly
coefficient a f is given by [58]:

a f = 2
d
2

(−1)
d
2

πΓ(1 + d)

∫ 1

0
du cos

(πu
2

)
Γ
(

1 + d + u
2

)
Γ
(

1 + d− u
2

)
(17)

=

{
−1

6
,

11
180

,− 191
7560

,
2497

226, 800
,− 14, 797

2, 993, 760
,

92, 427, 157
40, 864, 824, 000

,− 36, 740, 617
35, 026, 992, 000

, · · ·
}

(18)

for d = {2, 4, 6, 8, . . .}. Finally, under the Majorana–Weyl condition, the free energy of the
corresponding truncated Type B theory reproduces half of the anomaly coefficients given in (18),
corresponding to a single Majorana–Weyl fermion.

For the odd d case, the minimal Type B theories dual to the Majorana (or symplectic Majorana)
projections again have unexpected values of their one-loop free energies. They are listed in Table 6.

3 Let us note that one can also consider a “non-minimal" USp(N) type-B model by starting with the free theory of N complex
fermions (with N even), and imposing a USp(N) singlet constraint on the spectrum (but not the symplectic Majorana
condition on the fermions). This can be done in any d, and the resulting higher-spin theories are the fermionic analog of
the symplectic type-A theories discussed in [26]. In AdS4, one obtains this way a spectrum containing a ∆ = 2 parity odd
scalar, one tower of higher-spin fields of all even spins s ≥ 2, and three towers of odd-spin fields, as in the scalar case
in [26]. One can analogously work out the spectra of such non-minimal USp(N) type-B theories in higher dimensions,
following similar steps as outlined in Section 3.2.1 for minimal USp(N) theories.
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We did not find a simple analytic formula that reproduces these numbers, but we note that, as in the
non-minimal Type B result (14), these values are always linear combinations of ζ(2k + 1)/π2 with
rational coefficients. It would be very interesting to understand the origin of these “anomalous” results
in the Type B theories.

One may also consider free CFTs which involve both the conformal scalars and fermions in the
fundamental of U(N) (or O(N)), with action:

S =
∫

ddx
N

∑
i=1

[
(∂µφ∗i )(∂

µφi) + ψ̄i(/∂)ψi
]

. (19)

When we impose the U(N) singlet constraint, the spectrum of single trace operators contains not
only the bilinears in φ and ψ, which are the same as discussed above, but also fermionic operators of
the form:

Ψµ1···µs = ψ̄i∂(µ1
· · · ∂µ

s− 1
2
)φ

i + . . . , where s =
1
2

,
3
2

, · · · , (20)

The dual HS theory in AdS should then include, in addition to the bosonic fields that appear
in Type A and Type B theories, a tower of massless half integer spin particles with s = 3/2, 5/2, . . .,
plus a s = 1/2 matter field. We will call the resulting HS theory the “Type AB” theory. Note that in
d = 3 this leads to a supersymmetric theory, but in general d the action (19) is not supersymmetric.
One may also truncate the model to the O(N)/USp(N) by imposing suitable reality conditions.
There is no qualitative difference in the spectrum of the half-integer operators in the truncated models,
with the only quantitative difference being a doubling of the degrees of freedom of each half-integer
spin particle when going from O(N)/USp(N) to U(N) in the dual CFT.

The partition function for the Type AB theory is,

Z = e−F = e−
1

GN
F(0)+F(1)+GN F(2)+···, where F(1) = F(1)

f + F(1)
b , (21)

with Fb being for the contributions from bosonic higher-spin fields, which arise from purely Type A
and purely Type B contributions, and F(1)

f is the contribution of the HS fermions dual to (20). Up to
one-loop level, the bosonic and fermionic contributions are decoupled, as indicated in (21). A similar
decoupling of the Casimir energy occurs at the one-loop level, i.e., E(1)

c = E(1)
c, f + E(1)

c,b .

Our calculations for the Euclidean-AdS higher spin theory shows that F(1)
f = 0 at the one-loop

level for both U(N)/O(N) theories for all d. Similarly, the Casimir energies are found to vanish:
Ec, f = 0. In even d, from our results on the Type B theories and the earlier results on Vasiliev Type

A theories, we see that F(1)
b = 0 for the non-minimal Type AB theory, and this suggests that Type

AB theories at one-loop have vanishing F(1). For odd d, F(1) is non-vanishing with the non-zero
contribution coming from the Type B theory’s free energy, as discussed above.

Finally, we consider the Type C higher-spin theories, which are conjectured to be dual to the singlet
sector of massless p-forms, where p = ( d

2 − 1).4 The first two examples of these theories are the d = 4
case discussed in [16,17], where the dynamical fields are the N Maxwell fields, and the d = 6 case [18]
where the dynamical fields are N 2-form gauge fields with field strength Hµνρ. In these theories,
there are also an infinite number of totally symmetric conserved higher-spin currents, in addition to
various fields of mixed symmetry. We will extend these calculations to even d > 6.

As for Type B theories in d > 3, there are no known equations of motion for type C theories,
but we can still infer their free field spectrum from CFT considerations, using the results of [54].

4 The choice of the p-form is made to ensure that the current operators satisfy the unitary bound, as well as conformal invariance.
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The non-minimal theory is obtained by taking N complex (d/2− 1)-form gauge fields A, and imposing
a U(N) singlet constraint. One may further truncate these models by taking real fields and O(N)

singlet constraint, which results in the “minimal type C” theory. In addition, one can further impose
a self-duality condition on the d/2-form field strength F = dA. Since ∗2 = +1 in d = 4m + 2 and
∗2 = −1 in d = 4m, where ∗ is the Hodge-dual operator, one can impose the self-duality condition
F = ∗F only in d = 4m + 2 (for m integer); this can be done both for real (O(N)) and complex
(U(N)) fields. In d = 4m, and only in the non-minimal case with N complex fields, one can impose
the self-duality condition F = i ∗ F. Decomposing F = F1 + iF2 into its real and imaginary parts,
this condition implies F1 = − ∗ F2, and self-dual and anti-self-dual parts of F are complex conjugate of
each other.

As an example, let us consider d = 4 and take N complex Maxwell fields with a U(N) singlet
constraint. The spectrum of the the single trace operators arising from the tensor product F̄i

µν ⊗ Fρσ
i

can be found to be [17,54]:

(2; 1, 1)c ⊗ (2; 1, 1)c = 2(4; 0, 0) + (4; 1, 1)c + (4; 2, 2)c

+ 2
∞

∑
s=2

(s + 2; s, 0) +
∞

∑
s=3

(s + 2; s, 2)c
(22)

where we use the notation (2; 1, 1)c = (2; 1, 1) + (2; 1,−1), corresponding to the sum of the self-dual
and anti self-dual 2-form field strength with ∆ = 2, and similarly for the representations appearing
on the right-hand side. Note that we use SO(4) notations [m1, m2] to specify the representation.
The operators in the first line are dual to matter fields in AdS5 in the corresponding representations,
while the second line corresponds to massless HS gauge fields. Note that a novel feature compared
to Type A and Type B is the presence of mixed symmetry representations with two boxes in the
second row:

s︷ ︸︸ ︷
· · · (23)

Imposing a reality condition and O(N) singlet constraint, one obtains the minimal spectrum [17]:

[(2; 1, 1)c ⊗ (2; 1, 1)c]symm = 2(4; 0, 0) + (4; 2, 2)c

+ ∑∞
s=2(s + 2; s, 0) + ∑∞

s=4,6,...(s + 2; s, 2)c .
(24)

Similarly, one may obtain the spectrum in all higher dimensions d = 4m and d = 4m + 2,
as will be explained in detail in Section 3.2.3. As an example, in the d = 8 type C theory we find
the representations:

s
︷ ︸︸ ︷

· · · &

s
︷ ︸︸ ︷

· · · &

s
︷ ︸︸ ︷

· · ·

&

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · · (25)

&

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · ·



Universe 2018, 4, 18 9 of 53

Our results for the one-loop calculations in type C theories are summarized in Table 1. We find
that the non-minimal U(N) theories have non-zero one-loop contributions, unlike the Type A and
type B theories (in even d). The results can be grouped into two subclasses depending on the spacetime
dimension, namely those in d = 4m or in d = 4m + 2, where m is an integer. In the minimal type C
theories with O(N) singlet constraint, we find that for all d = 4m the identification of the bulk coupling
constant is 1/GN ∼ N − 2, while in d = 4m + 2, the bulk one-loop free energy vanishes, and therefore
no shift is required. In the self-dual U(N)/O(N) theories, the one-loop free energy does not vanish,
but can be accounted for by half-integer shifts 1/GN ∼ N ± 1/2, as mentioned earlier. We find that all
of these results are consistent with calculations of Casimir energies in thermal AdS space, which are
collected in the Appendix.

Table 1. Summary of results of one-loop calculations for even d > 0. By no shift, we mean that there
are no shifts to the relation GN ∼ 1/N due to one-loop free energy of the particular theory. Results for
Type A theories taken from [27].

Type of Theory Shift to 1
GN

∼ N
Type A Theories

Non-Minimal U(N): No shift
Minimal O(N): N → N − 1

Type B Theories
Non-Minimal U(N): No shift

Minimal
O(N) in d = 2, 4, 8 (mod 8): N → N − 1

USp(N) in d = 6 (mod 8): N → N + 1

Weyl Projection: No shift

Majorana–Weyl: d = 2 (mod 8): N → N − 1
Type C Theories (p-Forms)

Non-minimal U(N)
d = 4, 8, 12, . . .: N → N − 1

d = 6, 10, 14, . . .: N → N + 1

Minimal O(N)
d = 4, 8, 12, . . .: N → N − 2

d = 6, 10, 14, . . .: No shift

Self-dual U(N)

d = 4, 8, 12, . . .: N → N − 1
2

d = 6, 10, 14, . . .: N → N +
1
2

Self-dual O(N)
d = 4, 8, 12, . . .: Not defined

d = 6, 10, 14, . . .: N → N − 1
2
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Table 2. Summary of results of one-loop calculations for odd d > 0. Again, by no shift, we mean
that there are no shifts to the coupling constant coming from the spectrum of the particular theory.
Results for Type A theories taken from [27].

Type of Theory Shift to 1
GN

∼ N
Type A Theories

Non-Minimal U(N): No shift

Minimal O(N): N → N − 1
Type B Theories

Non-Minimal U(N): Shifted by (14)

Minimal
O(N) in d = 3, 9 (mod 8): See Section 3.3.3

USp(N) in d = 5, 7 (mod 8): See Section 3.3.3

3. Matching the Sphere Free Energy

3.1. The AdS Spectral Zeta Function

Let us first review the calculation of the one-loop partition function on the hyperbolic space in the
case of the totally symmetric HS fields [26,27]. After gauge fixing of the linearized gauge invariance,
the contribution of a spin s (s ≥ 1) totally symmetric gauge field to the bulk partition function is
obtained as [59–61]:

Zs =

[
detSTT

s−1
(
−∇2 + (s + d− 2)(s− 1)

)] 1
2

[
detSTT

s (−∇2 + (s + d− 2)(s− 2)− s)
] 1

2
(26)

where the label STT stands for symmetric traceless transverse tensors, and the numerator corresponds
to the contributions of the spin s− 1 ghosts. The mass-like terms in the above kinetic operators are
related to the conformal dimension of the dual fields. For a totally symmetric field with kinetic operator
−∇2 + κ2, the dual conformal dimension is given by:

∆(∆− d)− s = κ2 . (27)

For the values of κ in (26), one finds for the physical spin s field in the denominator5

∆ph = s + d− 2 (28)

which corresponds to the scaling dimension of the dual conserved current in the CFT. Similarly
the conformal dimension obtained from the ghost kinetic operator in (26) is:

∆ph = s + d− 1 . (29)

From CFT point of view, this is the dimension of the divergence ∂ · Js, which is a null state that
one has to subtract to obtain the short representation of the conformal algebra corresponding to
a conserved current.

5 We choose the root ∆+ above the unitarity bound. The alternate root corresponds to gauging the HS symmetry at the
boundary [62].
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The determinants in (26) can be computed using the heat kernel, or equivalently spectral zeta
functions techniques.6 The spectral zeta function for a differential operator on a compact space with
discrete eigenvalues λn and degeneracy dn is defined as

ζ(z) = ∑
n

dnλ−z
n . (30)

In our case, the differential operators in hyperbolic space have continuous spectrum, and the
sum over eigenvalues is replaced by an integral. Let us consider a field labeled by the representation
αs = [s, m2, m3, . . .] of SO(d)7, where we have denoted by m1 = s the length of the first row in the
corresponding Young diagram, which we may call the spin of the particle (for example, for a totally
symmetric field, we have αs = [s, 0, 0, . . . , 0]). For a given representation αs, the spectral zeta function
takes the form:

ζ(∆;αs)(z) =
vol (AdSd+1)

vol(Sd)

2d−1

π
gαs

∫ ∞

0
du

µαs(u)[
u2 +

(
∆− d

2

)2
]z , (31)

where µαs(u) is the spectral density of the eigenvalues, which will be given shortly, and gαs is the
dimension of the representation αs (see Equations (43) and (44) below). The denominator corresponds
to the eigenvalues of the kinetic operator, and ∆ is the dimension of the dual CFT operator.8

The regularized volume of AdS is given explicitly by [63–65]:

vol(AdSd+1) =





πd/2Γ(− d
2 ), d odd,

2(−π)d/2

Γ(1+ d
2 )

log R, d even,
(32)

where R is the radius of the boundary sphere. The logarithmic dependence on R in even d is related to
the presence of the Weyl anomaly in even dimensional CFTs. Finally, the volume of the round sphere
of unit radius is:

vol(Sd) =
2π(d+1)/2

Γ[(d + 1)/2]
. (33)

Once the spectral zeta function is known, the contribution of the field labeled by (∆; αs) to the
bulk free energy is obtained as:

F(1)
(∆;αs)

= σ

[
−1

2
ζ ′(∆;αs)

(0)− ζ(∆;αs)(0) log(`Λ)

]
, (34)

where σ = +1 or −1 depending on whether the field is bosonic or fermionic. Here ` is the AdS
curvature, which we will set to one henceforth, and Λ is a UVcut-off. In general, the coefficient of the
logarithmic divergence ζ(∆;αs)(0) vanishes for each αs in even dimension d, but it is non-zero for odd d.

