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Abstract: We extend our recent study on the duality between stringy higher spin theories and free
conformal field theories (CFTs) in the SU(N) adjoint representation to other matrix models, namely
the free SO(N) and Sp(N) adjoint models as well as the free U(N)×U(M) bi-fundamental and
O(N)×O(M) bi-vector models. After determining the spectrum of the theories in the planar limit
by Polya counting, we compute the one loop vacuum energy and Casimir energy for their respective
bulk duals by means of the Character Integral Representation of the Zeta Function (CIRZ) method,
which we recently introduced. We also elaborate on possible ambiguities in the application of
this method.
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1. Introduction

The AdS/CFT duality [1] is a remarkable conjecture proposing the equivalence between a
quantum gravity in Anti de Sitter (AdS) space and a conformal field theory (CFT) defined on the
boundary of the same AdS space (see [2] for a review).

These dualities were observed in string theory, building on the observation [3] that the D-branes
of string theory and the black branes of supergravity are essentially complementary descriptions
of the same system, being valid respectively at weak and strong string coupling. The AdS theory
is the closed string theory—a theory of quantum gravity—that the black branes are embedded in,
and the CFT is the field theory which describes the low energy dynamics of the world volume of the
D-branes. We therefore expect that the AdS/CFT dualities would share two very common features.
First, fields in CFT should be matrix valued because of the CFT is the low energy effective theory of
a stack of D-branes. Second, since closed string theories contain supergravity as a low-energy limit,
there should be a regime in the parameter space of the duality where the AdS theory is described
well by supergravity. It turns out that, in field theory, this corresponds to taking the strongly coupled
limit. We also observe that supersymmetry is almost ubiquitous in these dualities, and is an important
ingredient for ensuring that the weak and strong string coupling descriptions can be extrapolated to
each other to lead to the duality.

It is interesting to contrast this situation with the case of AdS/CFT dualities involving higher-spin
theories and vector model CFTs [4,5]. These dualities are counterexamples to the above expectations
in almost every way. Firstly, they are non-supersymmetric, or at least there is no apparent benefit in
working with their supersymmetric extensions. Secondly, the CFT is a typically a vector model rather
than a matrix model, this leads to important simplifications in the spectrum of the bulk and boundary
theories and may also have important implications on black hole physics in these theories [6]. Thirdly,
there is no obvious point in the parameter space of the duality where we obtain bulk General Relativity.

Nonetheless, the study of these dualities might have important insights into the physics of ‘stringy’
AdS/CFT dualities. This turns out to be the case from two a priori distinct motivations. Firstly, while
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it is clearly desirable to use AdS/CFT dualities to probe bulk quantum gravity using the dual CFT,
in practice it is somewhat more difficult as the dynamics of a CFT at a generic coupling is extremely
complicated in itself. From this point of view, it is natural to consider AdS/CFT dualities involving free
CFTs to examine how the CFT repackages itself into a theory of quantum gravity1. Secondly, taking
the free ‘t-Hooft coupling limit on the CFT side corresponds to a particularly interesting limit on the
AdS side as well [7,8].

For definiteness, let us consider the case of the duality between Type IIB superstrings on AdS5× S5

andN = 4 super Yang-Mills, where the dictionary between the bulk and boundary parameters reads as

N2 ∼
(
`AdS
`P

)8
, λ ∼

`4
AdS

(α′)2 . (1)

This dictionary indicates, as is familiar, that taking the planar limit of N = 4 super Yang-Mills
corresponds to taking the classical limit in the bulk, where the radii of AdS5 and S5 are much larger
than the Planck length. Further, now setting λ to zero corresponds to setting the string tension α′−1 to
zero or, equivalently, taking the string length to be much larger than the AdS5 radius. In either way of
thinking about this limit in the bulk, it should be clear that this is a very stringy limit as it corresponds
to working at an energy scale much larger than the string tension, at which point the string no longer
looks like a point object as it would to a low energy observer, which is essentially the supergravity
approximation, corresponding to taking λ to infinity.

Moreover, the tensionless limit is a window of string theory about which much remains to be
understood, however there are important hints that new symmetries should manifest themselves in this
phase [9–14] and indeed that higher-spin symmetry may be one such symmetry [12–14]. It is therefore
natural to explore this window of AdS/CFT duality both for gaining a foothold into tensionless string
theory and also for a more general program of extracting bulk physics from CFT data.

The approach we adopt in this paper is to assume that a CFT with an’t-Hooft expansion admits
an AdS dual in the planar limit, and then compute 1/N corrections in the duality. This approach also
provides an interesting point of view regarding a different but related question. In particular, how does one
couple massive representations of the higher-spin algebra to the Vasiliev system? Although the coupling of
massive and massless higher-spin fields in AdS has been studied at the cubic level in [15–17], directly
constructing the bulk theory is still quite difficult. However, since the single-trace operator spectrum
of a free matrix model CFT contains the conserved currents found in the vector model along with
conformal primaries lying above the unitarity bound, we expect its AdS dual to be a theory of massless
higher spins coupled to massive higher spins. Further, by varying the content of the CFT, the operator
spectrum can be quite easily varied. Hence this setting is expectedly useful for generating a zoo of theories
with massless and massive higher-spins coupled to each other in AdS.

As a preliminary exploration of the duality between tensionless strings in AdS and free matrix
model CFTs, it is particularly appealing to focus on one-loop quantum effects in the bulk, especially
the vacuum energy in AdS with sphere boundary and thermal AdS with torus boundary. We shall
refer these two quantities as one-loop vacuum energy and Casimir energy. The spectral problem
for arbitrary spin tensor (and spinor) fields has been almost completely solved for Laplacians on
hyperboloids [18–21], and this provides the vacuum energy of the corresponding particle. The full
result is expectedly determined by summing over contributions from every particles in the spectrum
of the bulk theory. This was very explicitly carried out for the higher spin theories in [22–33] and the
resulting computation matched. We refer the reader to [34] for a review higher spin holography in
general, including the one-loop computations mentioned here.

1 We consider ‘free’ CFTs as being obtained from a zero ‘t-Hooft coupling limit of the large-N expansion of a given CFT. Hence
the bulk theory still admits a semi-classical expansion, identified to the ’t-Hooft expansion of the dual CFT, and single trace
conformal primaries in the CFT correspond to fields in the bulk.
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It is clearly of interest to explore how these computations can be extended to the case of the
tensionless string, but there is an obvious complication. The higher-spin computations of one-loop
free energies rely on an explicit knowledge of the bulk spectrum. Further, summing over free energy
contributions of each particle leads to naively divergent sums that need to be regulated. Meanwhile,
an independent formulation of even the classical bulk theory for the tensionless string is lacking.
Even if we were to attempt to use the CFT data to reconstruct the bulk by identifying the CFT single
trace operator spectrum to the spectrum of bulk particles, there is so far no simple closed form
expression for the operator spectrum of a matrix valued CFT [35,36].

For these reasons, an alternate approach was adopted in [37–40] which bypasses both these
problems by expressing the one-loop vacuum energy of a given field in terms of a linear operator
acting on the conformal algebra character corresponding to the field. For technical reasons, this was
referred to as the Character Integral Representation of the Zeta Function (CIRZ) method. This method
completely reproduces the previous results for Vasiliev’s higher spin theory as well as readily extracts
the answers for the tensionless string as well as its bosonic cousins, the bulk duals of the free
SU(N)-adjoint scalar CFT and free SU(N) Yang-Mills. In particular, it was found that the one-loop
free energies of these bulk dual theories are non-zero, and equal to minus of the one-loop free
energy of the corresponding boundary conformal field (scalar, spin-1, etc.). Further, the computations
involved undergo simplifications for the maximally supersymmetric case which are seemingly quite
miraculous [40].

In this paper we shall discuss the extension of these results to the free CFTs in the adjoint
representation of SO(N) and Sp(N), as well as the bi-fundamental and the bi-vector representation of
U(N)×U(M) and O(N)×O(M), respectively. We concentrate our consideration on the AdS5/CFT4

dualities, but all our analysis can be generalized to any even d in a straightforward manner and to
odd d with a bit more effort (see [37] for AdS4/CFT3 case, and [33] for a generalization to arbitrary
dimensions.). Another aim of the current paper is to provide a concise summary of the series of our
recent works [37–39] and to append more details on the relevant technicalities such as the spectral
analysis of AdS space and the operator counting problem.

1.1. Organization of Paper

A brief overview of this paper is as follows. In Sections 2 and 3 we shall review the formalism for
one-loop computations in AdS5, recollecting the essential results for computing the Casimir Energy
and vacuum energy at one-loop. Section 4 provides a few more details about the duality between
the tensionless string and free matrix models, focusing strongly on a pedagogical treatment of Polya
counting, an essential tool for many of the computations presented here. Section 5 then presents
the applications of this formalism to adjoint Sp(N) and SO(N) CFTs, namely free scalar, Yang Mills
and N = 4 SYM, and bi-fundamental and bi-vector scalar and fermion models. Finally, some more
technical details are reviewed in the Appendices. Appendix A contains a review of some facts of
harmonic analysis on AdS spaces which are useful to these computations, while Appendix B reviews
key features of unitary representations of so(2, 4). Finally, Appendix C contains an overview of the
applications of the methods of Sections 2 and 3 to the higher-spin/CFT dualities.

