
universe

Conference Report

Charged ρ Meson Condensate in Neutron Stars
within RMF Models

Konstantin A. Maslov 1,2,∗, Evgeni E. Kolomeitsev 2,3 ID and Dmitry N. Voskresensky 1,2

1 Department of Theoretical Nuclear Physics, National Research Nuclear University (MEPhI),
Kashirskoe sh. 31, Moscow 115409, Russia; d.voskresen@gmail.com

2 Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980, Russia; E.Kolomeitsev@gsi.de
3 Department of Physics, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
* Correspondence: maslov@theor.mephi.ru

Received: 30 November 2017; Accepted: 12 December 2017; Published: 26 December 2017

Abstract: Knowledge of the equation of state (EoS) of cold and dense baryonic matter is essential
for the description of properties of neutron stars (NSs). With an increase of the density, new baryon
species can appear in NS matter, as well as various meson condensates. In previous works,
we developed relativistic mean-field (RMF) models with hyperons and ∆-isobars, which passed
the majority of known experimental constraints, including the existence of a 2 M� neutron star.
In this contribution, we present results of the inclusion of ρ−-meson condensation into these models.
We have shown that, in one class of the models (so-called KVOR-based models, in which the
additional stiffening procedure is introduced in the isoscalar sector), the condensation gives only a
small contribution to the EoS. In another class of the models (MKVOR-based models with additional
stiffening in isovector sector), the condensation can lead to a first-order phase transition and a
substantial decrease of the NS mass. Nevertheless, in all resulting models, the condensation does not
spoil the description of the experimental constraints.
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1. Introduction

The equation of state (EoS) of strongly interacting hadronic matter is an essential input for
describing the properties of neutron stars (NSs). A viable EoS has to fulfill various constraints
following from both astrophysical observations and nuclear experimental data [1]. The discovery of
the most massive pulsar with the mass M = 2.01± 0.04 M� [2] put a severe constraint, ruling out
many soft EsoS. Currently, one of the most challenging tasks for phenomenological models of the
EoS is to pass simultaneously the maximum NS mass constraint, requiring the EoS to be stiff, and the
so-called flow constraint [3] coming from the analysis of flows in heavy ion collisions, which requires
a soft EoS. This is hard to achieve within traditional models.

Relativistic mean-field (RMF) framework is a convenient and successful tool for constructing the
nuclear equation of state. With an increase of the density hyperons and ∆ isobars can appear in the NS
matter [4]. In most of known model, this leads to a decrease of the maximum NS mass to unrealistic
values. Another reason of the EoS softening is the possible appearance of the charged ρ-meson
condensate in NS matter [5]. An RMF EoS can be made more flexible by introducing the dependence
on the scalar field of the effective couplings and masses of all hadrons. In [6], we constructed new
models within this approach, which fulfill the maximum NS mass constraint and the flow constraint
simultaneously together with many other constraints, even with hyperons and ∆ isobars included.
In the current contribution, we demonstrate results of the inclusion of the charged ρ-meson condensate
into our models. More details on the calculations can be found in [7].

Universe 2018, 4, 1; doi:10.3390/universe4010001 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
https://orcid.org/0000-0003-1160-2050
http://dx.doi.org/10.3390/universe4010001
http://www.mdpi.com/journal/universe


Universe 2018, 4, 1 2 of 8

2. Description of the Model

Our model was initially formulated in [8] and extended in [6,7,9]. Without the ρ− meson
condensation, the energy density of the model reads:

E[{nb}, {nl}, f ] = ∑
b

Ekin
(

pF,b, mb Φb( f ), sb
)
+ ∑

l=e,µ
Ekin(pF,l , ml , sl) +

m4
N f 2

2C2
σ

ησ( f )

+
1

2m2
N

[C2
ωn2

V
ηω( f )

+
C2

ρn2
I

ηρ( f )
+

C2
φn2

S

ηφ( f )

]
, (1)

Ekin(pF, m, s) = (2s + 1)
∫ pF

0

p2dp
2π2

√
p2 + m2,

nV = ∑
b

xωbnb , nI = ∑
b

xρbt3bnb , nS = ∑
H

xφHnH .