When the dimension ∆ = s + d− 2, the field labeled by αs is a gauge field and one has to subtract
the contribution of the corresponding ghosts in the αs−1 representation.9 We find it convenient to
introduce the notation:

6 The heat-kernel is related to the spectral zeta-function by a Mellin transformation.
7 This can be thought as the representation that specifies the dual CFT operator. From AdS point of view, one may view SO(d)

as the little group for a massive particle in d + 1 dimensions.
8 For the case of totally symmetric fields, this form of the eigenvalues can be deduced from the results of [51]. See for example

the Appendix of [16,18] for an explicit derivation in AdS5 and AdS7 for arbitrary representations.
9 As in the case of totally symmetric fields, the representation labeling the ghosts can be understood from CFT point of view

from the structure of the character of the short representations of the conformal algebra and the corresponding null states,
see [54].
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Z(∆ph=s+d−2;αs)
(z) ≡ ζ(∆ph;αs)

(z)− ζ(∆ph+1;αs−1)
(z) (35)

to indicate the spectral zeta function of the HS gauge fields in the αs representation, with ghost
contribution subtracted. The full one-loop free energy may be then obtained by summing over all
representations αs appearing in the spectrum. For instance, in the case of the non-minimal Type A
theory, we may define the “total” spectral zeta function:

ζHS
type A(z) = ζ(d−2;[0,...,0])(z) +

∞

∑
s=1

Z(s+d−2;[s,0,...,0])(z) (36)

from which we can obtain the full one-loop free energy:

F(1)
type A =

[
−1

2
(ζHS

type A)
′(0)− 1

2
ζHS

type A(0) log(`2Λ2)

]
. (37)

Similarly, one can obtain ζHS
total(z) and the one-loop free energy in the other higher spin theories

we discuss. As these calculations requires summing over infinite towers of fields, one has of course to
suitably regularized the sums, as discussed in [26,27] and reviewed in the explicit calculations below.

3.1.1. The Spectral Density for Arbitrary Representation

A general formula for the spectral density for a field labeled by the representation α = [m1, m2, . . .]
was given in [52], and we summarize their result below.

In AdSd+1, arranging the weights for the irreps of SO(d) as m1 ≥ m2 ≥ · · · ≥ |mp|, where p = d−1
2

for odd d and p = d
2 for even d, we may define:

`j = mp−j+1 + j− 1, for d = even, (38)

`j = mp−j+1 + j− 1
2

, for d = odd . (39)

In terms of these, the spectral density takes the form of:

µα(u) =
π

(
2d−1Γ

(
d+1

2

))2

p

∏
j=1

(u2 + `2
j ), for d = even, (40)

µα(u) =
π

(
2d−1Γ

(
d+1

2

))2 f (u)u
p

∏
j=1

(u2 + `2
j ), for d = odd, (41)

where:

f (u) =

{
tanh(πu), `j = half-integer,

coth(πu), `j = integer.
(42)

The pre-factor of π

(2d−1Γ( d+1
2 ))

2 arises as a normalization constant found by imposing the condition

that as we approach flat space from hyperbolic space, the spectral density should approach that of
flat space.

The number of degrees of freedom gα is equal to the dimension of the corresponding
representation of SO(d), and is given by [66]:

gαs = ∏1≤i<j≤p
mi−mj+j−i

j−i ∏1≤i<j≤p
mi+mj+2p−i−j

2p−i−j , for d = 2p, (43)
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and:
gαs = ∏1≤i≤p

2mi+2p−2i+1
2p−2i+1 ∏1≤i<j≤p

mi−mj+j−i
j−i

×∏1≤i<j≤p
mi+mj+2p−i−j+1

2p−i−j+1 , for d = 2p + 1,
(44)

where α = [m1, . . . , mp]. As an example, in the Type A case in AdSd+1, the only representation we need
to consider is m1 = s, and for all j 6= 1, mj = 0. This gives us:

µ[s,0,...,0](u) = π

(2d−1Γ( d+1
2 ))

2

[
u2 +

(
s + d−2

2

)2
] ∣∣∣∣

Γ(iu+ d−2
2 )

Γ(iu)

∣∣∣∣
2

=





π
(

2d−1Γ
(

d+1
2

))2

[
u2 +

(
s +

d− 2
2

)2
]
(d−4)/2

∏
j=0

(u2 + j2), d = even,

π
(

2d−1Γ
(

d+1
2

))2 u tanh(πu)

[
u2 +

(
s +

d− 2
2

)2
]
(d−5)/2

∏
j=0

[
u2 + (j +

1
2
)2

]
, d = odd.

(45)

and:

g[s,0,...,0] =
(2s + d− 2)(s + d− 3)!

(d− 2)!s!
, d ≥ 3. (46)

The results agree with the formulas derived in [49] and used in [27].
In Type AB theories, we need the spectral density for fermion fields in the α = [s, 1/2, 1/2, . . . , 1/2]

representation. We find that the above general formulas for even and odd d can be expressed in the
compact form valid for all d:

µ[s, 1
2 ,..., 1

2 ]
(u) =

π
(

2d−1Γ
(

d+1
2

))2

[
u2 +

(
s +

d− 2
2

)2
] ∣∣∣∣∣∣

Γ
(

iu + d−1
2

)

Γ(iu + 1
2 )

∣∣∣∣∣∣

2

, (47)

and:

g[s, 1
2 ,..., 1

2 ]
=

(s− 5
2 + d)!

(s− 1
2 )!(d− 2)!

nF(d), nF(d) =

{
2

d−2
2 , if d = even,

2
d−1

2 , if d = odd.
(48)

The spectral densities for the mixed symmetry fields appearing in Type B and C theories can be
obtained in a straightforward way from the above general formulas, and we present the explicit results
in the next sections.

3.2. Calculations in Even d

3.2.1. Type B Theories

Spectrum

The non-minimal Type B higher spin theory, which is conjectured to be dual to the U(N) singlet
sector of the free Dirac fermion theory, contains towers of mixed symmetry gauge fields of all integer
spins. From the spectrum given in (8), we obtain the total spectral zeta function:

ζHS
type B(z) = 2ζ(∆=d−1;[0,0,...,0])(z)

+2 ∑∞
s=1

[
Z(∆ph;[s,1,1,...,1,0])(z) + Z(∆ph;[s,1,1,...,1,0,0])(z) + . . . + Z(∆ph;[s,1,0,...,0])(z)

+Z(∆ph;[s,0,0,...,0])(z)
]

+∑∞
s=1

[
Z(∆ph;[s,1,1,...,1,1])(z) + Z(∆ph;[s,1,1,...,1,1,−1])(z)

]
.

(49)
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In the third line of (49), the representations [s, 1, 1, . . . , 1, 1] and [s, 1, 1, . . . , 1,−1] give the self-dual
and anti-self-dual parts of the corresponding fields. At the level of the spectral ζ functions, they yield
equal contributions.10 Using the spectral zeta function formulas listed in Section 3.1.1 and summing
over all representations given above, we find that for all even d:

ζHS
type B(z) = O(z2) , (50)

and consequently the one-loop free energy in the non-minimal Type B theory in even d exactly vanishes:

F(1)
type B = 0 . (51)

There are various truncations to the non-minimal Type B theory that results in the Weyl,
Majorana and Majorana–Weyl projections on the free fermionic CFT. While the Weyl projection
can be applied in all even dimensions d, the Majorana projection can be applied in dimensions
d = 2, 3, 4, 8, 9 (mod 8), and the Majorana–Weyl projection only in dimensions d = 2 (mod 8).
An interesting example is d = 10 (AdS11), where we can consider all four types of Type B theories.

Weyl projection The projection from the non-minimal Type B theory described above is slightly
different when the theory is in d = 4m or d = 4m + 2. Using the results of [54] for the product of chiral
fermion representations, we find11

ζHS
type B Weyl(z) =





∞

∑
s=1

[
Z(∆ph;[s,0,0,...,0])(z) + Z(∆ph;[s,1,1,0,...,0])(z) + . . . + Z(∆ph;[s,1,1,...,1])(z)

]
, for d = 4m + 2,

∞

∑
s=1

[
Z(∆ph;[s,0,0,...,0])(z) + Z(∆ph;[s,1,1,0,...,0])(z) + . . . + Z(∆ph;[s,1,1,...,1,0])(z)

]
, for d = 4m,

=





∞

∑
s=1

1

∑
ti≥0
ti≥ti+1

Z(∆ph;[s,t1,t1,...,tm ,tm ])(z), for d = 4m + 2,

∞

∑
s=1

1

∑
ti≥0
ti≥ti+1

Z(∆ph;[s,t1,t1,...,tm−1,tm−1,0])(z), for d = 4m,

(52)

Note that under this projection, there are no scalars in the spectrum. The case d = 4 (AdS5) was
already discussed in [28]. Summing over all representations, we find that for all even d:

ζHS
type B Weyl(z) = O(z

2) , (53)

and so
F(1)

type B Weyl = 0 . (54)

Minimal Theory (Majorana projection) The Majorana condition ψ̄ = ψTC, where C is the charge
conjugation matrix, can be imposed in d = 2, 3, 4, 8, 9 (mod 8), see for instance [67]. In these dimensions,
we can consider the theory of N free Majorana fermions and impose an O(N) singlet constraint.
In d = 6 (mod 8), provided one has an even number N of fermions, one can impose instead a
symplectic Majorana condition ψ̄i = ψT

j CΩij, where C is the charge conjugation matrix and Ωij the
antisymmetric symplectic metric. In this case, we consider the theory of N free symplectic Majoranas
with a USp(N) singlet constraint.

10 Note that, technically, for all Type B theories the field of spin s = 1 in the tower of spins of representation [s, 1, . . .] is
not a gauge field. However, for conciseness we still use the symbol Z(∆ph ;[s,1,...]) for these fields; the corresponding ghost
contribution is zero, so it does not make a practical difference.

11 To obtain this result, we note that in d = 4m, complex conjugation flips the chirality of a Weyl spinor, while in d = 4m + 2
the Weyl representation is self-conjugate. Therefore, in order to obtain U(N) invariant operators, we should use Equation
(4.20) of [54] for d = 4m, and Equation (4.23) of the same reference for d = 4m + 2.
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The operator spectrum in the minimal theory can be deduced by working out which operators of
the non-minimal theory are projected out by the Majorana constraint. The bilinear operators in the
non-minimal theory are of the schematic form:

Jµ1···µs ,ν1···νn−1 ∼ ψ̄i(Γ(n))ν1···νn−1(µ1
∂µ2 ∂µ3 · · · ∂µs)ψ

i + . . . (55)

where n = 0, . . . , d
2 − 1, and Γ(n) is the antisymmetrized product of n gamma matrices. For Majorana

fermions, we have ψ̄ = ψTC, and so the operators are projected out or kept depending on whether
CΓ(n) is symmetric or antisymmetric. If CΓ(n) is symmetric, then the operators with an even number
of derivatives (i.e., odd spin) are projected out; if it is antisymmetric, then the operators with an odd
number of derivatives (i.e., even spin) are projected out. In addition to (55), the non-minimal Type
B theories in even d include two scalars J0 = ψ̄iψ

i and J̃0 = ψ̄iγ∗ψ
i, where γ∗ ∼ Γ(d) is the chirality

matrix. When C is symmetric, J0 is projected out, and when Cγ∗ is symmetric, J̃0 is projected out.12

For instance, in d = 4, the non-minimal theory contains the operators given in (10)–(12). In d = 4,
one has that both C and Cγ5 are antisymmetric, so both scalars in (10) are retained. Then, one has that
Cγµ is symmetric while Cγµγ5 antisymmetric, and so we keep the first tower in (11) for even s and the
other tower for odd s: together, they make up a single tower in the [s, 0] representation with all integer
spins. Finally, CΓµν is symmetric, so we keep the mixed symmetry fields (12) with an odd number of
derivatives, i.e., the spectrum contains the representations [s, 1]c = [s, 1] + [s,−1] for all even s.

Higher dimensions can be analyzed similarly, using the symmetry/antisymmetry properties of
CΓ(n) in various d [67]. The results are summarized in Table 3. One finds that under the Majorana
projections the operators with the “heaviest” weight [s, 1, 1, . . . , 1]c always form a tower containing
all even s. The next representation [s, 1, . . . , 1, 0] form a tower of all integer s. Then, [s, 1, . . . , 1, 0, 0]
appears in two towers of all odd s. Finally, [s, 1, . . . , 1, 0, 0, 0] form a tower of all integer spins, after
which this cycle repeats. The number of scalars with ∆ = d− 1 to be included also changes in a cycle
of 4. In AdS5, we have 2 scalars; in AdS7, we have 1 (this case, though, should be discussed separately,
see below); in AdS9, we have 0; in AdS11, we have 1, and the cycle repeats. In a more compact notation,
the total spectral zeta function in the minimal Type B theories dual to the O(N) Majorana theories is:

ζHS
type B Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞

∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑w tw=w (mod 4)

(
Z(∆;[s,t1,t2,...,tw−1,tw ])(z) + Z(∆;[s,t1,t2,...,tw−1,−tw ])(z)

)

+ ∑
s=1,2,3,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−1) (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw ])(z) (56)

+ ∑
s=1,2,3,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−3) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z)

+ ∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−2) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw ])

(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw ])
(z)
)

where χ(d) = 1, 2, 0 when d = 0, 2, 4(mod 8) respectively. Explicit illustrations of this formula are
given in Table 3. Using these spectra we find, in all even d where the Majorana condition is possible:

12 As an example, consider the bilinear ψT Mψ. If M is symmetric, this operator clearly vanishes. On the other hand,
consider ψT M∂µψ. In this case, if M is an antisymmetric matrix, then this is equal to +∂µψT Mψ. In turn, this means that
ψT M∂µψ = 1

2 ∂µ(ψT Mψ), and so this operator is a total derivative and is not included in the spectrum of primaries.
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F(1)
type B Maj. = a f log R (57)

where R is the radius of the boundary sphere, and a f is the a-anomaly coefficient of a single Majorana
fermion in dimension d, given in (18). As explained earlier, this is consistent with the duality,
provided Gtype B Maj.