2. Casimir Energy in Thermal AdS5

We begin with how the one-loop AdS/CFT Casimir energy may be computed in thermal AdS5. In
particular, we will review the observation of [25] that ‘naive’ computation of the AdS/CFT Casimir
energy for higher-spin theories yields a divergent answer which may be suitably regularized to obtain
a result consistent with CFT expectations. Importantly, the latter regularization also does not require us
to know the precise spectrum of the theory, except in some implicit way through the thermal partition
function of the theory, computed in the canonical ensemble. This is discussed below. Equally importantly,
the computations here contain the same key idea which is very useful for the analysis presented later,
but in a simpler setting.
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We begin with the Vasiliev Type A theory in AdS5. Its duality is discussed at somewhat greater
length in Appendix C but for now it is sufficient to note that the non-minimal Vasiliev theory contains
massless spins from spin equal to 1 to infinity appearing once each in the spectrum, along with a scalar
with ∆ = 2, and is dual to the U(N) vector model. Further, there is a minimal Vasiliev system arrived at
by truncating the non-minimal one to even spins only, and this is dual to the O(N) vector model. Next,
we note that the Casimir energy of a massless spin-s field in AdS5 is given by [25]

E(s)
c = − 1

1440
s (s + 1)

[
18s2 (s + 1)2− 14s (s + 1)− 11

]
. (2)

While the scalar of the theory is not massless, its Casimir energy can be determined from the
formula (2) by setting s = 0 in it. Therefore the Casimir energy for the non-minimal AdS theory is
given by Ec = ∑∞

s=0 E(s)
c , which is clearly divergent. This divergence can be regularized by means of

an appropriate zeta function, or by inserting an exponential damping e−ε
(

s+1
2

)
when evaluating the

sum and discarding all terms divergent in ε in the limit ε→ 0. We thus obtain [25]

Ec =
∞

∑
s=0

E(s)
c e−ε

(
s+1

2

)
|finite = 0. (3)

As is apparent from the above analysis, carrying out this computation requires knowledge of the
precise spectrum of the theory, along with a prescription for regulating the divergence for summing
over the infinite number of fields in the spectrum of the theory. This data is unavailable for the bulk
duals of matrix CFTs at present. We will now show in below how this requirement may be evaded2.
Our starting point is the relation between the (blind) character

χV (β) = Tr
(

e−βH
)
= ∑

n
dn e−β En , (4)

computed over the UIR V of so(2, 4) and the Casimir energy in AdS of the corresponding field.
Here (En, dn) are the eigenvalues and degeneracies of the hamiltonian H. Given χV (β) we may take
its Mellin transform to obtain χ̃V (s) as

χ̃V (z) = LMellin [χV ; z] ≡
∫ ∞

0
dβ

βz−1

Γ (z)
χV (β) = ∑

n
dn E−z

n , (5)

which implies
χ̃V (−1) = ∑

n
dn En = Ec , (6)

where Ec is the Casimir energy [41]. Anticipating future developments, in the above we have defined a
linear functional LMellin which acts on the character χV to return the Mellin transform. Note that it is
straightforward to apply (6) to the case where V is the short representation

(
s + 2, s

2 , s
2
)

to obtain the
expression (2) for the Casimir energy of a massless spin-s field. For fermions, the Casimir energy is
defined with an overall minus sign, so we insert the fermion number operator into the character and
define a partition function ZV (β) = TrV

(
(−1)F e−βH

)
in terms of which we obtain Ec as (5) and (6).

2 Somewhat related arguments are also implicit in some computations of [25]. In particular, note their computations from
Equations (5.16)–(5.21) which are essentially a ‘one-shot’ computation of the full bulk Casimir energy from the thermal
partition function, much as we present here in (8).
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Now we use the fact that the Hilbert space H of one-particle excitations of the AdS5 theory
decomposes by definition into UIRs of the conformal algebra so(2, 4). Further, again by definition

ZH (β) = TrH
(
(−1)F e−βH

)
= ∑
{b}

nb χb(β)−∑
{ f }

n f χ f (β) , (7)

where {b} and { f } denote respectively the sets of bosonic and fermionic fields in the theory. Then we
may use the linearity property of LMellin and act with it on the total partition function ZH (β) to find
the total Casimir energy

Ec = Z̃H (−1) ; where Z̃H (z) = LMellin [ZH; z] . (8)

It turns out that in all cases of which we are aware, this definition of the Casimir energy perfectly
reproduces the expressions found by the regularots such as (3) that are used in the literature. Further,
often it is possible to evaluate the full partition function χH without knowing the explicit spectrum of
the theory. Indeed matrix CFTs are an example of this possibility, as we review below. Therefore, the
definition (8) is particularly useful to apply to the cases of matrix model CFTs which we encounter in
‘stringy’ AdS/CFT dualities.

Finally, we also note that (5) may be efficiently evaluated by deforming the contour of β integration,
which originally stretches along the positive real β axis from 0 to ∞, to Figure 1 to get

Z̃H(z) =
i

2 sin(π z)

∮
C

dβ
βz−1

Γ(z)
ZH(β) . (9)

Re(β)

Im(β)

Figure 1. Integration contour for the zeta function.

Further, if the partition function χH(β) has no singularities on the positive axis of β except for
poles at β = 0 , then the contour C can be shrunk to a small circle around β = 0 to give

Ec = −
1
2

∮
C

dβ

2 π i β2 ZH(β) , (10)

which may be evaluated by the residue theorem. We therefore find that the AdS Casimir energy is
simply − 1

2 of the O (β) term in the Laurent series expansion of ZH(β) about β = 0 .

3. Formalism for One-Loop Computations in AdS5

In this section we review the formalism and techniques for carrying out one-loop computations in
AdS5. The techniques are more generally applicable and extend to arbitrary odd-dimensional AdS spaces
straightforwardly and even-dimensional AdS spaces with a bit more effort.

3.1. Vacuum Energy in AdS5

Evaluating the one-loop partition function of a quantum theory reduces to the problem of
evaluating functional determinants:

Z(1) =
∫
DΨ e−

1
2 〈Ψ,KΨ〉 =

1√
detK

, K(x1, x2) =
δ2S[Φ]

δΦ(x1)δΦ(x2)

∣∣∣
Φ=Φ̄

, (11)
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where S[Φ] is the classical action and Φ = Φ̄ + Ψ . The Φ̄ and Ψ are a background field and the
fluctuation over it, respectively. The bracket 〈·, ·〉 is the scalar product defined by

〈Ψ1, Ψ2〉 =
∫

dDx
√

g Ψ1(x)∗ ·Ψ2(x) . (12)

Here, we suppressed all the indices for simplicity but one should understand that the fields Φ or
Ψ are tensors in general. ‘·’ is a Lorentz invariant scalar product that contracts the (suppressed) spin
indices of the fields Ψ.

The one-loop free energy Γ(1) or the vacuum energy is simply

Γ(1) = − ln Z(1) =
1
2

Tr lnK , (13)

hence, we need to evaluate the Tr ln (or functional determinant) of the operator K . If we treat the
operatorK as if it is a finite dimensional diagonalizable matrix with eigenvalues κn, then we would get

Tr lnK = ∑
n

dn ln κn , (14)

where n parametrizes the eigenvalue and dn is the degeneracy. Defining the zeta function ζ(z) to be

ζ(z) = ∑
n

dn

κnz , (15)

it is easy to see that
ζ′(0) = −Tr lnK = −2 Γ(1) . (16)

However, expressions such as (15) are not ideally suited for a direct evaluation in the case of a
differential operator K . Typically, the naive degeneracy corresponding to a given eigenvalue is infinite.
We shall therefore use the fact that given an orthonormal set of eigenvectors3

{
Ψ(n)

m

}
belonging to the

eigenvalue κn, the degeneracy may be defined as

dn = ∑
m
〈Ψ(n)

m , Ψ(n)
m 〉 . (17)

We emphasize that though (17) is a tautology for compact spaces, for non-compact spaces it is
essentially a non-trivial definition. When evaluated explicitly, the answer is still divergent but may
be regulated in accordance with general principles of AdS/CFT. We shall be applying these methods
to the typical kinetic operators K = −�+ c in AdS5, so it is useful to specialize a little to that case.
It turns out that the spectrum of eigenvalues is continuous, labeled by a positive real number u, and is
given by

κu = u2 + c′ . (18)

3 The operators we are interested in will be of the form −�+ c where c is a constant and −� = gµν∇µ∇ν. The spectral
problem for operators of this form has been explicitly solved for a wide class of spin fields in AdS space. In contrast, if we
wish to compute the same determinants over quotients of AdS, in principle we have to impose quantization conditions

over Ψ(n)
m . This may prove easy or difficult depending on the orbifold at hand. Nonetheless, for the quotients we are

interested in, it is possible to compute the determinants on the quotient space by the method of images. We review these
facts in Appendix.
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Here, c′ is a constant number, essentially encoded in the parameter c appearing in the bulk kinetic
operator. For physical fields it will be related to ∆, the conformal dimension of the dual operator on
the boundary. The zeta function for the operator K is then given by

ζ(z) =
∫

du ∑m〈Ψ
(u)
m , Ψ(u)

m 〉
(u2 + c′)z , (19)

where the wave functions Ψ(u)
m now obey the orthonormality conditions

〈Ψ(u)
m , Ψ(u′)

m′ 〉 = δ(u− u′) δm,m′ . (20)

We now specialize to the case of global AdS5, to develop general expressions useful for the
forthcoming analysis. In this case, for a wide class of fields, the eigenfunctions of the Laplace operator
� = gµν∇µ∇ν have been explicitly computed [18–21,42]. Further, using the homogeneity of AdS,

it follows that ∑m Ψ(u)
m (x)∗ ·Ψ(u)

m (x) is independent of x ∈ AdS5,4 and we define

∑
m

Ψ(u)
m (x)∗ ·Ψ(u)

m (x) = ∑
m

Ψ(u)
m (0)∗ ·Ψ(u)

m (0) ≡ µ(u) . (21)

Here x = 0 is a point on AdS5 which may be arbitrarily chosen. In practice, it is chosen so that all
but a finite number of eigenfunctions Ψ(u)

m (x) vanish at that point, and the sum over m may be easily
evaluated. Finally, we see that (19) reduces to

ζ(z) = VolAdS5

∫
du

µ(u)
(u2 + c′)z , (22)

where µ(u) plays the role of measure over the parameter u which indexes the eigenvalues of the
Laplacian. It is known as the Plancherel measure.