Here, we introduced the dimensionless scalar field f = gσNχσN(σ)σ/mN . The isospin projection
of baryon b is t3b, and pF,j = (6π2nj/(2sj + 1))1/3 denotes the Fermi momentum of a fermion j, with sj
and nj being the spin and density of a species j, respectively, j = (b, l), l labels leptons. In the infinite
hadronic matter without meson condensates, the energy density depends only on the ratios of the
meson coupling constants, masses and their corresponding scaling functions, namely
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gMNmN
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gωN mN
mφ

,
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2 C2
σ

m4
N f 2

U[σ( f )] .

Here, the the self-interaction potential U(σ) entering the Lagrangian of the model is hidden
into the scaling function ησ( f ). The coupling constant ratios for various baryons are defined as
xMb = gMb/gMN , xφH = gφH/gωN . We refer the reader to [6,9] for explicit expressions for the scaling
functions ηm( f ) and values of the parameters for all our models. Below, we use χMb = χMN , χφH = 1.

The baryon coupling ratios with vector mesons xωB and xρB are determined by the quark SU(6)
symmetry. The baryon coupling ratios with the scalar field xσB follow from the potentials

UB(n0) = C2
ωm−2

N xωBn0/ηω( f (n0))− xσB(mN + m∗N(n0))

in the isospin-symmetric matter (ISM) at the saturation density n = n0. The ∆ potential U∆(n0) ≡ U∆
is a subject of large uncertainties. Here we assume U∆ = −50 MeV, following from the most realistic
estimate [10]. The values of the parameters for all included baryon species are given in [6].

3. Charged ρ Condensate

The ρ meson field is described by the following Lagrangian [5,8]

Lρ = −1
4
~Rµν~Rµν +

1
2

m2
ρΦ2

ρ~ρµ~ρ
µ −∑

b
gρbχρb~ρµ~j

µ
I,b , ~jµ

I,b = ψ̄bγµ~tbψb , (2)

~Rµν = ∂µ~ρν − ∂ν~ρµ + g′ρχ′ρ( f )[~ρµ ×~ρν] + µch,ρδν0[~n3 ×~ρµ]− µch,ρδµ0[~n3 ×~ρν] ,

where the chemical potential µch,ρ is introduced for charged mesons and (~n3)
a = δa3 is the unit vector

in the isospin space. We treat ρ meson as a gauge boson of a hidden local symmetry and introduce
the non-Abelian coupling constant g′ρ and its scaling function χ′ρ( f ). Hidden local symmetry requires
that g′ρ = gρN , which we use here, and for simplicity we consider χ′ρ( f ) = 1. In the standard ansatz

for the ρ-meson mean fields only the ρ
(3)
0 component is non-zero. This ansatz was used in obtaining
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Equation (3). The charged ρ− meson condensation can be introduced by using the new ansatz for the ρ

meson field:

ρ
(3)
0 6= 0, ρ±i = (ρ

(1)
i + ρ

(2)
i )/

√
2 6= 0, i = 1, 2, 3. (3)

It can be shown that within this ansatz the minimum of energy is realized if the condition

ρ
(+)
i ρ

(−)
j − ρ

(−)
i ρ

(+)
j = 0

is fulfilled. This is equivalent to the ratio ρ
(+)
i /ρ

(−)
i being constant and independent of the spatial index

i. Thus we can assume that ρ
(−)
i = ai ρc and ρ

(+)
i = ai ρ†

c , where we defined the complex amplitude of
the charged ρ meson field ρc, and~a = {ai} is the spatial unit vector. In such terms the thermodynamic
potential can be minimized by two distinct solutions for the ρ

(3)
0 and ρc fields. The first one is the

traditional solution with only ρ
(3)
0 being non-zero. The second solution is

ρ
(3)
0 =

µch,ρ −mρΦρ

gρχ′ρ
, |ρc|2 =

(−nI − nρ)θ(−nI − nρ)