N ∼ 1/(N− 1). As mentioned above, in d = 6 (mod 8), i.e., AdS7(mod 8), we should
impose a symplectic Majorana condition and consider the USp(N) invariant operators. In terms
of the operators (55), since ψ̄ = ψTCΩ with Ω antisymmetric, all this means is that now odd spins
are projected out when CΓ(n) is antisymmetric, and even spins are projected out when CΓ(n) is
symmetric. Similarly, the scalar operators ψ̄iψ

i and ψiγ∗ψ
i are now projected out when C and Cγ∗ are

antisymmetric, respectively. In d = 6 (mod 8), one has that C is symmetric and Cγ∗ is antisymmetric,
so we retain a single scalar field. On the other hand, Cγµ and Cγµγ∗ are both antisymmetric, and so
we have two towers of totally symmetric representations of all even s.13 The projection of the mixed
symmetry representations can be deduced similarly. The total spectral zeta function is given by
the formula:

ζHS
type B Symp.Maj.(z) = ζ(d−1;[0,0,...,0])(z)

+
∞

∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑w tw=w (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw ])

(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw ])
(z)
)

+ ∑
s=1,2,3,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−1) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z) (58)

+ ∑
s=1,2,3,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−3) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z)

+ ∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−2) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw ])

(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw ])
(z)
)

An illustration of the formula is given in Table 3 for the AdS7 and AdS15 cases. Using these
spectra, we find that the one loop free energy of the minimal Type B theory corresponding to the
symplectic Majorana projection is given by:

F(1)
type B sympl.Maj. = −a f log R , (59)

i.e., the opposite sign compared to (57). This is consistent with the duality, provided Gtype B sympl.Maj.
N ∼

1/(N + 1).

Majorana–Weyl Projection

Finally the spectra arising from the Majorana–Weyl projection, which can be imposed in
dimensions d = 2(mod 8), is the overlap of the individual Majorana and Weyl projection. The resulting
spectrum yields the total zeta function:

13 Note that, had we tried to impose the standard Majorana condition, we would have retained the totally symmetric fields of
all odd spins. Then, the spectrum would not include a graviton, i.e., the dual CFT would not have a stress tensor.
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ζHS
Type B MW(z) =

∞

∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑w tw=w (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw ])(z)

+ ∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−2) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z) .

(60)

Table 3. Projection of the non-minimal Type B theory to the Majorana/symplectic Majorana minimal
Type B theory in even d. Notice that in AdS7 and AdS15, where we impose a symplectic Majorana
projection, the pattern does not exactly follow the one seen in the other dimensions, as explained in
the text. Instead, they are ‘inverted’, with the swapping of the towers for each weight from being only
even integer spins to only odd integer spins. Their shift is highlighted in cyan. As defined earlier,
the subscript ‘c’ indicates that both self-dual and anti-self-dual parts are included, corresponding to the
weights [t1, . . . , tk−1, tk] and [t1, . . . , tk−1,−tk].

AdS3 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s] 2
Scalar (∆ = 1) 1

F(1) − 1
6 log R

AdS7 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1]c 1
[s, 1, 0] 1
[s, 0, 0] 2

Scalar (∆ = 5) 1

F(1) 191
7560 log R

AdS11 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 0] 1
[s, 1, 1, 0, 0] 2
[s, 1, 0, 0, 0] 1
[s, 0, 0, 0, 0] 2

Scalar (∆ = 9) 1

F(1) − 14,797
2,993,760 log R

AdS15 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 2
[s, 1, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 2

Scalar (∆ = 13) 1

F(1) − 36,740,617
35,026,992,000 log R

AdS19 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0, 0, 0] 2
[s, 1, 0, 0, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0, 0, 0] 2

Scalar (∆ = 15) 1

F(1) − 23,133,945,892,303
99,786,996,429,120,000 log R

AdS5 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1]c 1
[s, 0] 1

Scalar (∆ = 3) 2

F(1) 11
180 log R

AdS9 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1]c 1
[s, 1, 1, 0] 1
[s, 1, 0, 0] 2
[s, 0, 0, 0] 1

Scalar (∆ = 7) 0

F(1) 2497
226,800 log R

AdS13 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 0, 0] 2
[s, 1, 1, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0] 1

Scalar (∆ = 11) 2

F(1) 92,427,157
40,864,824,000 log R

AdS17 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0, 0, 0] 1

Scalar (∆ = 15) 0

F(1) 61,430,943,169
125,046,361,440,000 log R

AdS21 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1, 1, 1]c 2
[s, 1, 1, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0, 0, 0, 0] 2
[s, 1, 1, 0, 0, 0, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1

Scalar (∆ = 17) 2

F(1) 16,399,688,681,447
149,003,207,337,600,000 log R
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An illustration of this can be seen in Table 4, where we list the spectra of AdS11 and AdS19.
Summing up over these spectra, we find the result:

F(1)
type B MW =

1
2

a f log R (61)

which is the a-anomaly coefficient of a single Majorana–Weyl fermion at the boundary.
In d = 6 (mod 8), one may impose a symplectic Majorana–Weyl projection. The resulting spectra

are the overlap between the symplectic Majorana and Weyl projections. For instance, in d = 6 we
find a minimal theory with a totally symmetric tower [s, 0, 0] of all even spins, and a tower of the
mixed symmetry fields [s, 1, 1] of all odd spins (see Table 4). In this case (and similarly for higher
d = 14, 22, . . .), we find:

F(1)
type B SMW = −1

2
a f log R . (62)

Since the a-anomaly of the boundary free theory of N symplectic Majorana–Weyl fermions is
aN SMW = N

2 a f , this result is consistent with a shift Gtype B SMW
N ∼ 1/(N + 1).

Table 4. Table of weights and their towers of spins for (top left) AdS11 and (top right) AdS19 under
Majorana–Weyl projection, and for (bottom left) AdS7 and (bottom right) AdS15 under the Symplectic
Majorana–Weyl projection. There are no subscripts c for the [s, 1, . . . , 1] representations because the
dual representations [s, 1, . . . , 1,−1] are not included.

AdS11 (Majorana–Weyl)
α s =

1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .
[s, 1, 1, 1, 1] 1
[s, 1, 1, 0, 0] 1
[s, 0, 0, 0, 0] 1

F(1) −14,797
5,987,520 log R

AdS7 (Symplectic Majorana–Weyl)
α s =

1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .
[s, 1, 1] 1
[s, 0, 0] 1

F(1) 191
15,120 log R

AdS19 (Majorana–Weyl)
α s =

1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .
[s, 1, 1, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 1, 1, 0, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0, 0, 0] 1

F(1) − 23,133,945,892,303
199,573,992,858,240,000 log R

AdS15 (Symplectic Majorana–Weyl)
α s =

1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .
[s, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 1

F(1) − 36,740,617
70,053,984,000 log R

Sample Calculations

AdS5 Following (49) for the non-minimal Type B theory,

ζHS
type B(z) = 2ζ(3;[0,0])(z) +

∞

∑
s=1

(
Z(∆ph;[s,1])(z) + Z(∆ph;[s,−1])(z)

)
+ 2

∞

∑
s=1

Z(∆ph;[s,0])(z). (63)

We see that there are two weights to consider in AdS5, corresponding to [s, 0] and [s,±1]
representation. Using (31) and (40), we have:
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ζ(∆;[s,1])(z)
log R = π2

∫ ∞
0 du (

u2+1)[(s+1)2+u2]
12π3

s(2+s)
[u2+(∆−2)2]

z

= s(s+2)
8
√

πΓ(z)

[
(s+1)2(∆−2)1−2zΓ(z− 1

2 )
3 +

((s+1)2+1)(∆−2)3−2zΓ(z− 3
2 )

6

+
(∆−2)5−2zΓ(z− 5

2 )
4

]
(64)

In the above, we made use of the formula,

∫ ∞

0
du

u2p

[u2 + ν2]
z = ν2p+1−2z

∫ ∞

0
du

u2p

[u2 + 1]z
= ν2p+1−2z Γ(p + 1

2 )

2
Γ(z− p− 1

2 )

Γ(z)
, (65)

to go from the first to the second line.
In our regularization scheme, we sum over the physical modes separately from the ghost modes.

We introduce ζ(k, ν), the Hurwitz zeta function (analytically extended to the entire complex plane),
which is given by:

ζ(k, ν) =
∞

∑
s=0

1
(s + ν)k . (66)

Then, using ∆gh = s + 3,

1
log R ∑∞

s=1 ζ(∆gh;[s−1,1])(z)

= 1
96
√

πΓ(z)

[
2ζ(2z− 7)Γ

(
z− 3

2
)
+ 3ζ(2z− 7)Γ

(
z− 5

2
)
+ 8ζ(2z− 6)Γ

(
z− 3

2
)

+6ζ(2z− 6)Γ
(
z− 5

2
)
+ 4ζ(2z− 5)Γ

(
z− 1

2

)
+ 12ζ(2z− 5)Γ

(
z− 3

2
)

+16ζ(2z− 4)Γ
(

z− 1
2

)
+ 8ζ(2z− 4)Γ

(
z− 3

2
)
+ 20ζ(2z− 3)Γ

(
z− 1

2

)

+8ζ(2z− 2)Γ
(

z− 1
2

) ]
.

(67)

Similarly, using ∆ph = s + 2,

1
log R ∑∞

s=1 ζ(∆ph;[s,1])(z)

= 1
96
√

πΓ(z)

{
Γ
(
z− 5

2 , 1
) [

6ζ(2z− 6, 1) + 3ζ(2z− 7, 1)
]

+Γ
(
z− 3

2
) [

12ζ(2z− 5, 1) + 2ζ(2z− 7, 1) + 8ζ(2z− 6, 1)Γ + 8ζ(2z− 4, 1)
]

+
(

z− 1
2

) [
16ζ(2z− 4, 1)Γ + 8ζ(2z− 2, 1) + 20ζ(2z− 3, 1) + 4ζ(2z− 5, 1)

]}
(68)

Putting (67) and (68) together,

1
log R ∑∞

s=1

[
ζ(∆ph;[s,1])(z)− ζ(∆gh;[s−1,1])(z)

]

= − 1
90 z + 1

180
[
56ζ ′(−6)− 160ζ ′(−4)− 120ζ ′(−2)− 2γ + 3ψ

(
− 5

2
)
− 5ψ

(
− 3

2
)]

z2 +O(z3)
(69)

where ψ(x) is the digamma function, γ the Euler–Mascheroni constant, and ζ ′ the derivative of
the Riemann Zeta function ζ(z) (which is related to the Hurwitz Zeta function ζ(z) = ζ(z, 1)).
Similarly, for the totally symmetric representation [s, 0], we have:
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1
log R ∑∞

s=1 Z(∆ph;[s,0])(z)

= 1
log R ∑∞

s=1

[
ζ(∆ph;[s,0])(z)− ζ(∆gh;[s−1,0])(z)

]

= 1
24
√

πΓ(z)

[
3ζ(2(z− 3))Γ

(
z− 5

2
)
+ 4(ζ(2(z− 3)) + ζ(2(z− 2)))Γ

(
z− 3

2
)]

=
(

14
45 ζ ′(−6) + 4

9 ζ ′(−4)
)

z2 +O(z3)

(70)

Finally, for the massive scalar with ∆ = 3, we have:

ζ(3;[0,0])(z)
log R =

∫ ∞
0 du

(s+1)2u2[(s+1)2+u2]
12π[(∆−2)2+u2]

z

∣∣∣∣∆=3,
s=0

=

[
(s+1)4(∆−2)3−2zΓ(z− 3

2 )
48
√

πΓ(z) +
(s+1)2(∆−2)5−2zΓ(z− 5

2 )
32
√

πΓ(z)

]

∆=3,
s=0

=
Γ(z− 3

2 )
48
√

πΓ(z) +
Γ(z− 5

2 )
32
√

πΓ(z)

= 1
90 z + 1

180
[
2γ− 3ψ

(
− 5

2
)
+ 5ψ

(
− 3

2
)]

z2 +O(z3).

(71)

When summing (69)–(71) together, there are no terms of order O(z0) or O(z1) in the sum,
and hence, taking z→ 0, we obtain F(1) = 0 for the non-minimal Type B theory.

For the Type B minimal theory, we should evaluate, according to (56), the following sum:

ζHS
Total−Type B(z) = 2ζ(3;[0,0])(z) + ∑

s=2,4,6,...

(
Z(∆ph;[s,1])(z) + Z(∆ph;[s,−1])(z)

)
+

∞

∑
s=1

Z(∆ph;[s,0])(z). (72)

The first and third term of the sum have already been evaluated for in the non-minimal theory
in (70) and (71) respectively. For the second term,

∑s=2,4,6,...
(
Z(∆ph;[s,1]) + Z(∆ph;[s,−1])

)

= 2 ∑s=2,4,6,...

[
(s+1)2(s+2)s2−2zΓ(z− 1

2 )
24
√

πΓ(z) +
(s+2)((s+1)2+1)s4−2zΓ(z− 3

2 )
48
√

πΓ(z)

+
(s+2)s6−2zΓ(z− 5

2 )
32
√

πΓ(z)

]
log R

−2 ∑s=2,4,6,...

[
(s−1)s2(s+1)2−2zΓ(z− 1

2 )
24
√

πΓ(z) +
(s−1)(s2+1)(s+1)4−2zΓ(z− 3

2 )
48
√

πΓ(z)

+
(s−1)(s+1)6−2zΓ(z− 5

2 )
32
√

πΓ(z)

]
log R

(73)

To illustrate the zeta-regularization, let us consider the last term,

∑s=2,4,6,...
(s−1)(s+1)6−2zΓ(z− 5

2 )
32
√

πΓ(z)

= ∑s=2,4,6,...

[
(s+1)7−2zΓ(z− 5

2 )
32
√

πΓ(z) − 2
(s+1)6−2zΓ(z− 5

2 )
32
√

πΓ(z)

]

= ∑s=1,2,3,...

[
27−2z(s+ 1

2 )
7−2zΓ(z− 5

2 )
32
√

πΓ(z) − 2
26−2z(s+ 1

2 )
6−2zΓ(z− 5

2 )
32
√

πΓ(z)

]

=
22−2zζ(2z−7, 3

2 )Γ(z− 5
2 )√

πΓ(z) − 22−2zζ(2z−6, 3
2 )Γ(z− 5

2 )√
πΓ(z)

(74)
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where on the second line we used the substitution s→ 2s, followed by rewriting 2s + 1 = 2(s + 1
2 ).

14

The partial results coming from summing each tower are given in Table A3. Putting everything
together, we obtain F(1)

type B Maj. =
11

180 log R = ad=4
f log R, which agrees with the results of [16].

Finally, for the Weyl truncated theory,

ζHS
type B Weyl(z) =

∞

∑
s=1

Z(∆ph;[s,0])(z) = O(z
2), (75)

which gives us F(1) = 0.
AdS11 We skip the d = 7, 9 case, whose spectrum for the various theories follow from the

discussion in Section 3.3.3. For reference, the calculated free energy of each weight F(1) is given in
Tables A4 and A5.