For the operator K corresponding the irreducible representation D(∆, (`1, `2)) , the constant c′ is
given by

c′ = (∆− 2)2 , (23)

and the measure µ(u) by

µ(u) =
1

3π2
`1 + `2 + 1

2
`1 − `2 + 1

2

(
u2 + (`1 + 1)2

) (
u2 + `2

2

)
. (24)

The derivation of the c′ and µ(u) is provided in Appendix A. The factor of the volume VolAdS5 is
infinity due to the non-compactness nature of AdS space. This IR divergence can be also regularized as

VolAdS5 = π2 log(µ R) , (25)

where R is the raduis of AdS space and µ the renormalization scale. See [43] for the details and
discussions. With the above result, suppressing the µ dependence, the AdS5 vacuum energy is given
always proportional to log R .

4 This statement is a generalization of the addition theorem for spherical harmonics on S2 to general spin fields on symmetric
spaces, and is particularly transparent when the group theory underlying harmonic analysis on symmetric spaces is used.
These facts are reviewed in Appendix A.
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3.2. Character Integral Representation of Zeta Function

We have seen in Section 2 that the Casimir energy for a theory in thermal AdS5 is naturally
encoded in the thermal partition function, or the blind character in other words, via a linear operator
acting on it. This provides a natural resummation of the Casimir energies of the individual fields
in the spectrum. In [37], we have shown how the character may be similarly used to resum the
one-loop free energies in global AdS5. That is, there exists a linear operator L which, like LMellin of
Section 2, acts on the character over a UIR V of so(2, 4) and returns the one-loop vacuum energy of
the corresponding field, now in global AdS. L again takes the form of a β integral over the character,
now with additional operations included, and returns the zeta function corresponding to the one-loop
determinant, as defined in Section 3.1. For this reason, we refer to this method as Character Integral
Representation of Zeta function (CIRZ).

Let us provide a brief summary of the result of [37]. The zeta function for a Hilbert space
H—which might be a single UIR space or any collection of them—can be written as the sum of
three pieces:

ζH(z) = ζH|2(z) + ζH|1(z) + ζH|0(z) , (26)

where ζH|n are the Mellin transforms,

Γ(z) ζH|n(z)
log R

=
∫ ∞

0
dβ

( β
2
)2(z−1−n)

Γ(z− n)
fH|n(β) , (27)

of the functions fH|n(β) given by

fH|2(β) =
sinh4 β

2
2

χH(β, 0, 0) ,

fH|1(β) = sinh2 β
2

[
sinh2 β

2
3

− 1− sinh2 β
2

(
∂2

α1
+ ∂2

α2

)]
χH(β, α1, α2)

∣∣∣∣
αi=0

,

fH|0(β) =

1 +
sinh2 β

2

(
3− sinh2 β

2

)
3

(
∂2

α1
+ ∂2

α2

)

−
sinh4 β

2
3

(
∂4

α1
− 12 ∂2

α1
∂2

α2
+ ∂4

α2

)]
χH(β, α1, α2)

∣∣∣∣
αi=0

.

(28)

Here χH is the character defined by

χH(β, α1, α2) = TrH
(

e−β H+i α1 M12+i α2 M34
)

. (29)

Since both of the relations (27) and (28) are linear, they define a linear map L between the zeta
function and the character: ζH(z) = L[χH; z].

One can recast the β integral (27) with sufficently large Re(z) into an integral over the contour
which runs from the positive real infinity and encircles the branch cut generated by β2(z−1−n) in the
counter-clockwise direction (see Figure 1) as

Γ(z) ζH|n(z)
log R

=
i (−2)2(n+1−z)

2 sin(2πz) Γ(z− n)

∮
C

dβ
fH|n(β)

β2(n+1−z)
. (30)

Now the right hand side of the above equation is well defined in the z→ 0 limit. Defining

γH|n = −(−4)n n!
∮ dβ

2 π i
fH|n(β)

β2(n+1)
, (31)
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the total one-loop vacuum energy of the AdS5 theory is given by the sum

Γ(1)
H = log R

(
γH|2 + γH|1 + γH|0

)
. (32)

When the function fH|n does not have any singularities in positive real axis of β the contour
can be eventually shrunken to a small circle around β = 0. The functions fH|n for any one particle
state in AdS5 as well as for the spectrum of Vasiliev’s theory indeed satisfy this property. However,
quite generically, the functions fH|n for the AdS dual to a matrix model CFT do have additional poles or
branch cuts. Physically, this corresponds to the fact that higher-spin theories do not have a Hagedorn
transition [6] while string theory does [7].

When there are bulk fermionic degrees of freedom to be summed over, as in the case of
supersymmetric theories, it is sufficient to use the CIRZ method as presented for bosons, but instead
of using the thermal partition function, use the weighted partition function

ZH(β, α1, α2) = TrH
(
(−1)F e−β H+i α1 M12+i α2 M34

)
, (33)

introduced in [11,44].

4. Computing Partition Functions by Polya Counting

The large N expansion qualitatively works in the same way in the vector model as the matrix one:
all the correlation functions can be organized in terms of the color loop number. At the leading order
of N, it is sufficient to consider the single trace operators, i.e., those made with a single color loop.
On these single trace operators, there is important difference between vector models and matrix models.
In vector models, the single trace operators are the scalar product of two fields in vector representation,

∂∂ · · · ∂~φ1 · ∂∂ · · ·~φ2 , (34)

whereas in matrix models they are the traces of arbitrary number of fields in a matrix
valued representation,

Tr
[(

∂∂ · · · ∂φ1
)(

∂∂ · · · ∂φ2
)
· · ·
(
∂∂ · · · ∂φn

)]
. (35)

In (34) and (35), we suppressed all the indices and the field operators φn can be either scalar,
spinor or vector in four dimensions. Therefore, even though the number of single trace operators is
infinite in both cases, the number is infinitely larger in matrix models than vector models.

One of difficulties in matrix models is the control or organization of infinitely many single trace
operators. For this reason, one often focuses on a certain class of single trace operators, such as BPS
operators, whose study does not invoke the knowledge of the rest of operators. However, in studying
the total one-loop Casimir or vacuum energy, we need the full operator spectrum of the theory. This can
in principle be identified by decomposing the operators (35) into irreducible so(2, 4) representations.
The decomposition requires a particular symmetrization of indices which projects the operator (35) to
the irreducible representation. Finding out the exact forms of these projections is not easy, but this
process can be cast as a standard group theoretical problem. For the scalar product or inside of a trace,
we put derivatives of field operator up to its equation. They form a basis for the Hilbert space V of the
conformal field φ carrying a short-representation of so(2, 4) :

V = Span{ φ, ∂φ, ∂∂φ, . . . } = Span{vi} , (36)

where the i is the index indicating one of descedant (or primary) states of φ , hence it is infinite
dimensional.

In vector models, we construct single trace operators by using two elements of V as (34), hence the
vector space of single trace operators is the tensor product V⊗V . When the field~φ1 and~φ2 are the same,
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which is the case in the O(N) vector model, single trace operators are symmetric in the exchange of
1 and 2 as the latter label is dummy. Then the corresponding vector space of single trace operators
are the symmetrized tensor product of two V’s, denoted by V ∨V . In order to find out the operator
spectrum, we need to decompose V ∨V into so(2, 4) UIRs and it can be conveniently done in terms
of the so(2, 4) characters. In addition, the symmetrizations of the tensor product, or the plethysm,
can be also handily treated at the level of characters. Suppose that for an element g ∈ SO(2, 4), V has
eigenvalues {λi} (since only the conjugacy class of g matters due to the trace, we can focus on the
Cartan subgroup as in (A43)), then the character reads χV(g) = TrV(g) = ∑i λi . Then, the character
for V ∨V is

χV∨V(g) = ∑
i≤j

λi λj =
(∑i λi)

2 + ∑i λ2
i

2
. (37)

Since ∑i λ2
i = TrV(g2) , we get the relation

χV∨V(g) =
χV(g)2 + χV(g2)

2
. (38)

In the case of matrix models, we need to consider n tensor product of V and impose appropriate
symmetrization compatible with trace and also the gauge group.