2 mρ η1/2
ρ χ′ρ

, (4)

nρ =
m2

Nη1/2
ρ Φρ

C2
ρχ′ρ

(mρ Φρ − µch,ρ) . (5)

The electric charge density of ρ− is nch,ρ = −2mρΦρ( f )|ρc|2 < 0. The ρ− meson condensate gives
the following contribution to the energy density:

∆Ech,ρ[{nb}; f ] = −
C2

ρ

2 m2
N ηρ

(
nI + nρ

)2
θ(−nI − nρ)− µch,ρnch,ρ , (6)

where θ(−nI − nρ) = 1 for nI + nρ < 0 and zero otherwise. In the presence of the condensate,
the charge neutrality condition is modified to be ∑b Qbnb− ne− nµ + nch,ρ = 0. In the beta-equilibrium
matter (BEM) of a NS the chemical potentials are related through conditions µe = µµ = µch,ρ,
µb = µn −Qbµl . All equations are solved self-consistently with the equation of motion for the scalar
field ∂(E + µch,ρnch,ρ)/∂ f = 0. Once the equilibrium concentrations are obtained, the pressure can be
evaluated as P = ∑j=b,l,{ch,ρ} µjnj − E.

4. Numerical Results

In [7], we considered the MKVOR* and KVORcut03 model. We have shown that, in the
KVORcut03 model, the ρ− condensate does not appear in the most realistic case with the hyperons
and/or ∆s taken into account. Thus, in this contribution, we focus on results for the MKVOR* model.
Below, we present the results of the inclusion of the ρ− condensate into the MKVOR* model with
the universal mass scaling and check the sensitivity of the results to varying the scaling functions
Φρ( f ) and ηρ( f ). In the following, we denote the MKVOR* model with hyperons and ∆s included as
MKVOR*H∆φ, and the inclusion of ρ− condensate is denoted by the ρ suffix.

4.1. Inclusion of the Condensate

In this section, we present the results for the MKVOR* model with the universal meson mass
scaling Φm( f ) = 1− f , m = {σ, ω, ρ, φ}, in accordance with [11–13]. In the left panel of Figure 1,
we show the particle concentrations and the scalar field f as functions of the total baryon densities.
There exists a region of densities where several solutions for the particle fractions and the scalar field
exist. This means that the system must prefer the branch of solutions with a lower energy. The density,
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for which such a transition from one branch of solutions to another happens, in our model, equals
n(I)

c = 2.81 n0. It is shown in Figure 1 by dotted vertical lines in the left and middle panels.

0 2 4 6 8
n/n0

0.0

0.2

0.4

0.6

0.8

1.0

n
i/n

f(n)

MKVOR*H

n

p
0

+

0 1 2 3 4 5
n/n0

0

25

50

75

100

125

P
(n

) 
[M

eV
/fm

3
]

MKVOR*

n(II)c,

H
H

0 2 4 6 8
ncen/n0

0.0

0.5

1.0

1.5

2.0

2.5

M
/M

Figure 1. Left panel: Particle fractions together with the scalar field f as functions of the total baryon
density n in the BEM for the MKVOR*H∆φρ model. Only the energetically favorable regions of
the solutions’ branches are shown. Middle panel: The pressure as a function of the density for
MKVOR*H∆φ and MKVOR*H∆φρ models. The short vertical dash shows the critical density for
the 2nd order phase transition (PT). The vertical line in the left and middle panels denotes the
density, at which the ρ-condensed phase becomes energetically more favorable than the normal
one. Right panel: NS mass as a function of the central density for the same models as in the middle
panel. Vertical dashes denote boundaries of the Maxwell construction region (shown by the dotted line),
where no stable NS configurations exist. The horizontal stripe denotes the observational constraint
Mmax ≥ (2.01 ± 0.04) M� [2] and large dots denote the maximum masses for the models.