Instead, let us consider the d = 11 case, where we can compare the four different types of fermions:
non-minimal (U(N)), Weyl, minimal (O(N)), and Majorana–Weyl. The calculations of F(1) for each
the various weights and their spectra are given in Table A6. In the non-minimal and Weyl projected
theories, the bulk F(1) contributions sum to zero, whereas in the minimal and Majorana–Weyl theories,
the bulk F(1) contributions are −14, 797/2, 993, 760 log R and −14, 797/5, 987, 520 log R respectively.
The numerical parts of these free energies correspond exactly to the values of the free energy of one
real fermion, −14, 797/2, 993, 760 and one real Weyl fermion on S10, −14, 797/5, 987, 520.

3.2.2. Fermionic Higher Spins in Type AB Theories

Spectrum

We described earlier that there is only one irrep of SO(d) of interest here that describes the tower
of spins corresponding to the fermionic bilinears in Type AB theories, namely αs = [s, 1

2 , 1
2 , . . . , 1

2 ].
Therefore, in the non-minimal theories dual to complex scalars and fermions in the U(N) singlet sector,
the purely fermionic contribution to the total zeta function is:

ζHS
type AB ferm(z) = 2ζHS

(∆1/2;[ 1
2 , 1

2 , 1
2 ,..., 1

2 ])
(z) + 2

∞

∑
s= 3

2 , 5
2 ,...

Z(∆ph;[s, 1
2 , 1

2 ,..., 1
2 ])

(z), (76)

where ∆1/2 = 1
2 + d− 2 = d− 3

2 . Thus, the spectrum of spins gives us a massive Dirac fermion15,
and a tower of complex massless higher-spin fermionic fields.16

Sample Calculation: AdS5

After collecting our equations following (76), we have,

ζHS
type AB ferm(z) = 2ζHS

(∆1/2;[ 1
2 , 1

2 ])
(z) + 2

∞

∑
s= 3

2 , 5
2 ,...

Z(∆ph;[s, 1
2 ])

(z), (77)

with ∆ph = 2 + s. For the massive fermion contribution,

ζ(∆1/2;[s, 1
2 ])

(z) =
22z−10

(
36Γ

(
z− 1

2

)
+ 20Γ

(
z− 3

2
)
+ 3Γ

(
z− 5

2
))

3
√

πΓ(z)
. (78)

14 Similar shifts and scaling will be applied in the higher dimensional Type B cases, as well as the Type AB and C cases,
and details of transformations to the Hurwitz-zeta function can be found in Appendix B.1.

15 With mass |m| = (∆1/2 − d/2)/2 = (d− 3)/4.
16 The factor of two in (76) just accounts for the fact that the representations are complex.
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Then,

ζ
(∆;[s, 1

2 ])
(z)

log R =
(s+ 1

2 )(s+
3
2 )

48π(∆−2)2z−1Γ(z)

×
[
(∆− 2)4Γ

( 5
2
)

Γ
(
z− 5

2
)
+ Γ

( 3
2
)

Γ
(
z− 3

2
)
(∆− 2)2

(
1
4 + (s + 1)2

)

+Γ
(

1
2

)
Γ
(

z− 1
2

)
(s+1)2

4

]
.

(79)

This gives us,

∑s= 3
2 , 5

2 ,... ζ(∆ph;[s, 1
2 ])

(z)

= 1
1536
√

πΓ(z)

{
6
[
4ζ
(
2z− 7, 3

2
)
+ 8ζ

(
2z− 6, 3

2
)
+ 3ζ

(
2z− 5, 3

2
)]

Γ
(
z− 5

2
)

+
[
16ζ

(
2z− 7, 3

2
)
+ 64ζ

(
2z− 6, 3

2
)
+ 96ζ

(
2z− 5, 3

2
)
+ 64ζ

(
2z− 4, 3

2
)

+15ζ
(
2z− 3, 3

2
)]

Γ
(
z− 3

2
)
+ 2

[
4ζ
(
2z− 5, 3

2
)
+ 16ζ

(
2z− 4, 3

2
)

+23ζ
(
2z− 3, 3

2
)
+ 14ζ

(
2z− 2, 3

2
)
+ 3ζ

(
2z− 1, 3

2
)]

Γ
(

z− 1
2

)}
.

(80)

The technicalities of the shift to the Hurwitz Zeta function in the sum above is similar to the case
for the minimal Type B theory in AdS5 which we worked out earlier. More details can be found in
Appendix B.1. Similarly,

∑s= 3
2 , 5

2 ,... ζ(∆gh;[s−1, 1
2 ])

(z)

= 1
1536
√

πΓ(z)

{
6
[
4ζ
(
2z− 7, 5

2
)
− 8ζ

(
2z− 6, 5

2
)
+ 3ζ

(
2z− 5, 5

2
)]

Γ
(
z− 5

2
)

+
[
16ζ

(
2z− 7, 5

2
)
− 64ζ

(
2z− 6, 5

2
)
+ 96ζ

(
2z− 5, 5

2
)
− 64ζ

(
2z− 4, 5

2
)

+15ζ
(
2z− 3, 5

2
)]

Γ
(
z− 3

2
)
+ 2

[
4ζ
(
2z− 5, 5

2
)
− 16ζ

(
2z− 4, 5

2
)

+23ζ
(
2z− 3, 5

2
)
− 14ζ

(
2z− 2, 5

2
)
+ 3ζ

(
2z− 1, 5

2
)]

Γ
(

z− 1
2

)}
.

(81)

Quite clearly, the Hurwitz-zeta function shifts differently for the physical and ghost modes.
Adding all three contributions and expanding near z = 0,

ζHS
type AB ferm(z) = O(z2) (82)

which implies that F(1)
type AB ferm = 0, consistently with the duality.

For reference, we also report the expected expression of ζHS
type AB ferm(z) for AdS7 and AdS9,

expanded in z up to the second order, in Appendix C.2.

3.2.3. Type C Theories

Calculations for Type C theories are similar to those described above and we will not go through
all details explicitly. In the following sections, we list the spectrum of fields in these theories,
including their various possible truncations. The free energy contributions in a few explicit examples
are collected for reference in Appendix C.3.

Spectrum

The spectrum of the non-minimal type C theories, dual to the free theory of N complex d/2-form
gauge fields with U(N) singlet constraint, can be obtained from the character formulas derived in [54].
While the resulting spectra may look complicated, they follow a clear pattern that can be rather easily
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identified if one refers to the tables given in Appendix C.3. The results are split into the cases d = 4m
and d = 4m + 2. For d = 4m, the total spectral zeta function is given by17,18

ζHS
type C(z) = 2

1

∑
ki≥0

ki≥ki+1

ζ(4m;[k1,k1,...,km ,km ])(z)

+
∞

∑
s=2

[
2

∑
ti≥0
ti≥ti+1

2Z(∆ph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) (83)

+
2

∑
ji≥0
ji≥ji+1

(
Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])

(z) + Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])
(z)
)]

and for d = 4m + 2:

ζHS
type C(z) = 2

1

∑
ki≥0

ki≥ki+1

ζ(4m+2;[k1,k1,...,km ,km ,0])(z)

+
∞

∑
s=2

[
2

∑
ti≥0
ti≥ti+1

2Z(∆ph;[s,2,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) (84)

+
2

∑
ji≥0
ji≥ji+1

(
Z(∆ph;[s,j1,j1,j2,j2,...,jm−1,+jm−1])

(z) + Z(∆ph;[s,j1,j1,j2,j2,...,jm−1,−jm−1])
(z)
)]

Using these spectra and (40) to compute the zeta functions, we find the results:

F(1)
type C = 2ad/2−form log R , d = 4m

F(1)
type C = −2ad/2−form log R , d = 4m + 2

(85)

where ad/2−form is the a-anomaly coefficient of a single real (d/2− 1)-form gauge field in dimension d.
The first few values in d = 4, 6, 8, . . . read [69]:

ad/2−form =

{
62
90

,−221
210

,
8051
5670

,−1, 339, 661
748, 440

,
525, 793, 111
243, 243, 000

,−3, 698, 905, 481
1, 459, 458, 000

, . . .
}

. (86)

Thus, we see that (85) is consistent with the duality provided Gtype C
N ∼ 1/(N − 1) in d = 4m,

and Gtype C
N ∼ 1/(N + 1) in d = 4m + 2.

Minimal Type C O(N) The “minimal type C” theory corresponds to the O(N) singlet sector
of the free theory of N (d/2− 1)-form gauge fields. Its spectrum can be in principle obtained by
appropriately “symmetrizing” the character formulas given in [54] and used above to obtain the
non-minimal spectrum. The spectra in d = 4 and d = 6 were obtained in [16–18]. Generalizing those
results for all d, we arrive at the following total spectral zeta functions. In d = 4m,

17 (83) and (84) correspond to Equations (4.20) and (4.21) and (4.22) and (4.23) of [54] respectively, and the tensorial
decomposition in these quoted equations can be further simplified by the formulas on p. 104 of [68].

18 For all Type C theories, the field of spin s = 2 in the towers of spins of representation [s, 2, . . .] are not gauge fields, but we
will still use the symbol Z for conciseness. See footnote 10 for similar remarks.
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ζHS
min. type C(z) = 2

1

∑
ki≥0

ki≥ki+1

ζ(4m;[k1,k1,k1,k1,...,kbm
2 c

,kbm
2 c

,kbm
2 c

,kbm
2 c

,0])(z)

+
∞

∑
s=2

2

∑
ti≥0
ti≥ti+1

Z(∆ph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) (87)

+ ∑
s=2,4,6,...

2

∑
ji≥0
ji≥ji+1

∑i ji=0 (mod 2)

(
Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])

(z) + Z(∆ph,s;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])
(z)
)

+ ∑
s=3,5,7,...

2

∑
ji≥0
ji≥ji+1

∑i ji=1 (mod 2)

(
Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])

(z) + Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])
(z)
)

and in d = 4m + 2,

ζHS
min. type C(z) =

1

∑
ki≥0

ki≥ki+1

ζ(4m+2;[k1,k1,...,km ,km ,0])(z)

+
∞

∑
s=2

2

∑
ti≥0
ti≥ti+1

Z(∆ph;[s,2,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) (88)

+ ∑
s=2,4,6,...

2

∑
ji≥0
ji≥ji+1

∑i ji=0 (mod 2)

(
Z(∆ph;[s,j1,j1,j2,j2,...,jm ,+jm ])(z) + Z(∆ph;[s,j1,j1,j2,j2,...,jm ,−jm ])(z)

)

+ ∑
s=3,5,7,...

2

∑
ji≥0
ji≥ji+1

∑i ji=1 (mod 2)

(
Z(∆ph;[s,j1,j1,j2,j2,...,jm ,+jm ])(z) + Z(∆ph;[s,j1,j1,j2,j2,...,jm ,−jm ])(z)

)
,

where bm
2 c denotes the integer part of m

2 .
As a consistency check of these spectra, in Appendix A.1 we computed the corresponding

partition functions in thermal AdS with S1× Sd−1 boundary. After summing up over all representations
appearing in the zeta functions above, the result matches the (symmetrized) square of the one-particle
partition function of a (d/2− 1)-form gauge field, see Equation (A29).

Evaluating the spectral zeta functions with the help of the formulas in Section 3.1.1, we obtain
the results:

F(1)
min. type C SD = 2ad/2−form log R , d = 4m

F(1)
min. type C SD = 0 , d = 4m + 2

(89)

These correspond to the shifts given in Table 1. Interestingly, in the minimal type C theory in
d = 6, 10, . . . the bulk one-loop free energy vanishes and no shift of the coupling constant is required.
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Self-dual U(N) In d = 4m, we can impose a self-duality constraint Fi = i ∗ Fi in the theory of
N complex p-forms. The resulting spectrum of U(N) invariant bilinears leads to the following total
zeta function in the bulk19

ζHS
type C SD(z) =

∞

∑
s=2

2

∑
ti≥0
ti≥ti+1

Z(∆ph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) . (90)

In d = 4m + 2, we can impose the self-duality condition Fi = ∗Fi, and the resulting truncated
spectrum gives the following total zeta function20

ζHS
type C SD(z) =

∞

∑
s=2

2

∑
ji≥0
ji≥ji+1

Z(∆ph;[s,j1,j1,j2,j2,...,jm−1,+jm−1])
(z) . (91)

Using these spectra, we find the results:

F(1)
type C SD =

1
2

ad/2−form log R , d = 4m

F(1)
type C SD =− 1

2
ad/2−form log R , d = 4m + 2

(92)

which correspond to the shifts given in Table 1.

Self-dual O(N) In d = 4m + 2, we can impose a self-duality condition on the theory of N real
forms with O(N) singlet constraint. The spectrum is given by the “overlap" of the minimal type C and
self-dual U(N) spectra given above. The resulting total zeta function is given by:

ζHS
min. type C SD(z) = ∑

s=2,4,6,...

2

∑
ji≥0
ji≥ji+1

∑i ji=0 (mod 2)

Z(∆;[s,j1,j1,j2,j2,...,jm ,+jm ])(z)

+ ∑
s=3,5,7,...

2

∑
ji≥0
ji≥ji+1

∑i ji=1 (mod 2)

Z(∆;[s,j1,j1,j2,j2,...,jm ,+jm ])(z) (93)

from which we find the result:

F(1)
min. type C SD =

1
4

ad/2−form log R , d = 4m + 2 . (94)

3.3. Calculations in Odd d

3.3.1. Preliminaries

Alternate Regulators

In the calculations for even d discussed above, we chose to sum over the spins before sending
the spectral parameter z → 0. This analytic continuation in z is a natural way to regulate the sums.
In practice, this is possible in the even d case because the spectral density is polynomial in the
integrating variable u. In the case of odd d, summing before sending z→ 0 is not easy to do, and we

19 This corresponds to Equation (4.20) in [54]. This is because in d = 4m complex conjugation maps self-dual to anti
self-dual forms.