4.1. SU(N) Adjoint Models

When the gauge group is SU(N), the fields ∂∂ · · · ∂φp have the cyclic symmetry in p → p + 1
(p = 1, . . . n, p + 1 ≡ 1) due to the trace operation. Then, the projection to the cyclic invariant requires
only some combinatorial consideration. For intuitive understanding let us consider a few lower n’s
where n is the number of operators in the trace. First, the n = 2 cyclic symmetry is nothing but the
permutation symmetry. For n = 3, the character of cyclic 3 tensor product of V, denoted by Cyc3(V), is

χCyc3(V)(g) = ∑
i=j=k∨ i=j 6=k∨ i<j<k∨ i<k<j

λi λj λk

= ∑
i

λ3
i +∑

i 6=j
λ2

i λj + 2 ∑
i<j<k

λi λj λk . (39)

where the summation over (i, j, k) is chosen for the proper counting of elements with the cyclicity
(i, j, k) ≡ (j, k, i) . Since (

∑
i

λi

)3

= ∑
i

λ3
i + 3 ∑

i 6=j
λ2

i λj + 6 ∑
i<j<k

λi λj λk , (40)

We find that

χCyc3(V)(g) =
(∑i λi)

3 + 2 ∑i(λi)
3

3
=

χV(g)3 + 2 χV(g3)

3
. (41)

As one can see from this example, the point is the counting of (i1, . . . , in) taking into account
the cyclic equivalence. This is well-know problem of counting inequivalent necklaces with n beads
(see Figure 2). The index ip indicates the type or color of beads (which, in our context, corresponds to
the descendant state of the conformal field φ).

The solution to this problem is provided by Polya’s enumeration theorem as

χCycn(V)(g) = ∑
cyclic (i1,...,in)

λi1 · · ·λin =
1
n

n

∑
k=1

(
∑

i
λ

n
gcd(k,n)
i

)gcd(k,n)

. (42)
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Here, gcd(k, n) is the greatest common divisor of k and n . Alternatively, the above can be written as

χCycn(V)(g) =
1
n ∑

k|n
ϕ(k)

(
∑

i
λk

i

) n
k

=
1
n ∑

k|n
ϕ(k)χV(gk)

n
k , (43)

where k|p denotes the divisor k of p and the Euler totient function ϕ(p) is the number of relative primes
of p in {1, . . . , p} .

The total partition function is the sum of the above from n = 2 to infinity. Hence, we are temped
to sum χCycn(V) over n. It turns out that it is possible to at least partially sum over n in (43) via [7,45,46]

χCyc(V)(g) =
∞

∑
n=2

χCycn(V)(g) =
∞

∑
n=2

1
n ∑

k|n
ϕ(k) [χV(gk)]

n
k

= −χV(g) +
∞

∑
k=1

∞

∑
m=1

1
m k

ϕ(k) [χV(gk)]m

= −χV(g) +
∞

∑
k=1

ϕ(k)
k

χlog,k(V)(g) , (44)

where χlog,k(V) are given by

χlog,k(V)(β, α1, α2) = − log [1− χV(kβ, kα1, kα2)] . (45)

· · · · · · · · ·

i1
i2

i3

i4

in

Figure 2. Necklace with n beads.

4.2. Sp(N) and SO(N) Adjoint Models

Now let us turn to the cases where the field φ takes value in the adjoint representation Sp(N).
Then the field is symmetric: φt = φ . Consequently, the single-trace operators (35) admit the
(anti-)symmetry,

Tr
(

∂k1 φ ∂k2 φ · · · ∂kn φ
)
= Tr

(
∂kn φ · · · ∂k2 φ ∂k1 φ

)
, (46)

under the flip of the ∂kφ ordering inside the trace. In terms of indices,

(i1, i2, . . . , in) ≡ (in, in−1, . . . , i1) . (47)

Hence, the space of independent single-trace operators corresponds now to the subspace
invariant under the actions of the dihedral group Dihn (which includes also reflections on top of the
cyclic rotations).

Let us again start the discussion with n = 3 case:

χDih+
3 (V)(g) = ∑

i=j=k∨ i=j,k∨ i<j<k
λi λj λk = ∑

i
λ3

i + ∑
i 6=j

λ2
i λj + ∑

i<j<k
λi λj λk . (48)
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where the summation over (i, j, k) is chosen for the proper counting of elements with the cyclicity
(i, j, k) ≡ (j, k, i) ≡ (i, k, j) . Note that for n = 3, the dihedral group coincides with the symmetric
group. The above can be written as

χDih+
3 (V)(g) =

(∑i λi)
3 + 3

(
∑i λ2

i
) (

∑j λj

)
+ 2 ∑i λ3

i

6
, (49)

using (40) and (
∑

i
λ2

i

)(
∑

j
λj

)
= ∑

i
λ3 + ∑

i 6=j
λ2

i λj . (50)

In terms of the basic character χV , it reads

χDih+
3 (V)(g) =

χV(g)3 + 2 χV(g3) + 3 χV(g2) χV(g)
6

=
1
2

χcyc3(V)(g) +
1
2

χV(g) χV(g2) . (51)

As one can see from this n = 3 example, the character of dihedrial tensor-product space Dih+
n (V)

is roughly half of the cyclic one, but not exactly. The precise formula is

χDih+
n (V)(g) =

1
2

χCycn(V)(g) +


1
2 χV(g) χV(g2)

n−1
2 [n odd]

1
4

(
χV(g)2 χV(g2)

n−2
2 + χV(g2)

n
2

)
[n even]

. (52)

If the field φ takes value in the adjoint representation of SO(N), it is antisymmetric: φt = −φ .
Then, the single trace operators have the following reflection property,

(i1, i2, . . . , in) ≡ (−1)n (in, in−1, . . . , i1) , (53)

in addition to the cyclicity. Due to the factor (−1)n we have less number of operators in the SO(N)

case compared to the Sp(N) case.
Again, let us consider the n = 3 example. Since (i, j, k) ≡ −(k, j, i), any repeated index vanish:

(i, i, j) ≡ (i, j, i) ≡ −(i, j, i). In the end, only strictly ordered set (i, j, k) with i < j < k survive. Hence,
the character is

χDih−3 (V)(g) = ∑
i<j<k

λi λj λk =
(∑i λi)

3 − 3
(
∑i λ2

i
) (

∑j λj

)
+ 2 ∑i λ3

i

6

=
χV(g)3 + 2 χV(g3)− 3 χV(g2) χV(g)

6
=

1
2

χcyc3(V)(g)− 1
2

χV(g) χV(g2) . (54)

One can notice that compared to the Sp(N) case of (51), we have minus sign after the last equality.
This pattern extends to an arbitrary odd n :

χDih−n (V)(g) =
1
2

χCycn(V)(g) +

−
1
2 χV(g) χV(g2)

n−1
2 [n odd]

1
4

(
χV(g)2 χV(g2)

n−2
2 + χV(g2)

n
2

)
[n even]

, (55)

because, for odd n, cyclic operators can be split into either symmetric or anti-symmetric ones
under reflection.

Finally, one may attempt to sum χDih±n (V) over n. The term half of cyclic character can be treated
as the cyclic case, whereas the additional contributions can be summed as they are geometric series.
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It will be useful to consider the two partition functions obtained by summing separately over the even
and odd values of n. In particular

χeven(V) (g) =
1
4

∞

∑
n=2,4,6,···

(
χV(g)2χV(g2)

n−2
2 + χV(g2)n/2

)
=

1
4

χV(g)2 + χV(g2)

1− χV(g2)
,

χodd(V) (g) =
1
2

∞

∑
n=3,5,7,···

χV(g) χV(g2)
n−1

2 =
1
2

χV(g) χV(g2)

1− χV(g2)
.

(56)

In the end we get

χDih±(V)(g) =
1
2

χCyc(V)(g) + χeven(V) (g)± χodd(V) (g) . (57)

4.3. U(N)×U(M) Bi-Fundamental and O(N)×O(M) Bi-Vector Models

If the conformal fields φ carry bi-fundamental representations with respect to U(N) and U(M),
hence taking value in M× N complex matrix, then the single trace operators will take the form of

Tr
(

∂k1 φ ∂k2 φ† · · · ∂k2n φ†
)

. (58)

Note here that the operators involve always even number of fields in φ φ† form, and the operators
are invariant under the cyclic rotation by 2. This means that the basic vector space in this case is not
V but V ⊗ V and the single trace operators with 2n operators is governed by the cyclic group Cn .
The character can be constructed in an analogous manner and reads

χBf2n(V)(g) =
1
n ∑

k|n
ϕ(k) χV(gk)

2n
k . (59)

We can collect the above for n = 1, . . . , ∞ to get

χBf(V)(g) =
∞

∑
n=1

χBf2n(V)(g) = −
∞

∑
k=1

ϕ(k)
k

log
[
1− χV(gk)2

]
. (60)

The final case is the O(N)×O(M) bi-vector models where the scalar fields φ are real as opposed
to the U(N) × U(M) bi-fundamental models. Hence, the space of its single-trace operators are
spanned by

Tr
(

∂k1 φ ∂k2 φt · · · ∂k2n φt
)

, (61)

which has the reflection symmetry:

Tr
(

∂k1 φ ∂k2 φt · · · ∂k2n φt
)
= Tr

(
∂k2n φ · · · ∂k2 φ ∂k1 φt

)
, (62)

On top of the cyclic rotation by two. Again, the character of the bi-vector models is the half of
the bi-fundamental ones up to the contribution from the reflection symmetries. This time, the latter is
simpler and we end up with

χBv2n(V)(g) =
1
2

(
χBf2n(V)(g) + χV(g2)n

)
. (63)

The character for all single-trace operator is again the sum of the latter over all positive integer n
and reads

χBv(V)(g) =
∞

∑
n=1

χBv2n(V)(g) =
1
2

(
χBf(V)(g) +

χV(g2)

1− χV(g2)

)
. (64)
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4.4. Symmetric Group

Finally, we can consider the operators made by conformal fields which are fully symmetric in any
permutations. This is the symmetric group and the corresponding character is given by

χSymn(V)(g) = ∑
j1+2 j2+···+n jn=n

n

∏
k=1

χV(gk)
jk

kjk jk!
, (65)

or in terms of Bell polynomial as

χSymn(V)(g) =
1
n!