The 1st order PT results in a van der Waals-like shape of the pressure, which, neglecting the
possible pasta formation, should be replaced by a Maxwell construction, spanning over the densities
2.37 n0 . n . 3.37 n0. The resulting pressure as a function of the density is shown in the middle panel
of Figure 1, where we compare the pressure with and without condensate for the MKVOR*H∆φ model.
The condensate appears not only on the new branch of solutions, but also at the old one with the
critical density n(II)

c ' 2.74 n0, which is marked by a horizontal dash.
In the right panel of Figure 1, we show the NS mass as a function of the central density

for MKVOR*H∆φ with and without the inclusion of the condensate. We see that the ρ−

condensation in this model results in a substantial decrease of the maximum NS mass from 2.21 M�
to 2.03 M�. Nevertheless, even after such a reduction, the NS maximum mass still passes the
observational constraint.

4.2. Variation of the ρ-Meson Effective Mass

A strong phase transition to the ρ−-condensed state relies on the strong decrease of its effective
mass. In this subsection, we study the effect of limiting the decrease of the ρ-meson effective mass
using the following mass scaling function:

Φρ( f ) =

{
1− f , f ≤ fs

(1− fs)
[
1 + ξ

1+bρξ

( ξ
2+bρ
− 1
)]

, f > fs
, ξ =

f − fs

1− fs
. (7)

This expression defines a one-parametric family of scaling functions, with a minimum value of
the function Φρ,min as the parameter. For a given Φρ,min, the value of fs is

fs = 1−Φρ,min − δΦρ,
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where we introduce a constant offset δΦρ = 0.1 allowing for a smooth transition at f = fs.

The parameter bρ =
Φρ,min

δΦρ
− 1 assures that Φ′ρ( f = 1) = 0. Under the choice Φρ,min = 0, we will

understand also δΦ = 0, which leads to Φρ( f ) = 1− f . In the left panel of Figure 2, we show the scaling
function Φρ( f ) given by Equation (7) as a function of the scalar field f for Φρ,min = 0, 0.3, 0.5, 0.7, which
we examine below. We see that for Φρ,min > 0 this function monotonously decreases, but asymptotically
reaches Φρ(1) = Φρ,min. Thus this function Φρ( f ) is suitable for studying the effect of varying the
decrease rate of the effective mass.
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Figure 2. Left panel: the scaling function Φρ( f ) as a function of the scalar field f defined by Equation (7)
for Φρ,min = 0, 0.3, 0.5, 0.7. Middle panel: the pressure as a function of the baryon density for the same
values of Φρ,min. Right panel: mass-radius curves for the same values of the parameters. For comparison,
we show the emprical constraints: (a) [14]; (b) [15]; (c) [16]; (d) [17]; (e) [18]; and (f) [19–21]. The horizontal
band shows the maximum NS mass constraint within the uncertainty range [2].

The resulting pressure as a function of the density is shown in the middle panel of Figure 2. The 1st
order PT proves to be present for Φρ,min < 0.7. However, the corresponding critical density grows
and the pressure loss decreases as we increase Φρ,min. For Φρ,min = 0.7 no condensate appears in the
model. The mass-radius curves for this models are shown in the right panel of Figure 2. The limiting
of the decrease of Φρ( f ) leads to an increase of the maximum NS mass. The maximum NS mass
Φρ,min = 0.3, 0.5, 0.7 are 2.06, 2.16, and 2.21 M�, respectively, proven to be larger than 2.03 M� in the
case of Φρ( f ) = 1− f . Thus taming the ρ-meson effective mass decrease is an efficient way to control
the effect of the ρ− condensate.

4.3. Variation of the ηρ( f )

Another reason for the large ρ− condensate fraction is the particular shape of the ηρ( f ) function
in the MKVOR* model. The sharp decrease in the ηρ( f ) for f & 0.5 is needed to quench the scalar
field growth in the isospin-asymmetric matter, implementing the cut-mechanism of stiffening of the
EoS [22]. However, as we shall see in this section, this choice of ηρ( f ) corresponds to the maximum ρ−

condensate in the NS matter. To show this, we investigate a set of scaling functions ηρ( f ), smoothly
changing their behavior from a sharp decrease at f & 0.5 to a monotonous growth for all f .