20 This corresponds to Equation (4.23) in [54].
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will instead first send z → 0 and then evaluate the regularized sums over spins. There are two
equivalent ways to do this. The first involves using exponential factors to suppress the spins:

∑all spins
in αs

[
Z(∆ph;αs)

(z)
∣∣∣
z=0

]

= limε→0 ∑all spins
in αs

e−ε(∆ph− d
2 )(ζ(∆ph;αs)

)(0)− limε→0 ∑all spins
in αs

e−ε(∆gh− d
2 )(ζ(∆gh;αs−1)

)(0),
(95)

and similarly:

∑all spins
in αs

[
∂
∂zZ(∆ph;αs)

(z)
∣∣∣
z=0

]

= limε→0 ∑all spins
in αs

e−ε(∆ph− d
2 )(ζ(∆ph;αs)

)′(0)− limε→0 ∑all spins
in αs

e−ε(∆gh− d
2 )(ζ(∆gh;αs−1)

)′(0),
(96)

where we recall that ∆ph = s + d− 2 and ∆gh = s + d− 1. In even d, one can show that this procedure,
with the shifted exponentials as above, gives the same result as first summing over all representations
and then sending the spectral parameter z→ 0. Equivalently, instead of the exponential regulators,
one can use the analytic continuation of the Hurwitz zeta function by evaluating:

∑all spins
in αs

[
Z(∆ph;αs)

(z)
∣∣∣
z=0

]

= limε→0 ∑all spins
in αs

(
∆ph − d

2

)−ε
(ζHS

(∆ph,s;αs)
)(0)− limε→0 ∑all spins

in αs

(
∆gh − d

2

)−ε
(ζHS

(∆gh;αs−1)
)(0),

(97)

and:

∑all spins
in αs

[
∂
∂zZ(∆ph;αs)

(z)
∣∣∣
z=0

]

= limε→0 ∑all spins
in α

(
∆ph − d

2

)−ε
(ζ(∆ph;αs)

)′(0)− limε→0 ∑all spins
in αs

(
∆gh − d

2

)−ε
(ζHS

(∆gh;αs−1)
)′(0),

(98)

This method, which is closely related to the one previously used in [27],21 will be described in the
next sections in greater detail.

Note that, while in even d ζ(∆s ;αs)(0) vanishes identically for any representation, this is not true
in odd d. Vanishing of the logarithmic divergence in the one-loop free energy requires in this case
summing over all the bulk fields, as reviewed below.

Integrals

In all odd d calculations, we encounter the integrals of the type:

∫ ∞

0

uk

e2πu ± 1
log[u2 + b2] =

∫ ∞

0

uk du
e2πu ± 1

[
log(u2) +

∫ b2

0

1
u2 + x

dx

]
. (99)

We define:

A±k (x) ≡
∫ ∞

0

uk

e2πu ± 1
du

u2 + x
, B±k ≡

∫ ∞

0

uk

e2πu ± 1
. (100)

21 In that paper, an “averaged” regulator of ( ∆ph+∆gh

2 − d
2 )
−ε was preferred for the Type A theory calculations, and it can

be shown to give the same result as the regulators (97) and (98) that we will use in our calculations. In Type AB theories,
however, it appears that “averaged” regulator does not work, and we will use the shifts defined in (97) and (98) in all
theories consistently.
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There exists a recursive relation between the various Ak’s and Bk’s for any odd integer 2k + 1
(see Appendix B.2 for a proof):

A±2k+1(x) = (−x)k A±1 (x) +
k

∑
j=1

(−x)k−jB±2j−1. (101)

As a consequence of this relation, we only need the explicit analytic expressions of the integrals
A±1 ,22 which is given by [49]:

A+
1 (x) =

1
2

[
− log(

√
x) + ψ

(√
x +

1
2

)]
(103)

A−1 (x) =
1
2

[
log(
√

x)− 1
2
√

x
− ψ(

√
x)
]

, (104)

where ψ(x) is the digamma function ψ(x) = Γ′(x)/Γ(x).

3.3.2. Calculational Method and Type A Example

To illustrate the method of calculation, we first review the calculation in the non-minimal Type A
theory [26,27]. The calculations for the various Type B theories are similar and we will not give all details.
Calculations for the Type AB theory are similar with slight differences that will be discussed below.

Unlike the even d case, the spectral function µα(u) is no longer polynomial in u, but a polynomial
in u multiplied by a hyperbolic function,

µα(u) = µ
poly
α (u)× f±(u), where f±(u) =

{
f+(u) = tanh(πu), for bosons,

f−(u) = coth(πu), for fermions.
(105)

Then, for a particular spectral weight α, the partition function can be written as:

ζ(∆;α)(z) =
vol (AdSd+1)

vol(Sd)

2d−1

π

∫ ∞

0
du

gαµ
poly
α (u)[

u2 +
(

∆− d
2

)2
]z f±(u). (106)

We will use the example of the Type A theory in AdS4 to walk us through the calculations. In the
non-minimal Type A theory in AdS4, the only representations are the totally symmetric ones α = [s],
s ≥ 0, and the spectral zeta function for a given spin s is:

ζ(∆;αs)(z) = vol(AdS4)
vol(S3)

4
π

∫ ∞
0 du

g[s](s)µ
poly
[s] (u)

[
u2+(∆ph− 3

2 )
2]z f+(u)

=
∫ ∞

0 du
(2s+1)u

[
(s+ 1

2 )
2
+u2

]

6
[
(∆− 3

2 )
2
+u2

]z tanh(πu),

(107)

where µ
poly
[s] (u) =

u
(

u2+(s+ 1
2 )

2)

8π2 and g[s] = 2s + 1.
To calculate the one-loop free energy, we will need to evaluate ∑ ζ(∆;α)(0) and ∑ ζ ′(∆;α)(0).

22 While not needed, the integral results for B±k , can be identified with the Hurwitz-Lerch Phi function Φ(z, s, v),

∫ ∞

0
du

uk

e2πu ± 1
=
∫ ∞

0
du

1
2π

( u
2π )ke−u

1± e−u =
Γ(k + 1)
(2π)k+1 Φ(±1, k + 1, 1) (102)
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Computing ∑ ζ(α;∆)(0):

Setting z = 0 in (107), we find:

ζ(∆;[s])(0) =
∫ ∞

0
du

(2s + 1)u
[(

s + 1
2

)2
+ u2

]

6
tanh(πu). (108)

Regulating this sum by inserting the prefactor (∆− d
2 )
−ε as in (97), we find23

∑∞
s=1 ζ(∆ph;[s])(0) = limε→0 ∑∞

s=1
∫ ∞

0 du
(2s+1)u

[
(s+ 1

2 )
2
+u2

]

6

(
s− 1

2

)−ε
tanh(πu)

=
∫ ∞

0
du
6 limε→0

[
2ζ
(
−1 + ε, 1

2

)
u3 + 2ζ

(
−3 + ε, 1

2

)
u + 6ζ

(
−2 + ε, 1

2

)
u

+6ζ
(
−1 + ε, 1

2

)
u + (2u3 + 2u)ζ

(
ε, 1

2

) ]
tanh(πu)

=
∫ ∞

0 du
[

u3

72 + 113u
2880

]
tanh(πu).

(109)

A similar calculation for the ghost modes using the prefactor (∆gh − d
2 )
−ε yields:

∞

∑
s=1

ζ(∆gh;[s−1])(0) =
∫ ∞

0

du
e2πiu + 1

[
233u
2880

+
13u3

72

]
tanh(πu). (110)

For the bulk scalar, we simply set s = 0 in ζ(∆ph;[s])(0), and obtain ζ(1;[0])(0) =
∫ ∞

0 du
[

u
24 + u3

6

]
tanh(πu). Putting all contributions together, the coefficient of the logarithmic

divergence in the one-loop free energy is:

ζHS
type A(0) = ζ(1;[0])(0) + ∑∞

s=1 ζ(∆ph;[s])(0)−∑∞
s=1 ζ(∆gh;[s−1])(0)

=
∫ ∞

0 du tanh(πu)
[

u3

72 + 113u
2880 −

233u
2880 −

13u3

72 + u
24 + u3

6

]

= 0.

(111)

It is remarkable that when we sum over the entire spectrum of bulk fields, we get:

ζHS
Total(0) = 0, (112)

which indicates that the one-loop free energies have no logarithmic divergences. We find that this
result holds not only in Type A theories [26,27], but also in all of the Type B and Type AB theories we
discuss below.

Computing ζ ′(∆;αs)
(0):

The evaluation of ζ ′(0) in odd d is considerably more complicated. One may begin by splitting
the f±(u) term as: f±(u) = 1∓ 2

e2πiu±1 so that

ζ(∆;α)(z) = ζ
poly
(∆;α)(z) + ζ

exp
(∆;α)(z) (113)

23 Alternatively, one could first write tanh(πu) = 1− 2/(e2πiu + 1), evaluate the integral coming from the first term by analytic
continuation in z, and the one coming from the second term directly at z = 0, since it converges.
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where:

ζ
poly
(∆;α)(z) =

vol (AdSd+1)

vol(Sd)

2d−1

π

∫ ∞

0
du

gαµ
poly
α (u)[

u2 +
(

∆− d
2

)2
]z (114)

ζ
exp
(∆;α)(z) = ∓

vol (AdSd+1)

vol(Sd)

2d−1

π

∫ ∞

0
du

gαµ
poly
α (u)[

u2 +
(

∆− d
2

)2
]z

2
e2πiu ± 1

(115)

Additionally, by differentiating (113),

∂

∂z
ζ(∆;α)(z)

∣∣
z=0 =

∂

∂z
ζ

poly
(∆;α)(z)

∣∣
z=0 +

∂

∂z
ζ

exp
(∆;α)(z)

∣∣
z=0 (116)

The integral in ζ
poly
(∆;α)(z) may be evaluated at arbitrary z, and after taking the derivative and

summing over spins, one finds a zero contribution to the free energy. The evaluation of ζ
exp
(∆;α)(z) is

more involved, and we refer the reader to Appendix B.3 and [26,27] for more details. The final result is
that, in the non-minimal theory [26]:

ζ ′(1;[0])(0) +
∞

∑
s=1

ζ ′(s+1;[s])(0)−
∞

∑
s=1

ζ ′(s+2;[s−1])(0) = 0 , (117)

which implies that the one loop free energy vanishes. In the non-minimal theory, one finds instead:

− 1
2

[
ζ ′(1;[0])(0) +

∞

∑
s=2,4,6,...

ζ ′(s+1;[s])(0)−
∞

∑
s=2,4,6,...

ζ ′(s+2;[s−1])(0)

]
=

log 2
8
− 3ζ(3)

16π2 , (118)

which is the free energy of a single real conformal scalar on S3. An analogous result is found for the
Type A theory in AdSd+1 for all d [27].

3.3.3. Type B Theories

Non-Minimal Theory

The full spectral zeta function for the non-minimal Type B theory in odd d follows from
Equation (9), and reads:

ζHS
type B(z) = ζ(d−1;[0,0,...,0])(z)

+∑∞
s=1

(
Z(∆ph;[s,1,1,...,1,1])(z) + Z(∆ph;[s,1,1,...,1,1,0])(z) + . . . + Z(∆ph;[s,1,0,...,0])(z) + Z(∆ph;[s,0,0,...,0])(z)

)

= ζ(d−1;[0,0,...,0])(z) + ∑∞
s=1 ∑1

ti≥ti+1
ti≥0

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z),

(119)

Note that instead of two towers, there is only one tower for each representation, due to the lack
of the chirality matrix. Using this spectrum and the procedure outlined above to regulate the sums,
we find that the logarithmic divergence correctly cancels:

ζHS
type B(0) = 0 . (120)

However, as summarized in Section 2.2, the evaluation of (ζHS
type B)

′(0) leads to a surprising result.
The one-loop free energy of the non-minimal Type B theories in all odd d does not vanish, but is given
by (14), or equivalently by (15). This apparent mismatch with the expected result F(1) = 0 remains to
be understood.
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Minimal Theories

Majorana fermions in odd d can be defined for d = 3, 9 (mod 8). When the Majorana condition is
not possible, one can impose the symplectic Majorana (SM) condition and consider the USp(N) singlet
sector of N free SM fermions, as explained in the even d case above.

The spectra of the minimal theories can be again deduced from the symmetry/antisymmetry
properties of the CΓ(n) matrices. In the Majorana case, if CΓ(n) is symmetric the operators of the
form (55) are retained for even spins and projected out for odd spins, and vice-versa if CΓ(n) is
antisymmetric. The scalar operator ψ̄iψ

i is projected out if C is symmetric. For instance, in d = 3 the
C matrix is antisymmetric and Cγµ is symmetric, and so the spectrum of the minimal theory includes
the ∆ = 2 (pseudo)-scalar and the tower of totally symmetric fields of even spin. Higher dimensional
cases can be worked out similarly, and the first few examples are listed in Table 5. In a compact
notation, the total spectral zeta function of the minimal theories dual to the Majorana projected fermion
model reads:

ζHS
type B Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞

∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑i ti=w (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw ])(z) + ∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−1) (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw ])(z)

+ ∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−2) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z) + ∑

s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−3) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z) (121)

where χ(d) = 1, 0 when d = 3, 9 (mod 8) respectively.
In d = 5, 7 (mod 8) we can impose instead the symplectic Majorana projection. In this case,

the condition for which spins are projected out is reversed compared to the Majorana case, in a way
analogous to what discussed earlier in the even d case. For instance, in d = 5 (AdS6) one has that
C is antisymmetric, and so the scalar operator ψ̄iψ

i is now projected out. Then, Cγµ is antisymmetric,
and so the spectrum includes the totally symmetric [s, 0] representations for even s only. Finally, Cγµν is
symmetric, and so we keep the representations [s, 1] with odd s only. Higher dimensional cases are
worked out similarly, and the first few examples are listed in Table 5. The total spectral zeta function
can be expressed as:

ζHS
type B Symp.Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞

∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑i ti=w (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw ])(z) + ∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−1) (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw ])(z)

+ ∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−2) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z) + ∑

s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−3) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw ])
(z) (122)

where χ(d) = 0, 1 when d = 5, 7 (mod 8) respectively. In both versions of the minimal truncation,
we find that the coefficient of the logarithmic divergence still vanishes after summing up over the full
spectrum. However, similarly to the non-minimal case, the minimal Type B theories in odd d appear to
have a non-zero one-loop free energy, which we report in Table 6.
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Table 5. Spectra of the minimal Type B theory dual to the fermionic vector model with Majorana
(or symplectic Majorana) projection. The corresponding values of F(1) can be found in Table 6.