Bn(0! χV(g), 1! χV(g2), . . . , (n− 1)! χV(gn)) . (66)

The generating function or the full partition function has rather simple form,

χSym(V)(g) = exp

(
∞

∑
k=1

1
k

χV(gk)

)
, (67)

sometimes referred to as plethystic exponential (PE). Notice that here we do not have the notion of
large N expansion (and single trace, multi trace etc) hence we have also included the n = 1 operator,
that is φ itself.

In order to see the implication of the above formula, let us consider a few toy examples. We first
take the one-particle partition function of free scalar in two dimensions :

χV(q, q̄) =
q

1− q
+

q̄
1− q̄

. (68)

One can evaluate the sum over k by expanding first 1/(1− q) and 1/(1− q̄) as

∞

∑
k=1

1
k

qk

1− qk =
∞

∑
k=1

1
k

qk
∞

∑
n=0

qk n =
∞

∑
n=1

log
(

1
1− qn

)
, (69)

hence we get

χS(V)(q, q̄) =

(
∞

∏
n=1

1
1− qn

)(
∞

∏
n=1

1
1− q̄n

)
. (70)

This differs from the partition function of free boson by (q q̄)−1/24/ log(q q̄) . The (q q̄)−1/24

factor is missing because our character did not include the q−c/24 . The log(q q̄) factor is due to zero
mode contribution.

Let us consider the following toy partition functions inspired by the two-dimensional free boson,

χV(q) =
q

(1− q)d , (71)

which captures certain aspects of the scalar character in higher dimensions. By using

q
(1− q)d =

1
(d− 1)!

(
∂

∂s

)d−1 sd−1 q
1− s q

∣∣∣
s=1

, (72)

we get

log χS(V)(q) =
1

(d− 1)!

(
∂

∂s

)d−1 ∞

∑
n=1

sd+n−2 log
(

1
1− qn

) ∣∣∣
s=1

=
∞

∑
n=1

(
d + n− 2

d− 1

)
log
(

1
1− qn

)
. (73)
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In the end, the full partition function,

χS(V)(q) =
∞

∏
n=1

1

(1− qn)(
d+n−2

d−1 )
, (74)

gives the MacMahon’s (unsuccessful) guess formula for the generating function of
d-dimensional partitions.

4.5. Fermions

So far, our consideration was only on the Hilbert space V of bosonic conformal fields φ. Let us
now include the Hilbert space W of fermionic fields ψ :

W = Span{ψ, ∂ψ, ∂∂ψ, . . .} = Span{wp} . (75)

The total Hilbert space of conformal fields is then H = V ⊕W . We generalize the character to
cover the fermionic case as

Z(g) = Tr
(
(−1)F g

)
, (76)

where F is the fermionic number operator.
Let us reconsider the SU(N) adjoint partition function for single trace operators of lower n’s.

For n = 2, we have two additional class of operators. First, we have fermionic operators,

ZVW(g) = −TrV⊗W(g) = −∑
i,p

λi λp = ZV(g) ZW(g) . (77)

Second, there is the bosonic one made by two fermions,

ZWW(g) = TrW∧W(g) = ∑
p<q

λp λq =

(
∑p λp

)2
−∑p λ2

p

2
=

1
2

(
ZW(g)2 + ZW(g2)

)
. (78)

In the end, we get the same form as (38):

ZHH(g) =
1
2

(
ZH(g)2 + ZH(g2)

)
. (79)

Moving to n = 3 , we have three more classes of operators, VVW, VWW and WWW . The first
and second are simply

ZVVW(g) = ZV(g)2 ZW(g) , ZVWW(g) = ZV(g) ZW(g)2 , (80)

and the last is

ZWWW(g) =
ZW(g)3 + 2 ZW(g3)

3
. (81)

Note that the fermionic nature does not play any role in WWW as the cyclic permutation can be
viewed as the commutation of bosonic WW and fermionic W space. In the end, we get

ZHHH(g) =
ZH(g)3 + 2 ZH(g3)

3
. (82)

In this way, one can convince her/himself that the partition fuction of single trace operators made
by both of bosonic and fermionic conformal fields has the same form as the character in the pure
bosonic case:

Zcycn(H)(g) =
1
n ∑

k|n
ϕ(k) ZH(gk)

n
k . (83)
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One can include fermions in the dihedral, bi-fundamental and bi-vector models in the same way.

5. One Loop Tests of Free Matrix CFT Holographies

In the previous section, we have computed the partition function of all single trace operators
in various free CFTs with fields in various different representations of the internal symmetry group.
Using the AdS/CFT dictionary, these operator spectrum can be identified to the spectrum of AdS
fields in the dual theory. Hence, the partition function for single trace operators computed above can
be simply interpreted as the partition function of the dual AdS theory. Then, the CIRZ formalism
presented in Section 3 can be readily applied to computing the one-loop vacuum energy. Analogously,
the methods of Section 2 can be used to compute the Casimir energy of such AdS theories. We now
turn to these computations.

A natural starting point is to evaluate the one-loop vacuum and Casimir energies of the AdS
fields dual to the single trace operators made by n boundary fields. The corresponding partition
functions are given by χCycn

(43), χDih+
n

(52), χDih−n
(55), χBfn (59), χBvn (63) and χSymn

(65). The set of
AdS fields dual to the single trace operators appearing in each tensor product above will be referred to
as comprising the (n− 1)th order Regge trajectory, following [37,38,40].

In order to obtain the full vacuum energy we need analytic expressions for the vacuum energy
of the fields in a given Regge trajectory. As we shall show shortly, this is not available except for the
N = 4 theory. However, it is still possible to calculate these quantities for n’s large enough to observe
a certain pattern. Either from the pattern or from the analytic expression in the N = 4 case, we can see
that the one-loop vacuum and Casimir energies seem to diverge with increasing n.

Given this, we need an alternative prescription to sum over fields and one-loop energies to cure
this divergence. For intution, let us consider the corresponding computations for the higher-spin
theories dual to vector models [23–25,28]. In that case, divergence in the total energy can be traced
back to the fact that contributions from individual fields are computed first and summed over second.
Indeed, our computations of [37,38] reviewed in Appendix C show that this divergence is cured by
summing over states first, by computing the thermal partition function, and evaluating the vacuum
energy second. Hence it is natural to attempt to cure the divergence arising in matrix model CFTs
by applying the CIRZ technique directly to the full partition functions—χCyc (44), χDih± (57), χBf (60),
χBv (64) and χSym (67). We shall also carry out these computations here.

The rest of the section is organized as follows. Section 5.1 contains the computation of one-loop
vacuum and casimir energies for the bulk duals of the free Sp(N) and SO(N) scalar matrix models as
well as the free Yang Mills theories. Next, in Section 5.2 we turn to the corresponding computations for
the bulk dual of N = 4 super Yang-Mills. Finally in Section 5.3 we study the bulk duals of CFTs with
bifundamental matter, in particular, scalars and Majorana fermions.

Finally, some reminders of notation. In what follows, the partition function of the boundary scalar,
spin- 1

2 , and spin-1 fields is respectively denoted by χ0, χ 1
2

and χ1, and their explicit forms are given

in (A49), (A50) and (A51). The Casimir energy is denoted as E and the one-loop vacuum energy is
denoted as Γ(1). Often these quantities will have subscripts which indicate which fields or set of fields
they correspond to. For example, E0 is the Casimir energy for a boundary scalar, while Γ(1)

Dih+
n

is the

vacuum energy summed over all fields contained in the cyclic character for Sp(N) at some fixed n.

5.1. Non-Supersymmetric Sp(N) and SO(N) Adjoint Models

5.1.1. Bulk Dual of Free Scalar

At fixed values of n, the Casimir energies EDih±n
and vacuum energy Γ(1)

Dih±n
for the free Sp(N) and

SO(N) adjoint scalar CFTs can be obtained by applying CIRZ methods to (52) and (55), where χV is
taken to be χ0. The results obtained up to n = 32 are exhibited graphically in Figure 3. We make
the following observations at this stage. Firstly, we note that the Sp(N) and SO(N) plots almost
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overlap each other. Secondly, upon normalizing by ϕ(n) E0 or ϕ(n) Γ(1)
0 , the chaotic pattern of the

results in Figure 3 maps to the constant 1
2 with very tiny fluctuations: see Figure 4. This is because

the correction terms in (52) and (55) very quickly decay as n increases. Further, it was also observed
for the SU(N) adjoint model in [37] that when n = 2m for an integer m, then the fluctuations exactly
vanish. This turns out to be no longer true for the dihedral models due to the presence of the correction
terms (52) and (55).
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0 ). (a) Casimir Energy; (b) Vacuum Energy.

In order to obtain the full Casimir or vacuum energy, we need to sum these results over n . In the
N → ∞ limit, the summation is from n = 2 to ∞. Since we do not have an analytic expression for n at
our disposal, we cannot evaluate this sum. However, if the pattern of Figure 4 persists, one can expect
from the pattern that the total results are divergent.