The family of ηρ( f ) we use here consists of functions η
(i)
ρ ( f ), i = 1 . . . 17 within three different

analytic parameterizations labeled by an integer number. The details on the parameterizations can
be found in [7]. The choice of η

(1)
ρ corresponds to the original ηρ( f ) of the MKVOR* model (tail 2).

Dependence of η
(i)
ρ ( f ), i = 1 . . . 17 on the scalar field f is shown in the left panel of Figure 3. We see

that with an increase of the model number gradually changes the η
(i)
ρ behavior from sharply decreasing

for f & 0.5 to a monotonously growing function, thus switching off the cut-mechanism [22], which
limits the growth of the scalar field.

In the right panel of Figure 3, we show the maximum NS mass as a function of the model index,
while varying number of degrees of freedom included. Namely, we study the MKVOR*{Hφ, H∆φ,
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Hφρ, H∆φρ} models with Φρ( f ) = 1− f . For estimating the effect of limiting the decrease of the
ρ-meson effective mass on these curves we consider also the MKVOR*H∆φρ model with Φρ given
by Equation (7) with Φρ,min = 0.5. For the models without ρ− condensate we see, that the choice

ηρ = η
(1)
ρ ≡ ηMKVOR∗

ρ maximizes the maximum NS mass, thus proving the efficiency of our “cut”
mechanism of the EoS stiffening. In addition, one should notice that the difference between Hφ and
H∆φ curves is as well minimized by the η

(1)
ρ . It means that this choice of ηρ plays an important role in

resolution of the “∆ puzzle” [23]. With an increase of the model number the impact of ∆s on the EoS
grows, and for i = 17 the maximum NS mass becomes 2.03 M�, marginally satisfying the maximum
NS mass constraint.

The inclusion of the ρ− condensate changes this tendency. The Hφρ curve monotonously increases
with an increase of the model index and the choice ηρ = η

(1)
ρ minimized the maximum mass and

maximizes the ρ− condensate phase transition strength. A peculiar situation occurs if both ∆s and
ρ− are included into the model. As one sees from the H∆φρ curve in the right panel of Figure 3,
the maximum NS mass is close to 2.03 , M� and almost independent on the model index. This happens
because for low i→ 1 the softening comes from both the ρ− condensate together with ∆s, and for large
i → 17 the ρ− condensate disappears and the softening effect of ∆s is increased, as was mentioned
above. However, this independence of a maximum NS mass on the model number is accidental
and holds only for Φρ = 1− f . If we limit the decrease of the ρ-meson effective mass (see H∆φρ,
Φρ,min = 0.5 curve in the right panel of Figure 3), such a degeneracy is removed.
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Figure 3. Left panel: Scaling functions η
(i)
ρ for i = 1 . . . 17 as functions of the scalar field f . Right panel:

Maximum NS mass as a function of the model number for MKVOR*{Hφ, H∆φ, Hφρ, H∆φρ} models
with Φρ( f ) = 1− f and for MKVOR*H∆φρ with Φρ given by Equation (7) with Φρ,min = 0.5.

5. Conclusions

We studied a possibility of charged ρ-meson condensation in a realistic relativistic mean-field
model MKVOR* with scaled hadron masses and couplings. The condensation proves to happen by
a first-order phase transition and leads to a dramatic reduction of a predicted maximum NS mass,
if one uses the universal scaling for masses of all mesons. Nevertheless, the NS maximum mass still
passes the observational constraint. We have shown that limiting the decrease of the ρ-meson effective
mass allow to reduce the effect of the phase transition on the EoS and increase the maximum neutron
star mass. In addition, we demonstrated that our choice of the ηρ( f ) scaling function maximizes the
neutron star maximum mass in the case without ρ− condensation. With the condensate included
with the universal mass scaling, the maximum mass is almost independent of the choice of ηρ( f ).
This happens because if the scaling function is chosen to minimize the effect of the ρ− condensate,
the ∆ abundance is increased, and vice versa. However, this effect proves to be accidental and does
not manifest itself for a different ρ meson mass scaling.
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