AdS4 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s] 1
Scalar (∆ = 2) 1

AdS8 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1] 1
[s, 1, 0] 1
[s, 0, 0] 1
Scalar (∆ = 6) 1

AdS12 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1] 1
[s, 1, 1, 1, 0] 1
[s, 1, 1, 0, 0] 1
[s, 1, 0, 0, 0] 1
[s, 0, 0, 0, 0] 1
Scalar (∆ = 10) 1

AdS16 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 1
Scalar (∆ = 14) 1

AdS6 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1] 1
[s, 0] 1
Scalar (∆ = 4)

AdS10 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1] 1
[s, 1, 1, 0] 1
[s, 1, 0, 0] 1
[s, 0, 0, 0] 1
Scalar (∆ = 8)

AdS14 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 0, 0] 1
[s, 1, 1, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0] 1
Scalar (∆ = 12)

We did not find an analytic formula for these results similar to (14). However, we note that all these
“anomalous” values only involve the Riemann zeta functions ζ(2k+ 1) divided by π2, and interestingly
all other transcendental constants that appear in intermediate steps of the calculation cancel out.



Universe 2018, 4, 18 32 of 53

Table 6. One-loop free energy of the minimal Type B HS theory in AdSd+1 for odd d.

d Fcomputed (Minimal Type B)

3
log(2)

8
− 5ζ(3)

16π2

5
3 log(2)

64
+

7ζ(3)
192π2 −

49ζ(5)
128π4

7
5 log(2)

128
+

227ζ(3)
3840π2 −

5ζ(5)
256π4 −

441ζ(7)
512π6

9 −35 log(2)
2048

+
315ζ(7)
2048π6 +

3825ζ(9)
4096π8 −

617ζ(3)
21, 504π2 −

85ζ(5)
2048π4

11
63 log(2)

16, 384
+

68, 843ζ(3)
10, 321, 920π2 +

31, 033ζ(5)
2, 211, 840π4 −

29ζ(7)
98, 304π6 −

13, 579ζ(9)
98, 304π8 −

31, 745ζ(11)
65, 536π10

13
231 log(2)

131, 072
+

1, 933, 151ζ(3)
619, 315, 200π2 +

27, 993, 331ζ(5)
3, 715, 891, 200π4 +

1, 056, 541ζ(7)
123, 863, 040π6 −

285, 799ζ(9)
11, 796, 480π8

−150, 541ζ(11)
786, 432π10 −

258, 049ζ(13)
524, 288π12

15
429 log(2)

524, 288
+

2, 423, 526, 031ζ(3)
1, 653, 158, 707, 200π2 +

41, 124, 367ζ(5)
10, 899, 947, 520π4 +

12, 837ζ(7)
2, 097, 152π6 +

47, 549ζ(9)
66, 060, 288π8

− 104, 687ζ(11)
2, 097, 152π10 −

503, 685ζ(13)
2, 097, 152π12 −

2, 080, 641ζ(15)
4, 194, 304π14

3.3.4. Type AB Theories

Spectrum and Results

As in the even d case, the only irrep of SO(d) describing the tower of half-integer spins is
αs = [s, 1

2 , 1
2 , . . . , 1

2 ]. Thus, the total spectral zeta function is given by the same equation as in (76).
The calculation is rather similar to the one we outlined for the Type A theory. The only difference

is that the spectral density µα(u) includes coth(πu) instead of tanh(πu). For example, in the Type AB
theory in AdS4, the higher-spin zeta-function is given by:

ζ(∆;[s])(z) =
∫ ∞

0
du

(2s + 1)u
[(

s + 1
2

)2
+ u2

]

6
[(

∆− 3
2
)2

+ u2
]z coth(πu). (123)

The calculations for ∑ ζ(∆;αs)(0) are essentially identical to that of Type A theories, and in particular
we find that the contribution to the logarithmic divergence due to the fermionic fields vanishes after
summing over the whole tower. Heading straight to the calculation of ∑ ζ ′(∆;αs)

(0), if we follow the
procedure outlined for the Type A case, we have:

ζ ′(∆;[s])(0) = −
∫ ∞

0
du

(2s + 1)u
3(e2πu − 1)

[
u2 +

(
s +

1
2

)2
]

log

[(
∆− 3

2

)2
+ u2

]
. (124)
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Rewriting the exponential terms using (99), we should use A−1 (x) instead of A+
1 (x). This introduces

an extra 1
2
√

x term in ζ
HS−exp′

∆,s;[s] (0), i.e.,

ζ
exp′

(∆;[s])(0) = −
∫ ∞

0 du (2s+1)u
3(e2πu−1)

[
u2 +

(
s + 1

2

)2
]

log(u2)

−
∫ (s− 1

2 )
2

0 dx 1
12 (2s + 1)

[
(2s + 1)2 + 4u2]

(
− 1

2
√

x +
log(
√

x)
2 − ψ(

√
x)

2

) (125)

In any case, the terms involving 1
2
√

x , which we can call ζ
exp−sqrt′

(∆;[s]) (0), will not contribute to the

value of ζ
exp′

(∆;[s])(0). Only the contributions from the terms involving ψ(
√

x), namely the third term
inside the bracket of (125) will contribute. After putting all together, the end result is:

ζ ′
( 3

2 ;[ 1
2 ])

(0) + ∑
s= 3

2 , 5
2 ,...

(
ζ ′(s+1;[s])(0)− ζ ′(s+2;[s−1])(0)

)
= 0 , (126)

i.e., the tower of fermionic fields in Type AB theories yields a vanishing contribution to the bulk
one-loop free energy. This result extends to all higher d.
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Appendix A

Appendix A.1. S1 × Sd−1 Partition Functions and Casimir Energies

Besides testing the gauge/gravity duality by comparing the partition functions on the Euclidean
AdSd+1 (hyperbolic space) and CFTd on Sd, we can also compare thermal partition functions of
higher spin theories on thermal AdSd+1 and boundary CFTs defined on S1 × Sd−1, where the inverse
temperature β of the thermal AdS space is interpreted as the length of S1. Calculations of the thermal
free energy and Casimir energy serve as useful checks on our results in hyperbolic space with
Sd boundary. The results below follow and generalize [28], which considered Type A theories in
all d and Type B theories in d = 2, 3, 4, and [16–18], where Type B theories in d = 6 and type C theories
in d = 4, 6 were discussed.

The free energy on S1 × Sd−1 takes the form:

F = Fβ + βEc (A1)

where Fβ depends non-trivially on the temperature and goes to zero at large β, and Ec is the Casimir
energy. The latter is related to the “one-particle” partition function on S1 × Sd−1 by (see e.g., [28] for
a review):

Ec = σ
1
2

ζE(−1) = σ
1

2Γ(z)

∫ ∞

0
dββz−1Z(β)

∣∣∣∣∣
z=−1

. (A2)



Universe 2018, 4, 18 34 of 53

where σ = +1 for bosonic fields, and σ = −1 for fermionic ones, and Z(β) denotes the one-particle
partition function. This also determines Fβ by:

Fβ = −
∞

∑
m=1

1
m
Z(mβ) , boson

Fβ =
∞

∑
m=1

(−1)m

m
Z(mβ) , fermion

(A3)

Note that Ec vanishes for a CFTd in odd d, but it is non-zero in even d.
In the vector models restricted to the singlet sector, one finds that Fβ = O(N0), due to the

integration over the flat connection which enforces the gauge singlet constraint [28,37]. This term
should then match the temperature dependent part of the bulk one-loop thermal free energy,
obtained by summing over all fields in the AdS spectrum, and the agreement serves as a useful
check on the bulk spectra. The Casimir term, on the other hand, is just given by N times the Casimir
energy of a single conformal field. If no shift is expected in the map between the bulk coupling constant
and N, then the CFT Casimir contribution should be reproduced just by a classical calculation in AdS
(which we have no access to at present), and bulk loop corrections to the Casimir energy should vanish.
However, when a shift GN ∼ 1/(N − k) is expected, the one-loop correction to the Casimir energy
should precisely be consistent with such a shift. We will see below that this is the case in all higher
spin theories we considered in this paper.

On the CFT side, the one-particle partition functions of a conformal scalar and Majorana (or Weyl)
fermion are given by:

Z0(q) =
q

d
2−1(1 + q)
(1− q)d−1 , Z 1

2
(q) =

2b
d
2 cq

d−1
2

(1− q)d−1 , q = e−β (A4)

Using (A2) and the identity (1− q)−b = ∑∞
n=1

(
n + b− 2

b− 1

)
qn−1, one then finds the Casimir energies:

Ec,0 =
∞

∑
n=0

(n + d− 3)!
(d− 2)!n!

[n +
1
2
(d− 2)]1−z|z=−1 ,

Ec,1/2 = −2b
d
2 c−1

∞

∑
n=0

(n + d− 2)!
(d− 2)!n!

[n +
1
2
(d− 1)]1−z|z=−1 .

(A5)

Evaluating this with Hurwitz zeta regularization, one obtains the values in d = 4, 6, 8, . . .:

Ec,0 =

{
1

240
,− 31

60, 480
,

289
3, 628, 800

,− 317
22, 809, 600

,
6, 803, 477

2, 615, 348, 736, 000
, . . .

}

Ec,1/2 =

{
17
960

,− 367
48, 384

,
27, 859

8, 294, 400
,− 1, 295, 803

851, 558, 400
,

5, 329, 242, 827
7, 608, 287, 232, 000

, . . .
} (A6)

For the real (d/2 − 1)-form gauge field, with no self-duality imposed on the d/2-form field
strength, the one-particle partition function is given by (see for instance Appendix D of [18]):

Z d
2 -form(q) =

2qd/2

(1− q)d−1




d
2

∑
j=1

ad,j(−q)
d
2−j


 , ad,j =

(
d− 1
j− 1

)
. (A7)
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Note that when we expand Z d
2 -form(q) around q = 1, the leading pole term is,

Z d
2 -form(q) ∼ 2

(1− q)d−1 n(d), where n(d) =

(
d− 2
d
2 − 1

)
, (A8)

which gives the correct number of propagating degrees of freedom of a (d/2− 1)-form gauge field.
Inserting (A7) into (A2), one finds the Casimir energies in d = 4, 6, 8, . . .: 24

Ec,d/2−form =

{
11

120
,− 191

2016
,

2497
25, 920

,− 14, 797
152, 064

,
92, 427, 157
943, 488, 000

, . . .
}

. (A9)

On the AdS side, at the level of the one-particle partition functions, the contribution of a bulk field
to the thermal free energy is given essentially by the character of the corresponding representation of
the conformal group. For the representations αs dual to massless gauge fields, we have:

Zαs(q) =
q∆ph

(1− q)d [gαs − qgαs−1 ] , (A10)

where ∆ph = s + d− 2 and gαs is the dimension of the representation αs (the number of propagating
degrees of freedom in the bulk is gαs − gαs−1). For the massive fields, the ghost contribution is not
present, and one has:

Zα =
q∆

(1− q)d gα . (A11)

One may obtain a “total” one-particle partition function Z(β) in the bulk by summing over all
representations in the spectrum, and from it one may then find the bulk one-loop Casimir energy
by (A2) and Fβ by (A3). In the following we summarize the result of these calculations in the various
higher spin theories considered in this paper.

Type A Theories

In [28], it was shown that:

Non-Minimal Type A: Z(β) = ∑
α

Zα(q) = [Z0(q)]2, (A12)

Minimal Type A: Z(β) = ∑
γ

Zγ(q) =
1
2

[
[Z0(q)]2 +Z0(q2)

]
(A13)

where α refers to the spectrum containing the weights [s, 0, . . . , 0] with each integer spin s = 0, 1, 2, . . .,
and γ refers to the spectra containing the weights [s, 0, . . . , 0] with each even integer spin s = 0, 2, 4, . . ..
The result on the right-hand side, where Z0(β) is the scalar one-particle partition function given
in (A4), precisely agrees with the singlet sector CFT calculation [28,37].

The bulk Casimir energy can be obtained by inserting the right-hand side of (A12) and (A13)
into (A2) (alternatively, one may compute the Casimir contributions spin by spin, and sum up at
the end). One finds that [Z0(q)]2 gives zero contribution to the Casimir energy,25 while Z0(q2) gives
a contribution equal to 2Ec,0. Then, Ec,type A = 0 and Ec,min. type A = Ec,0, consistently with the expected
shift of GN deduced from the Sd calculations.

24 The values obtained for d = 4, 6 agree with those in the literature [16–18], while the values for other dimensions are new as
far as we know.

25 This is because of symmetry under q→ 1/q. Any function symmetric under this exchange gives a zero contribution under
the integral in (A2).
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Type B Theories

In the Type B theories and their various truncations, we find:

Non-Minimal Type B: ∑
α

Zα(q) = [Z 1
2
(q)]2, (A14)

Weyl-Projection: ∑
γ

Zγ(q) =
1
4
[Z 1

2
(q)]2, (A15)

Minimal Type B: ∑
δ

Zδ(q) =





1
2

[
[Z 1

2
(q)]2 −Z 1

2
(q2)

]
, for O(N),

1
2

[
[Z 1

2
(q)]2 +Z 1

2
(q2)

]
, for USp(N),

(A16)

Majorana–Weyl: ∑
ε

Zε(q) =
1
2

(
1
4
[Z 1

2
(q)]2 − 1

2
Z 1

2
(q2)

)
(A17)

Symplectic Majorana–Weyl: ∑
κ

Zκ(q) =
1
2

(
1
4
[Z 1

2
(q)]2 +

1
2
Z 1

2
(q2)

)
(A18)

where α, γ, δ are the spectra given by (49), (52), (56)–(58), and ε, κ the Majorana–Weyl truncations
discussed in Section 3.2.1.The right-hand side of all the above equations, with Z 1

2
(q) given in (A4),

is again in precise agreement with the thermal calculations in the singlet sector of the fermionic CFT
(with the relevant fermion projection and gauge group). As an explicit example, in AdS11, we have:

Non-Minimal Type B: ∑
α

Zα(q) =
1024q9

(q− 1)18 =

(
32q9/2

(1− q)9

)2

, (A19)

Weyl-Projection: ∑
γ

Zδ(q) =
256q9

(q− 1)18 , (A20)

Minimal Type B: ∑
δ

Zγ(q) =
1
2

(
1024q9

(1− q)18 −
32q9

(1− q2)
9

)
, (A21)

Majorana–Weyl: ∑
ε

Zε(q) =
1
2

(
256q9

(1− q)18 −
16q9

(1− q2)
9

)
, (A22)

which all agree with the formulas in (A14)–(A18). For instance, using the spectrum found in Table 3,
the explicit computations for the Majorana–Weyl case is as follows:

[s, 1, 1, 1, 1] : ∑s=2,4,6,...
qs+8

576(1− q)10

[
(s + 8)!

(s + 4)(s− 1)!
− q

(s + 7)!
(s + 3)(s− 2)!