We will now examine if the CIRZ method can again be used to regulate this divergence by
summing over the spectrum first and evaluating the free energy afterwards. It is quickly apparent that
the CIRZ method, when applied to (57), returns a finite value for the Casimir energy for both Sp(N)

and SO(N) models. In particular,

EDih+ =
27
240

, EDih− =
28

240

(
E0 =

1
240

)
, (84)

where we have also presented the Casimir energy of the boundary scalar for comparison. We now
finally turn to the one-loop vacuum energy computation in the N → ∞ case, where we provide a few
more details. Firstly, again from examining (57) we see that it is useful to focus on the correction terms
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χeven and χodd computed in (56). Applying the CIRZ formalism, we see that the one-loop vacuum
energies receive the following contributions

Γ(1)
odd = − 1

180
log R, Γ(1)

even =
101
180

log R. (85)

Using these results, as well as the result [37]

Γ(1)
Cyc = −

1
90

log R. (86)

We see that for the bulk dual of the scalar matrix model

Γ(1)

Dih+ =
11
20

log R , Γ(1)

Dih−
=

101
180

log R
(

Γ(1)
0 =

1
90

log R
)

. (87)

The vacuum energy for the boundary scalar is also presented above for comparison. We postpone
discussions of how to interpret these results to the conclusions.

5.1.2. Bulk Dual of Free Yang Mills

In contrast to the free scalar case, for free Yang Mills—we take χV = χ1—we see that the one-loop
vacuum and Casimir energies plotted in Figure 5a,b shows a runaway behavior. Further, though
the scale of the graph hides it, the contribution to the vacuum energy flips sign as n is increased.
This may be readily inferred from the fact that for n = 2 the Sp(N) and SO(N) partition functions (52)
and (55) are equal to the SU(N) partition function, for which the vacuum energy contribution was
computed in [38] and found to be + 62

45 log R, and the fact that for larger values of n the vacuum energy
contribution takes negative values.
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Figure 5. Plots of the Casimir energy and the one-loop vacuum energy of the bulk dual of free
Yang-Mills theory in SO(N) and Sp(N) adjoint representation up to n = 32. (a) Casimir Energy for
free Yang-Mills; (b) Vacuum Energy for free Yang-Mills; (c) Log plot of the Casimir Energy; (d) Log
plot of the Vacuum Energy.
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Hence, even in the Yang Mills case the one-loop free energies do not appear to converge as we
increase the value of n. It is therefore again natural to regulate the result by directly using the character
of the full partition function (57). In this way we obtain the total Casimir energy as

EDih+ =
1377
120

, EDih− =
1388
120

(
E1 =

11
120

)
. (88)

While for the total vacuum energy we find

Γ(1)

Dih+ =
791
10

log R , Γ(1)

Dih−
=

7181
90

log R
(

Γ(1)
1 =

31
45

log R
)

. (89)

5.2. Bulk Dual of Free N = 4 SYM

We now turn to the maximally supersymmetric case of the AdS5 dual of free planar N = 4 super
Yang-Mills with gauge group SO(N) or Sp(N). The partition function to use is ZV = χ1 − 4 χ 1

2
+ 6 χ0,

as in the SU(N) case studied in [40] we again find that the computation can be analytically carried out
for arbitrary values of n, in contrast to the non-supersymmetric cases studied above.

We remind the reader here that the result for the one-loop vacuum and Casimir energies from the
n-th order Regge Trajectory in the SU(N) (i.e. cyclic) case was given by

Γ(1)
Cycn

= n log R, ECycn
=

3
16

n . (90)

The partition function for the n-th order Regge Trajectories in the Sp(N) and SO(N) adjoint
models is given in (52) and (55) respectively. We focus on the correction term in both expressions.
The contributions to the one-loop free energies from these terms readily be evaluated and
summarized as

Γ(1)

Dih±n
− 1

2
Γ(1)

Cycn
= log R

±
n
2 [n odd]

n
2 [n even]

, EDih±n
− 1

2
ECycn

=

±
3 n
32 [n odd]

3 n
32 [n even]

. (91)

Combining with the cyclic result, we obtain the one-loop free energies for the n-th order Regge
Trajectory in Sp(N) as

Γ(1)

Dih+
n
= n log R , EDih+

n
=

3 n
16

, (92)

while for SO(N) they are given by

Γ(1)

Dih−n
=

0 [n odd]

n log R [n even]
, EDih−n

=

0 [n odd]

3 n
16 [n even]

. (93)

The total one-loop free energies are given formally as

Γ(1)

Dih+ = log R
∞

∑
n=2

n , EDih+ =
3
16

∞

∑
n=2

n ,

Γ(1)

Dih−
= 2 log R

∞

∑
p=1

p , EDih− =
3
8

∞

∑
p=1

p , (94)

where for the SO(N) case we used n = 2p . The above involve clearly divergent sum ∑∞
p=1 p , which has

been regularized to zero in [27]. Hence, if we use the same regularization scheme, we would obtain

Γ(1)

Dih+ = − log R , Γ(1)

Dih−
= 0 , EDih+ = − 3

16
, EDih− = 0 . (95)



Universe 2017, 3, 77 20 of 35

We can rederive the same result applying the CIRZ directly to the full partition functions χDih± (57).
However, we see that at β = 0, the N = 4 singleton partition function ZV equals 1. As a result,
the geometric series in (56) are divergent at that point. To avoid this, we introduce a factor rn−2 in summing
χDih±n

from n = 2 to ∞ . With the regulator r, we find that the correction terms (56) give

Γ(1)
even = 1

2 q(r) log R , Γ(1)
odd =

1
2
(q(r)− 1) log R , (96)

Eeven = 3
32 q(r) , Eodd =

3
32

(q(r)− 1) , (97)

with
q(r) =

r + 1
(r− 1)2 . (98)

This immediately yields (95) in the SO(N) case as the function q(r) simply cancels out. In the
Sp(N) case, this function survives and becomes singular in the r→ 1 limit. By adopting the scheme
‘q(1) = 0’ we can again recover (95) . We would however like to emphasize that the result obtained
by naively using (56) as the partition functions for N = 4 is finite and different from the above.
In particular, for the Sp(N) matrix model the Casimir and vacuum energies are − 371

1152 and − 1049
648 log R

respectively, while for the SO(N) matrix model they are − 3
128 and − 1

8 log R.

5.3. U(N)×U(M) Bi-Fundamental and O(N)×O(M) Bi-Vector Models

We now turn to a computation of the one-loop vacuum and Casimir energies for the bulk duals of
the free U(N)×U(M) bi-fundamental model, and next, the O(N)×O(M) bi-vector model. We will
consider the cases where the fundamental field is either a scalar (χV = χ0) or a Majorana fermion
(ZV = −χ 1

2
).

For the case of the U(N)×U(M) bi-fundamental model, it turns out that the one-loop vacuum
and Casimir energies are almost trivially zero. This is because both χ0(g) and χ 1

2
(g) are odd in β, and

hence χ0(gk)2 and χ 1
2
(gk)2 are even in β. Hence the functions fH|0, fH|1 and fH|2 are also even in β and

therefore possess no odd powers of β in the small β expansion. Hence the one-loop vacuum energy for
the corresponding AdS theories are trivially zero. By a similar reasoning, the one-loop Casimir energy
also vanishes.

Let us turn to the computation of the vacuum and Casimir energies for O(N)×O(M) bivector
model. Working first at fixed values of n (here 2n is the number of fields in single trace operators), we
observe that as n grows, the absolute value of the one-loop free energies EBvn and Γ(1)

Bvn
rapidly decay

for both scalar and fermion cases. To understand better this decaying behavior, we depict the log-plots
of the Casimir and vacuum energies for scalar and fermion bi-vector models in n at Figure 6: the linear
behavior implies that the one-loop free energies exponentially decay to zero in n, for both scalar and
fermion cases.

When N, M→ ∞, the full one-loop free energies are the sum of all these results from n = 1 to ∞.
But, due to the absence of analytic expressions, we cannot evaluate this sum. Instead, we can again
apply the CIRZ method directly to the full partition functions (64). In the end, we find that the one-loop
free energies of the bulk duals of O(N)×O(M) bivector model are simply zero:

EBv = 0 , Γ(1)
Bv = 0 , (99)

both for the scalar and fermion cases. As a final comment, we note that if only N → ∞ while M is kept
finite, the single trace operators can involve only finite number of fields in a trace, hence possible value
of n is bounded above. An extreme case is the vector model with M = 1 where the only allowed value
of n is 2 (remind that 2n is the number of fields in a trace). Therefore, for finite M, the bulk dual theory
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will involve only finite number of Regge trajectories and the full one-loop free energies will be a finite
sum of EBvn and Γ(1)

Bvn
.
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Figure 6. The vacuum energy of the scalar bivector model (lower left) and fermion bivector model
(lower right); and the Casimir energy of the scalar bivector model (upper left) and fermion bivector
model (upper right).

5.4. Symmetric Group

Let us consider a toy AdS/CFT model based on free scalar with symmetric group, even though it
does not fit well in the standard picture on holography in many respects. Putting the interpretation
issues aside, let us simply provide the result of Casimir energy computations. Using the partition
functions (65), we calculate first 32 Casimir energies ESymn

and plot the result in Figure 7. We find the
Casimir energy has an oscillating behaviour with exponentially growing oscillation amplitude.
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Figure 7. Casimir energies for the first 32 results. (a) ESymn
; (b) f (ESymn

) with f (x) = sign(x) log |x|.

6. Summary and Concluding Remarks

In this paper we have computed the one-loop free energies for the holographic duals of a number
of free CFTs. These results are summarized in Table 1.
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Table 1. Summary of one-loop free energies computed for bulk duals of free matrix conformal field
theories (CFTs) in the N → ∞ limit. Γ(1) is in unit of log R. The fermion is Majorana.

Boundary CFT Symmetry Group Casimir Energy E Vacuum Energy Γ(1)

Adjoint Scalar Sp(N) 27
240

11
20

SO(N) 28
240

101
180

Yang Mills Sp(N) 1377
120

791
10

SO(N) 1388
120

7181
90

N = 4 SYM Sp(N) − 3
16 −1

SO(N) 0 0

Bi-fundamental Scalar U(N)×U(M) 0 0
Bi-vector Fermion U(N)×U(M) 0 0

Bi-vector Scalar O(N)×O(M) 0 0
Bi-vector Fermion O(N)×O(M) 0 0

We now briefly discuss the physical interpretation of these results in terms of matching the free
energies across the bulk and the boundary theories. For definiteness, we will focus on vacuum energy
in the scalar SO(N) adjoint model, though the discussion readily generalizes to the other dualities
discussed above. The CFT free energy on S4 has a logarithmic divergence corresponding to the a
anomaly, and is given by

FCFT =
N (N − 1)

2
1

90
log Λ , (100)

while the AdS free energy takes the form

FAdS =

(
g−1L0 +

101
180

+O(g)
)

log R , (101)

where g is the bulk coupling constant. Then by matching the free energies and using the correspondence
between log Λ and log R we see that

g−1 =
N (N − 1)

2
− 101

2
, L0 =

1
90

. (102)

Hence, in contrast to the SU(N) case, the one-loop shift in the definition of the coupling constant
is by a half-integer, and not an integer. Further, if we apply a similar process to interpret the Casimir
energy, we obtain

g−1 =
N (N − 1)

2
+ 28. (103)

Note that this shift is different from that obtained for global AdS5 with S4 boundary in (102).
This is an interesting counterpoint to the situation for higher-spin CFT dualities as well as SU(N)

matrix CFT dualities the shift was the same in both backgrounds and was always by an integer amount.
It would be interesting to have a better understanding of (102) and (103). While it is true that quantum
effects are sensitive to topologies, it is puzzling that the AdS/CFT dictionary itself can get altered in a
background dependent way. The results (102) and (103) might be indicating that putative AdS/CFT
dualities involving the free SO(N) and Sp(N) adjoint scalar model and free Yang Mills hold only in
the planar limit. It might also be possible that higher loop corrections can alter this discussion.

In this regard the situation for N = 4 super Yang Mills is perhaps more satisfactory, once an
appropriate regularization is adopted. In the Sp(N) case we find the shift

g−1 =
N(N + 1)

2
− 1 =

(N − 1)(N + 2)
2

. (104)
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While for the SO(N) case it does not shift at all from the tree-level identification

g−1 =
N(N − 1)

2
. (105)

An additional curiosity regarding the dihedral matrix models is that for all the matter content that we
have examined, be it the scalar, spin-1 or N = 4 supersymmetric, the following relations hold:

EDih− = EDih+ + Esingleton, Γ(1)
Dih−

= Γ(1)
Dih+ + Γ(1)

singleton. (106)

Or in other words, the contribution of χodd(V) to the one-loop free energies is equal to −1/2 times
the contribution of χV .

We finally turn to a summary of possible ambiguities in the application of the CIRZ method that
we have so far only briefly discussed. These have to do with the presence of additional poles in the
CIRZ integrands fH|n and the partition function Z in the complex-β plane when we work with the full
partition function. Firstly, we note that due to the presence of terms of the form

log
[
1− χV

(
gk
)]

, and log
[

1− χV

(
gk
)2
]

(107)

the partition functions (57), (60) and (64) contain branch points in β, one of which lies on the positive
real axis5.

Since the reduction of the contours in (5) and (31) to small loops around β = 0 relies on the
integrands having no additional singularities in the complex β plane, the contribution of these branch
points to the β integrals may need to be separately accounted for. Next, as for the SU(N) case we also
choose to apply the CIRZ partition function on the partition functions χlog,k defined in (45) at fixed k.
This is again because of the singular points in β contained in (45) at fixed k. In particular, if βc is a
singular point for (45) at k = 1, then βc

k is a singular point of χCyc in (57) at arbitrary integer values
of k. Similar remarks apply to the singular points of (60) and (64). These singularities would tend to
cluster around β = 0, making the partition function highly non-analytic in that neighbourhood.

In addition, the presence of this pole in the complex β plane also introduces an additional
ambiguity which we have so far not discussed in much detail. In particular, the summation of the
geometric series carried out to evaluate (56) and (64) assumes that the absolute value of the character
χV (g) is less than 1. If the absolute value is greater than 1, the summed expression may be used as an
analytic continuation of the divergent geometric series. However, this breaks down when |χV (g) | is
equal to 1, and the resulting expressions for the partition functions (56) such as diverge. This is what
happens for the character of the N = 4 Maxwell multiplet at β = 0, and the role of the regulation with
r that we carried out above is essentially to discard the contribution of this singularity to the contour
integrals (5) and (31). Since the characters χ0(g) and χ1(g) become 1 at some positive real β, and not
at β = 0 we have implicitly carried out this prescription for the scalar matrix models and for free Yang
Mills. The inclusion of this additional pole leads to contributions to the free energy which are not
rational numbers.
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Appendix A. Harmonic Analysis on Spheres, Hyperboloids, and Their Quotients

In this section we will review some essential facts about the spectrum of the Laplacian
� = −gµν∇µ∇ν on Anti-de Sitter space, focusing mostly on Euclidean AdS5 and more generally

AdS2n+1. The extension to even dimensional subspaces has some subtleties which we mention below.
Our starting point is the observation that Euclidean AdS5 is the symmetric space SO(5, 1)/SO(5).
From this it follows, see [18,48] for a review of these facts, that the spectrum of the Laplacian over
arbitrary spin fields is determined in terms of the representation theory of SO(5, 1) and SO(5). Further,
since the results are more generally valid for all homogeneous spaces, we shall present the results for
the general case, giving concrete examples along the way.

Firstly, given Lie groups G and H ⊂ G, we define the coset space G/H to be the set of equivalence
classes of elements in G obtained by the right action of the subgroup H, i.e.,

g1 ≡ g2 if ∃ h ∈ H s.t. g1 = g2 · h. (A1)

The set of all g equivalent to an element go under this relation is denoted by go H. Now G is the
principle bundle over G/H with fibre isomorphic to H, and we can define the projection map from the
bundle to the base space

π : G → G/H, π (g) = gH, ∀ g ∈ G. (A2)

Further we can also define a section σ (x), x ∈ G/H, through

σ : G/H → G, σ (x) ∈ xH, (A3)

i.e., σ (x) is an element of the coset which contains x. Clearly, there is no canonical choice of section,
and all sections are equivalent to each other upto right multiplication by H. Therefore, given two
sections σ1 and σ2, at every xo ∈ G/H, there exists an h ∈ H such that σ1 (xo) = σ2 (xo) h. Then in this
case the spin of a given field is fixed by specifying a UIR S of H. Secondly, given a UIR S of H, let us
choose the set of all UIRs R of G that contain S. With these inputs, the eigenvalues of the Laplacian for
a spin-S field are given by

E(S)
R = − 1

a2 (C2 (R)− C2 (S)) , (A4)

where a is the AdS radius. The corresponding eigenfunctions are given by

ψI
a (x) =

1

N(s)
R

[
UR
(

σ (x)−1
)]I

a
. (A5)

Here I is an index for the vector space carrying the representation R and a is an index for the vector
space carrying the representation S. N(s)

R is a normalization constant, which we shall fix subsequently.
Notice that eigenfuctions carrying different values of I for the same R are necessarily degenerate.
Hence the degeneracy of the eigenvalue E(S)

R is at least 6 dR. With these inputs, we may write the zeta
function for the operator −�+ ν2 over a spin-S field on the space G/H as

6 The actual degeneracy can in principle be more as many representations R can carry the same quadratic Casimir C2(R). We
neglect this possibility below as it does not affect the subsequent analysis.
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ζν,S (z) = ∑
R

∑
I

∑
a

1(
E(s)

R + ν2
)z

∫
G/H

√
g ddx

[
ψI

a (x)
]∗
· ψI

a (x) . (A6)

Here the sum over a is the dot product over local spin indices and the sum over I is the sum
over degenerate eigenvalues while the sum over R is the sum over non-degenerate eigenvalues. Now,
using (A5), we have

∑
I

[
ψI

b (x)
]∗
· ψI

a (x) = 1
|N(s)

R |2
δb

a , (A7)

which is independent of the point x on the coset space7. Further, using the definition of degeneracy∫
ddx
√

g ∑
I,a

[
ψI

a (x)
]∗
· ψI

a (x) = dR, (A8)

we must have
1

|N(s)
R |2

=
dR
ds

1
VG/H

. (A9)

The zeta function (A6) is therefore perfectly consistent with the original definition

ζν,S (z) = ∑
R

dR(
E(s)

R + ν2
)z . (A10)

It should be immediately apparent, however, that the above procedure is at first sight ill-defined
for the case of hyperboloids like AdS5. In this specific example G is SO(5, 1), and its unitary
representations are necessarily infinite dimensional. Further, the volume VG/H is infinite. For this
reason, a slight modification of the above computation is adopted. We note from (A7) that the quantity
∑I
[
ψI

b (x)
]∗ · ψI

a (x) is independent of the point x. As a result, it is possible to define the coincident
zeta function

ζcoin
ν,S (z) = ∑

R
∑

I
∑
a

1(
E(s)