]

= q8

(q−1)18(q+1)9

(
− q13 − q12 + 8q11 + 134q10 + 98q9 + 3914q8 + 2948q7

+12, 984q6 + 4983q5 + 8799q4 + 924q3 + 1050q2)
(A23)

[s, 1, 1, 0, 0] : ∑s=1,3,5,...
qs+8

720(1− q)10

[
(s + 4)(s + 8)!

(s + 2)(s + 6)(s− 1)!
− q

(s + 3)(s + 7)!
(s + 1)(s + 5)(s− 2)!

]

= q7

(q−1)18(q+1)9

(
q18 + q17 − 8q16 − 8q15 + 29q14 + 29q13 − 64q12 − 64q11 + 1043q10

+923q9 + 6992q8 + 3760q7 + 10, 039q6 + 2407q5 + 3352q4 + 120q3 + 120q2)

(A24)
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[s, 0, 0, 0, 0] : ∑s=2,4,6,...
qs+8

20160(1− q)10

[
(s + 4)(s + 7)!

s!
− q

(s + 3)(s + 6)!
(s− 1)!

]

= q8

(q−1)18(q+1)9

(
− q17 − q16 + 8q15 + 8q14 − 28q13 − 28q12 + 56q11 + 66q10

−61q9 + 59q8 + 140q7 + 392q6 + 98q5 + 218q4 + 44q3 + 54q2)
(A25)

Summing (A23)–(A25) up, we obtain (A22).
The bulk one-loop contribution to the Casimir energy in Type B theories can be obtained by

inserting the right-hand sides of (A14)–(A18) into (A2). The only non-zero contribution comes from
Z 1

2
(q2), which yields 2Ec,1/2. Then, we see that the bulk one-loop Casimir energies in all variants of

the Type B theories are in precise agreement with the shifts of the coupling constant summarized in
Table 1. Note that in odd d we get zero Casimir energy on both CFT and bulk sides, as it should be,
so this calculation does not shed light on the anomalous shifts we encountered in Type B theories in
odd d. A few explicit values of the bulk one-loop Casimir energies are collected in Table A1.

Table A1. Type B Casimir energies. The grey boxes indicate that the particular type of fermion is not
defined for the given dimension.

d Non-Minimal Weyl Minimal (O(N)/USp(N)) Majorana–Weyl

3 0 0

4 0 0
17
960

5 0 0

6 0 0
367

48, 384

7 0 0

8 0 0
27, 859

8, 294, 400
27, 859

16, 588, 800

9 0 0

10 0 0 − 12, 950, 803
851, 558, 400

− 12, 950, 803
1, 703, 116, 800

11 0 0
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Type AB Theories

In the purely fermionic sector of the Type AB theories, the only representations are given by the
weights [s, 1

2 , . . . , 1
2 ], which lead to a simple computation that gives for a generic d,

Ztype AB ferm(q) = qd− 3
2

(1−q)d g[1/2,1/2,...,1/2] + ∑s= 3
2 , 5

2 ,···
qs+d−2

(1−q)d

[
g[s,1/2,...,1/2] − qg[s−1,1/2,...,1/2]

]

= 2b
d
2 cqd− 3

2 (1+q)
(1−q)2(d−1) = Z0(q)Z 1

2
(q).

(A26)

A quick calculation gives us Ec = 0 for the contribution of the fermionic tower in the Type AB
theories, which is nicely consistent with what we obtained in the Sd calculations, namely that there are
no shifts due to the purely fermionic fields.

Type C Theories

In type C theories, summing up over the relevant bulk spectra given in Section 3.2.3, we find:

Non-Minimal Type C: ∑
α

Zα(q) = [Z d
2 -form(q)]2, (A27)

U(N) Self-Dual: ∑
γ

Zδ(q) =
1
4
[Z d

2 -form(q)]2, (A28)

Minimal Type C: ∑
δ

Zγ(q) =
1
2

[
[Z d

2 -form(q)]2 +Z d
2 -form(q2)

]
, (A29)

O(N) Self-Dual: ∑
ε

Zε(q) =
1
2

[1
4

(
Z d

2 -form(q)
)2

+
1
2
Z d

2 -form(q2)
]
, (A30)

where Z d
2 -form(q) is the one-particle partition function (A7) of a single real (d/2− 1)-form gauge field.

The results on the right-hand side have the correct structure expected from the CFT thermal free energy
in the U(N)/O(N) singlet sector of the theory of N differential form gauge fields. This calculation
was carried out explicitly in the S1 × S3 case in [17], and we expect it to generalize to all d.

The one-loop Casimir energies of Type C theories can be obtained by plugging the right-hand
side of (A27)–(A30) into (A2). The calculation can be simplified by noting that, due to the symmetry
properties under q→ 1/q, the term [Z d

2 -form(q)]2 contributes 2(−1)d/2Ec,d/2−form after the integration

in (A2),26 and Z d
2 -form(q2) contributes 2Ec,d/2−form. Then we see that in all cases the one-loop Casimir

energies in the bulk are consistent with the shifts of the coupling constant summarized in Table 1.
A few explicit values are reported in Table A2.

26 See Appendix D of [18] for a discussion of this.
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Table A2. Type C Casimir energies. The grey boxes indicate that the particular type of p-form is not
defined for the dimension.

d Non-Minimal U(N) Self-Dual U(N) Minimal O(N) Self-dual O(N)

4
11
60

11
240

11
60

6
191

1008
191
4032

0 − 191
8064

8
2497

12, 960
2497

51, 840
2497

12, 960

10
14, 797
76, 032

14, 797
304, 128

0 − 14, 797
608, 256

12
92, 427, 157

471, 744, 000
92, 427, 157

1, 886, 976, 000
92, 427, 157

471, 744, 000

14
36, 740, 617

186, 624, 000
36, 740, 617
746, 496, 000

0 − 36, 740, 617
1, 492, 992, 000

Appendix B. Some Technical Details on the One-Loop Calculations in Hyperbolic Space

Appendix B.1. Hurwitz Zeta Regularization

To implement ζ-function regularization, we identify the conventionally divergent term
∑∞

s=1 1/(s + ν)k as ∑∞
s=0 1/(s + ν + 1)k, and treating it as the Hurwitz zeta function,

ζ(k, β) ≡
∞

∑
n=0

1
(n + β)k , (A31)

where we then analytically extend to the full complex plane. This allows us to regulate systematically
the sums to obtain their finite contributions.

Suppose we want to start summing all integer spins s ≥ ` ≥ 0, then,

∞

∑
s=`

1
(s + ν)k = ζ(k, `+ ν). (A32)

This is the convention we applied in this paper, and avoids potential inconsistencies that can
occur with the Hurwitz zeta function. We might also consider sums that only incorporate a particular
subset of spins, such as either all odd integer spins or all even integer spins. To do so, we can transform
the summing variable of the original Hurwitz zeta function appropriately. We give two examples:

To sum over all even spins, consider:

∞

∑
s=2,4,6,...

1
(s + ν)k =

∞

∑
s=1

1
(2s + ν)k =

∞

∑
s=1

2−k

(
s + ν

2
)k =

∞

∑
s=0

2−k

(
s + ν

2 + 1
)k = 2−kζ

(
k,

ν

2
+ 1
)

. (A33)
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A similar scheme for summing over all odd spins is:

∞

∑
s=1,3,5,...

1
(s + ν)k =

∞

∑
s=1

1
(2s− 1 + ν)k =

∞

∑
s=1

2−k

(
s + ν−1

2

)k = 2−kζ

(
k,

ν− 1
2

+ 1
)

. (A34)

Unlike conventional summation where rearrangement of terms may lead to problems, ζ-function
regularization allows for rearrangement. In particular, the ζ-function satisfies,

∞

∑
s=2,4,6,...

1
(s + ν)k +

∞

∑
s=1,3,5,...

1
(s + ν)k = ζ(k, ν + 1), (A35)

which allows us to obtain the regularization over both the odd or the even integer spins by just doing
one of the two calculation.

Appendix B.2. Identity for Odd d Free Energy Calculations

The relationship described in (101) can be derived by:

A±k (x) =
∫ ∞

0
uk

e2πu±1
du

u2+x

= ∂
∂a

[
∫ ∞

0 du uk−2

e2πu±1 log[au2 + x]

]

a=1

= ∂
∂a

{
log(a)

∫ ∞
0 du uk−2

e2πu±1 +
∫ ∞

0 du uk−2

e2πu±1 log
[
u2 + x

a
]
}

a=1
=
∫ ∞

0 du uk−2

e2πu±1 − x
∫ ∞

0
uk−2

e2πu±1
du

u2+x
= B±k−2(x)− xA±k−2(x).

(A36)

Appendix B.3. Evaluating ζ ′∆,α(0)

Here we collect some details on the evaluation of the term ∂zζ
exp
(∆;αs)

(z)|z=0 in (115), in the explicit
example of the Type A theory in AdS4. The calculations in the other theories studied in this paper go
through in a similar way. After some integral identities and algebraic manipulations, we may write:

∂

∂z
ζ

exp
(∆;αs)

(z)
∣∣
z=0 = ζ

exp−log−1′

(∆;αs)
(0) + ζ

exp−log−2′

(∆;αs)
(0) + ζ

exp−const′

(∆;αs)
(0) + ζ

exp−ψ′

(∆;αs)
(0). (A37)

The only overall non-zero contribution will come from the fourth term, ζ
exp−ψ′

(∆;αs)
(0), and the

contributions of the first three will cancel out, after taking into account the ghost modes and all other
particles in the entire spectra of the theory.

To understand what these three terms are, let’s return to the Type A non-minimal theory, the l.h.s.
of (A37) is now,

∂

∂z
ζ

exp
(∆;αs)

(z)
∣∣
z=0 =

∫ ∞

0
du

(2s + 1)u3 ((2s + 1)2 + u2) log
((

∆− 3
2
)2

+ u2
)

12 (e2πu + 1)
. (A38)

Using (99), we can rewrite the above term into:

∫ ∞

0
du

(2s + 1)u3 ((2s + 1)2 + u2)

12 (e2πu + 1)
log(u2)

︸ ︷︷ ︸
=ζ

exp−log−1′
(∆;αs)

(0)

+
∫ ∞

0 du
∫ (s− 1

2 )
2

0 dx
(2s+1)u3((2s+1)2+u2)

12(e2πu+1)
1

u2+x (A39)

where ∆ph − 3
2 = s− 1

2 . The second term can then be explicitly integrated using the recursive relation

for
∫ k

0 dx uk

e2πiu±1
1

u2+x found in Appendix B.2,
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∫ (s− 1
2 )

2

0 dx
∫ ∞

0 du
(2s+1)u3((2s+1)2+u2)

12(e2πu+1)
1

u2+x

=
1
2

∫ (s− 1
2 )

2

0
dx log (x)

(
1
6

x(2s + 1)− 1
6

(
s +

1
2

)2
(2s + 1)

)

︸ ︷︷ ︸
≡ζ

exp−log−2′

(∆ph;[s])
(0)

+
1
3

B+
1 (2s + 1)

︸ ︷︷ ︸
≡ζ

exp−const′

(∆ph;[s])
(0)

+
∫ (s− 1

2 )
2

0
dx ψ

(√
x +

1
2

)(
1
6

x(−2s− 1) +
1
6
(2s + 1)

(
s +

1
2

)2
)

︸ ︷︷ ︸
≡ζ

exp−ψ′

(∆ph;[s])
(0)

,

(A40)

where B±k :=
∫ ∞

0 du uk

e2πu±1 , and ψ(x) is the digamma function ψ(x) = Γ′(x)/Γ(x). We concentrate on
the last term including the digamma function, since it is the only term that contributes to the final
partition function. To integrate the digamma function, we make use of its integral representation:

ψ(x) =
∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt (A41)

so that we get:

ζ
exp−ψ′

(∆ph;[s])
(0) =

∫ ∞
0 dt

∫ (s− 1
2 )

2

0 dx
(

e−t

t −
e−(
√

x+ 1
2 )

1−e−t

)(
− 1

6 x(2s + 1) + 1
24 (2s + 1)3

)

=
∫ ∞

0 dt (2s+1)e−t

24(et−1)t

{
e−st+2t

[
− 4(4s2−8s+1)

t + 16s2 + 24−48s
t2 − 8s− 48

t3

]

+ 1
4
(
1− 4s2)2 (et − 1

)
− 2e

3t
2

t3

[
(2st + t)2 − 24

]
− 1

8 (1− 2s)4 (et − 1
)
}

(A42)

The terms in the integrand above split into those that include a prefactor of e−st, and those that
do not. For the terms with the prefactor, we can sum over the spins easily and without a regulator,

∑∞
s=1

(2s+1)e−t

24(et−1)t

{
e−st+2t

[
16s2 − 8s + −16s2+32s−4

t + 24−48s
t2 − 48

t3

]}

= et

6(et−1)5t4

[
t2 + 3e3t (2t3 + 3t2 − 6t− 12

)
+ et (6t3 − 17t2 + 42t− 60

)

+e2t (36t3 − 41t2 − 18t + 84
)
− 6t + 12

]
.

(A43)

For those terms without the prefactor, we sum using the same regulator as in the previous segment,

∑∞
s=1

(
s− 1

2

)−ε (2s+1)e−t

24(et−1)t

{
1
4
(
1− 4s2)2 (et − 1

)
− 2e

3t
2

t3

[
(2st + t)2 − 24

]
− 1

8 (1− 2s)4 (et − 1
)
}

= et/2

6(et−1)t4 − 113et/2

1440(et−1)t2 +
1609e−t

241,920(et−1)t −
1609

241,920(et−1)t .

(A44)

Combining (A43) and (A44) under the integrand, we obtain the expression for ζ
exp−ψ′

∆ph;[s]
(0).

Then, repeating the calculations for the ghost calculations, we obtain:
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ζ
exp−ψ′

(∆gh;[s−1])
(0) =

∫ ∞
0 dt

[
13et/2

6(et−1)t4 +
2

(et−1)2t4
− 4et

(et−1)3t4
− 4et(et+1)

(et−1)4t3
+ 1

(et−1)2t3

− 2et(et+1)
(et−1)4t2

− 233et/2

1440(et−1)t2 +
1

6(et−1)2t2
+ et

(et−1)3t2

− 4et(4et+e2t+1)
3(et−1)5t2

+ 349e−t

241,920(et−1)t −
349

241,920(et−1)t +
et

3(et−1)3t

− 4et(4et+e2t+1)
3(et−1)5t

]
.

(A45)

After combining these above with the integral representation for the scalar term, we then make
use of the integral representation of the Hurwitz-Lerch transcendental function,

Φ(z, s, ν) =
1

Γ(s)

∫ ∞

0
dt

ts−1e−νt

1− ze−t =
∞

∑
0
(n + ν)−szn, (A46)

to transform the expressions into sums of derivatives of Hurwitz-Lerch transcendental functions 27.
Finally, the Type A non-minimal theory will give us an expression of:

ζ
exp−ψ′

(1;[0]) (0) +
∞

∑
s=1

ζ
exp−ψ′

(∆ph;[s])
(0)−

∞

∑
s=1

ζ
exp−ψ′

(∆gh;[s−1])
(0) = 0. (A48)

Appendix C. Spectra of Higher Spin Theories and Their Free Energy Contributions

Appendix C.1. Type B Theories

Table A3. Results for Type B theory in AdS5.

AdS5

Towers of Spins Contribution to F from One Tower Summed Over:

(∆ph; α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(∆ph; [s, 1])

s︷ ︸︸ ︷

1
180

log R
13
360

log R − 11
360

log R

(∆ph; [s, 0])

s︷ ︸︸ ︷
0

1
90

log R − 1
90

log R

Scalar Contribution to F by one scalar

(3; [0, 0]) − 1
180

log R

27 This makes use of the identity,

1
(1− e−t)n+1(1 + e−t)m+1 =

(−1)n

n!m!
∂n

z1
∂m

z2

[
1

z1 − z2

(
1

z1 − e−t −
1

z2 − e−t

)] ∣∣∣∣∣
z1=1,z2=−1

(A47)
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Table A4. Results for Type B theory in AdS7.

AdS7

Towers of Spins Contribution to F from One Tower Summed Over:

(∆ph; α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(∆ph; [s, 1, 1])

s︷ ︸︸ ︷

1
1512

log R − 211
15, 120

log R
221

15, 120
log R

(∆ph; [s, 1, 0])

s︷ ︸︸ ︷

4
945

log R − 2
315

log R
2

189
log R

(∆ph; [s, 0, 0])

s︷ ︸︸ ︷
− 1

1512
log R − 1

504
log R

1
756

log R

Scalar Contribution to F by one scalar

(5; [0, 0, 0]) − 4
945

log R

Table A5. Results for Type B theory in AdS9.

AdS9

Towers of Spins Contribution to F from One Tower Summed Over:

(∆ph; α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(∆ph; [s, 1, 1, 1])

s︷ ︸︸ ︷

23
226, 800

log R
3463

453, 600
log R − 1139

151, 200
log R

(∆ph; [s, 1, 1, 0])

s︷ ︸︸ ︷

13
28, 350

log R
133

16, 200
log R − 293

37, 800
log R

(∆ph; [s, 1, 0, 0])

s︷ ︸︸ ︷

353
113, 400

log R − 1189
226, 800

log R − 23
10, 800

log R

(∆ph; [s, 0, 0, 0])

s︷ ︸︸ ︷
− 13

28, 350
log R − 29

113, 400
log R − 23

113, 400
log R

Scalar Contribution to F by one scalar

(7; [0, 0, 0, 0]) − 9
2800

log R
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Table A6. Results for Type B theory in AdS11.

AdS11

Towers of Spins Contribution to F from One Tower Summed Over:

(∆ph; α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(∆ph; [s, 1, 1, 1, 1])

s︷ ︸︸ ︷

263
14, 968, 800

log R − 19771
4, 276, 800

log R
138, 923

29, 937, 600
log R

(∆ph; [s, 1, 1, 1, 0])

s︷ ︸︸ ︷

31
467, 775

log R − 2273
374, 220

log R
11, 489

1, 871, 100
log R

(∆ph; [s, 1, 1, 0, 0])

s︷ ︸︸ ︷

311
1, 069, 200

log R − 6599
2, 993, 760

log R
37, 349

14, 968, 800
log R

(∆ph; [s, 1, 0, 0, 0])

s︷ ︸︸ ︷

1153
467, 775

log R − 3947
1, 871, 100

log R
19

53, 460
log R

(∆ph; [s, 0, 0, 0, 0])

s︷ ︸︸ ︷
− 19

61, 600
log R − 5143

14, 968, 800
log R

263
7, 484, 400

log R

Scalar Contribution to F by one scalar

(9; [0, 0, 0, 0, 0]) − 1184
467, 775

log R

Appendix C.2. Calculation of ZHS
total(z) in Type AB Theories

Appendix C.2.1. AdS7

In this case,

ZHS
total(z) =

z2π

86, 016

(
− 11, 253ζ ′(−10) + 15, 300ζ ′(−8) + 119, 658ζ ′(−6)− 137, 900ζ ′(−4) + 21, 735ζ ′(−2)

)

+O
(
z3)

(A49)

which gives us F(1)
f = 0, as we set z→ 0.

Appendix C.2.2. AdS9

In this case,

ZHS
total(z) =

π

16, 647, 192, 576, 000
[−136, 525ζ ′(−14) + 1, 242, 150ζ ′(−12) + 2, 651, 957ζ ′(−10)

−42, 097, 100ζ ′(−8) + 100, 665, 453ζ ′(−6)− 71, 501, 850ζ ′(−4) + 9, 993, 375ζ ′(−2)] z2

+O
(
z3)

(A50)
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which gives us F(1)
f = 0, as we set z = 0.

Appendix C.3. Free Energy Values for Type C Theories in AdS9

Table A7. Results for Type C theory in AdS9.

AdS9 Type C

Towers of Spins Contribution to F from One Tower Summed Over:

(∆ph; α) s = 2, 3, 4, . . . s = 2, 4, 6, . . . s = 3, 5, 7, . . .

(∆ph; [s, 2, 2, 2])

s︷ ︸︸ ︷

23
1800

log R
2213
3600

log R −2167
3600

log R

(∆ph; [s, 2, 0, 0])

s︷ ︸︸ ︷

3121
6300

log R
14, 281
37, 800

log R
127

1080
log R

(∆ph; [s, 2, 1, 1])

s︷ ︸︸ ︷

19, 409
37, 800

log R
19, 679
75, 600

log R −19, 139
75, 600

log R

(∆ph; [s, 2, 2, 0])

s︷ ︸︸ ︷

329
2700

log R − 569
5400

log R
409

1800
log R

(∆ph; [s, 1, 1, 0])

s︷ ︸︸ ︷

31, 399
113, 400

log R
133

16, 200
log R

2539
9450

log R

(∆ph; [s, 0, 0, 0])

s︷ ︸︸ ︷
35, 293
113, 400

log R − 29
113, 400

log R
841

2700
log R

Other Particles Contribution to F by one particle

(8; [1, 1, 1, 1]) − 908
2835

log R

(8; [1, 1, 0, 0]) − 1856
14, 175

log R

(8; [0, 0, 0, 0])
1978

14, 175
log R

Appendix C.3.1. Spectra of Spins for Type C Theories

In these following results, α = [t1, t2, . . . , tk−1, tk]c denote two towers α = [t1, t2, . . . , tk−1, tk] and
α = [t1, t2, . . . , tk−1,−tk], which at the level of computation of the spin factor gα(s) and µα(s) are
indistinguishable. Hence, a single tower of [t1, t2, . . . , tk−1, tk]c encompasses one of each of the towers,
and correspondingly, a 1/2 tower encompasses only the [t1, t2, . . . , tk−1, tk] tower (the one with the
positive tk).
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Table A8. Spectra of type C Theories.

AdS5

Non-Minimal U(N) Minimal O(N) U(N) Self-Dual O(N) Self-Dual

s = s = s = s =

Towers (∆ph; α) 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . .

(∆ph; [s, 0]) 2 2 1 O(N) self-dual theory

(∆ph; [s, 2]c) 1 1/2 not defined for CFT4

Other Particles

(4; [1, 1]) 2

(4; [0, 0]) 2 2

F(1) Value +
62
45

log R +
62
45

log R + 1
4

62
45

log R

AdS7

Non-Minimal U(N) Minimal O(N) U(N) Self-Dual O(N) Self-Dual

s = s = s = s =

Towers (∆ph; α) 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . .

(∆ph; [s, 2, 0]) 2 1

(∆ph; [s, 1, 1]c) 1 1/2 1/2 1/2

(∆ph; [s, 0, 0]) 2 2 1 1

(∆ph; [s, 2, 2]c) 1 1/2 1/2 1/2

Other Particles

(6; [1, 1, 0]) 2 1

(6; [0, 0, 0]) 2 1

F(1) Value +
221
105

log R 0 +
1
4

221
105

log R −1
8

221
105

log R
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AdS9

Non-Minimal U(N) Minimal O(N) U(N) Self-Dual O(N) Self-Dual

s = s = s = s =

Towers (∆ph; α) 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . .

(∆ph; [s, 0, 0, 0]) 2 1 1

(∆ph; [s, 1, 1, 0]) 2 1 1

(∆ph; [s, 2, 2, 0]) 2 1 1 O(N) self-dual theory

(∆ph; [s, 2, 1, 1]c) 1 1/2 not defined for CFT8

(∆ph; [s, 2, 0, 0]) 2 2

(∆ph; [s, 2, 2, 2]c) 1 1/2

Other Particles

(8; [1, 1, 1, 1]) 2 2

(8; [1, 1, 0, 0]) 2

(8; [0, 0, 0, 0]) 2 2

F(1) Value +
8051
2835

log R +
8051
2835

log R +
1
4

8051
2835

log R
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AdS11

Non-Minimal U(N) Minimal O(N) U(N) Self-Dual O(N) Self-Dual

s = s = s = s =

Towers (∆ph; α) 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . .

(∆ph; [s, 2, 0, 0, 0]) 2 1

(∆ph; [s, 2, 1, 1, 0]) 2 1

(∆ph; [s, 2, 2, 2, 0]) 2 1

(∆ph; [s, 1, 1, 0, 0]) 2 2 1 1

(∆ph; [s, 2, 2, 1, 1]c) 1 1/2 1/2 1/2

(∆ph; [s, 0, 0, 0, 0]) 2 2 1 1

(∆ph; [s, 1, 1, 1, 1]c) 1 1/2 1/2 1/2

(∆ph; [s, 2, 2, 0, 0]) 2 2 1 1

(∆ph; [s, 2, 2, 2, 2]c) 1 1/2 1/2 1/2

Other Particles

(10; [1, 1, 1, 1, 0]) 2 1

(10; [1, 1, 0, 0, 0]) 2 1

(10; [0, 0, 0, 0, 0]) 2 1

F(1) Value +
13, 39, 661
374, 220

log R 0 +
1
4

1, 339, 661
374, 220

log R −1
8

1, 339, 661
374, 220

log R
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AdS13

Non-Minimal U(N) Minimal O(N) U(N) Self-Dual O(N) Self-Dual

s = s = s = s =

Towers (∆ph; α) 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . .

(∆ph; [s, 0, 0, 0, 0, 0] 2 1 1

(∆ph; [s, 1, 1, 0, 0, 0] 2 1 1

(∆ph; [s, 1, 1, 1, 1, 0] 2 1 1

(∆ph; [s, 2, 2, 0, 0, 0] 2 1 1

(∆ph; [s, 2, 2, 1, 1, 0] 2 1 1

(∆ph; [s, 2, 2, 2, 2, 0] 2 1 1 O(N) self-dual theory

(∆ph; [s, 2, 1, 1, 0, 0] 2 2 not defined for CFT12

(∆ph; [s, 2, 2, 2, 1, 1]c 1 1/2

(∆ph; [s, 2, 0, 0, 0, 0] 2 2

(∆ph; [s, 2, 1, 1, 1, 1]c 1 1/2

(∆ph; [s, 2, 2, 2, 0, 0] 2 2

(∆ph; [s, 2, 2, 2, 2, 2]c 1 1/2

Other Particles

(12; [1, 1, 1, 1, 1, 1]) 2

(12; [1, 1, 1, 1, 0, 0]) 2 2

(12; [1, 1, 0, 0, 0, 0]) 2

(12; [0, 0, 0, 0, 0, 0]) 2 2

F(1) Value +
525, 793, 111
121, 621, 500

log R +
525, 793, 111
121, 621, 500

log R +
1
4

525, 793, 111
121, 621, 500

log R
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AdS15

Non-Minimal U(N) Minimal O(N) U(N) Self-Dual O(N) Self-Dual

s = s = s = s =

Towers (∆ph; α) 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . . 2, 3, 4, . . . 2, 4, 6, . . . 3, 5, 7, . . .

(∆ph; [s, 2, 0, 0, 0, 0, 0] 2 1

(∆ph; [s, 2, 1, 1, 0, 0, 0] 2 1

(∆ph; [s, 2, 1, 1, 1, 1, 0] 2 1

(∆ph; [s, 2, 2, 2, 0, 0, 0] 2 1

(∆ph; [s, 2, 2, 2, 1, 1, 0] 2 1

(∆ph; [s, 2, 2, 2, 2, 2, 0] 2 1

(∆ph; [s, 1, 1, 0, 0, 0, 0] 2 2 1 1

(∆ph; [s, 1, 1, 1, 1, 1, 1]c 1 1/2 1/2 1/2

(∆ph; [s, 2, 2, 1, 1, 0, 0] 2 2 1 1

(∆ph; [s, 2, 2, 2, 2, 1, 1]c 1 1/2 1/2 1/2

(∆ph; [s, 0, 0, 0, 0, 0, 0] 2 2 1 1

(∆ph; [s, 1, 1, 1, 1, 0, 0] 2 2 1 1

(∆ph; [s, 2, 2, 0, 0, 0, 0] 2 2 1 1

(∆ph; [s, 2, 2, 1, 1, 1, 1]c 1 1/2 1/2 1/2

(∆ph; [s, 2, 2, 2, 2, 0, 0] 2 2 1 1

(∆ph; [s, 2, 2, 2, 2, 2, 2]c 1 1/2 1/2 1/2

Other Particles

(14; [1, 1, 1, 1, 1, 1, 0]) 2 1

(14; [1, 1, 1, 1, 0, 0, 0]) 2 1

(14; [1, 1, 0, 0, 0, 0, 0]) 2 1

(14; [0, 0, 0, 0, 0, 0, 0]) 2 1

F(1) Value +
3, 698, 905, 481
729, 729, 000

log R 0 −1
4

3, 698, 905, 481
729, 729, 000

log R −1
8

3, 698, 905, 481
729, 729, 000

log R
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