R + ν2
)z

[
ψI

a (x)
]∗
· ψI

a (x) , (A11)

such that
ζν,S (z) = VG/H ζcoin

ν,S (z) . (A12)

We shall now recapitulate the evaluation of the coincident zeta function of fields on AdS5 by
means of analytic continuation from S5. For definiteness we shall focus on the Laplace operator
−� but the discussion easily generalized to arbitrary ν. Firstly, we specify the spin S of the field by
the UIR of SO(5) that it carries. This representation is in turn specified by the quantum numbers
S = (s1, s2), where

s1 ≥ s2 ≥ 0. (A13)

To solve for the zeta function on S5, we consider all UIRs R of SO(6) that contain S when restricted
to SO(5). Firstly, UIRs of SO(6) are labelled by the triplet (`, m1, m2) where

` ≥ m1 ≥ |m2|, (A14)

7 While we are working here with compact groups, this statement should hold equally well when we consider AdS5 for which
G = SO(5, 1). This is the group theoretic origin of the Equation (21) which exploited the homogeneity of AdS5 to define the
Plancherel measure.
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and `, m1, m2 are all simultaneously integers or half-integers. The dimension of such a representation
R is given by

dR =
(`+ 2)2 − (m1 + 1)2

3
(`+ 2)2 −m2

2
4

(m1 + 1)2 −m2
2

1
. (A15)

This representation R contains S provided

` ≥ s1 ≥ m1 ≥ s2 ≥ |m2|. (A16)

We shall, however, consider the case that the given field satisfies irreducibility conditions, such as
transversality and tracelessness, where some of the inequalities in (A16) saturate to yield

` ≥ s1 = m1 ≥ s2 = |m2|. (A17)

Further, the eigenvalue of the Laplacian is determined from (A4) to be

E(s1,s2)
` = (`+ 2)2 − (s1 + s2)− 4, (A18)

and as a result, the coincident zeta function on a five-sphere of unit radius is given by

ζcoin
(s1,s2)

= 1
12 VS5 ∑

`≥s1

[
(`+ 2)2 − (s1 + 1)2

] [
(`+ 2)2 − s2

2

] [
(s1 + 1)2 − s2

2

]
(
(`+ 2)2 − (s1 + s2)− 4

)z . (A19)

Next, we move to the case of AdS5 where to carry out the above procedure we need to enumerate
all UIRs of SO(5, 1) which contain S when restricted to SO(5). UIRs of SO(5, 1) are labelled by the
triplet R = (iλ, m1, m2), where λ ∈ R+ and m1 ≥ |m2| ≥ 0 and contain S provided that

s1 ≥ m1 ≥ s2 ≥ |m2|. (A20)

Further, we shall apply the same irreducibility conditions on the field as we did on S5 to saturate
some inequalities in (A20). In particular, we take m1 = s1 and |m2| = s2. It was explicitly demonstrated
in [18–21,42] that for a wide class of fields, the coincident zeta function in AdS5 may be computed
from the corresponding S5 answer by means of the following analytic continutation

`+ 2 7→ iλ, λ ∈ R+. (A21)

As a result the coincident zeta function on AdS5 is given by

ζcoin
(s1,s2)

= 1
12 VS5

∫ ∞

0
dλ

[
λ2 + (s1 + 1)2

] [
λ2 + s2

2
] [

(s1 + 1)2 − s2
2

]
(λ2 + (s1 + s2) + 4)z . (A22)

We now provide an explicit example of computing the coincident zeta function on AdS5 for a
scalar field without using the analytic continuation proposed above. Also, as the analytic continuation
as presented above seems somewhat abstract, we shall use this example as an explicit setting to
demonstrate how this continuation works in practice.

Appendix A.1. The Scalar on AdS5 and S5

We begin with noting that the metric on SN of unit radius in spherical polar coordinates

ds2
SN = dχ2 + sin2 χ ds2

SN−1 (A23)

is related to the metric on the corresponding hyperbolic space AdSN or HN
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ds2
HN = dy2 + sinh2 y ds2

SN−1 (A24)

via χ = iy. The Laplace eigenvalue equation for scalar fields on SN is given by

� ϕ = ` (`+ N − 1) ϕ, (A25)

and its solutions are given in terms of hypergeometric functions as

ϕ`mσ = (sin χ)m
2F1

(
`+ m + N − 1, m− `, m + N

2 ; sin2 χ
2

)
Ymσ. (A26)

The hypergeometric function of the second kind is ruled out by requiring smoothness at χ = 0
while requiring the eigenfunctions to be smooth at χ = π restricts m = 0, 1, . . . , `. The Ymσ solve
the Laplace equation on SN−1 with eigenvalue m (m + N − 2). Then the eigenfunctions of the scalar
Laplace equation on HN

� ϕ =
(

λ2 + ρ2
)

ϕ, ρ = N−1
2 , (A27)

are obtained by making the replacements χ = iy and `+ ρ = iλ in (A26). We therefore have

ϕλmσ = Nλm (i sinh y)m
2F1

(
iλ + ρ`+ m,−iλ + m + ρ, m + N

2 ;− sinh2 y
2

)
Ymσ, (A28)

where Nλm is an overall constant. Notice that these are purely local solutions on which the only
boundary condition that has been imposed is regularity at y = 0. Next, demanding that the
eigenfunctions be square integrable and a complete set fixes λ to be real and positive, while demanding
that they be Dirac delta normalized fixes

Nλm =

(
2N−2

π

)1/2 ∣∣∣∣√πΓ (iλ + (N− 1)/2+ m)

2N+m−2Γ (iλ) Γ (m + N/2)

∣∣∣∣ . (A29)

Note that ` 7→ iλ− ρ for N = 5 is precisely the analytic continuation used above from AdS5 to S5.
The coincident zeta function is therefore given by

ζcoin (z) =
∫ ∞

0
dλ ∑

m σ

ϕ∗λmσϕλmσ

(λ2 + ρ2)
z . (A30)

We choose to evaluate this quantity at y = 0 where the eigenfunction ϕλmσ vanishes unless
m = 0. Further, Ymσ for m = 0 is just the constant mode on SN−1, given by |VSN−1 |−1/2 for reasons of
normalization, and the sum over σ is also then trivial. We finally obtain

∑
m σ

ϕ∗λmσϕλmσ =
1

2N−2

∣∣∣∣Γ (iλ + (N− 1)/2)
Γ (iλ) Γ (N/2)

∣∣∣∣2 ∣∣∣∣Γ(N/2)
2πN/2

∣∣∣∣ . (A31)

For the case of N = 5 we obtain

∑
m σ

ϕ∗λmσϕλmσ =
1

12π3 λ2
(

λ2 + 1
)

. (A32)

Hence the coincident zeta function for scalar fields on AdS5 is given by

ζcoin (z) =
1

12π3

∫ ∞

0
dλ

λ2 (λ2 + 1
)

(λ2 + 4)z . (A33)

This matches perfectly with (A22) which was obtained by analytic continuation if we set s1 = 0
and s2 = 0 there.
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Appendix A.2. Zeta Functions of AdS5 Fields

To evaluate the partition function of the bulk theory to one-loop order it is sufficient to consider
the quadratic action for the fields about AdS5. For the case of massless symmetric rank-s fields, this is
given by the Fronsdal action

S
[
φ(s)

]
=
∫

dDx
√

gφµ1...µs

(
F̂µ1,...,µs −

1
2

g(µ1µ2
F̂µ3...µs)λ

λ

)
, (A34)

where

F̂µ1...µs = Fµ1...µs −
s2 + (D− 6) s− 2 (D− 3)

`2 φµ1...µs −
2
`2 g(µ1µ2

φµ3...µs)λ
λ, (A35)

and
Fµ1...µs = ∆φµ1...µs −∇(µ1

∇λφµ2...µs)λ +
1
2
∇(µ1
∇µ2φµ3...µs)λ

λ. (A36)

The expressions are true for AdSD though we shall explicitly consider the case of D = 5 only.
It may be shown that this action is invariant under the gauge transformation

φµ1...µs 7→ φµ1...µs +∇(µ1
ξµ2...µs). (A37)

For a consistent description, it turns out that the fields φ necessarily satisfy a double-tracelessness
constraint φµ1...µs−4νρ

νρ = 0 for s ≥ 4 and ξ satisfies a tracelessness constraint ξµ1...µs−3ν
ν = 0. It is then

straightforward to evaluate the functional integral

Z(s) =
1

Vol(gauge group)

∫ [
Dφ(s)

]
e−S[φ(s)], (A38)

to obtain the partition function as a ratio of one loop determinants evaluated over symmetric transverse
traceless (STT) fields

Z(s) =

[
det
(
−�− (s−1)(3−D−s)

`2

)
(s−1)

] 1
2

[
det
(
−�+ s2+(D−6)s−2(D−3)

`2

)
(s)

] 1
2

. (A39)

The subscripts indicate that the numerator is evaluated over rank s − 1 STT fields and the
denominator is evaluated over rank s STT fields. The numerator is the ghost determinant that arises
from gauge fixing the freedom (A37). These determinants may be evaluated over quotients of AdS
space using the techniques of [49]. In the specific case of AdS5 where we turn on a temperature β

as well as chemical potentials α1 and α2 for the SO(4) Cartans, we find that the partition function is
given by

logZ(s) =
∞

∑
m=1

1
m

e−mβ(s+2)

|1− e−m(β−iφ1)|2|1− e−m(β−iφ2)|2
[
χ

SO(4)
(s,0) − χ

SO(4)
(s−1,0)e

−mβ
]

, (A40)

and φ1 = α1 + α2, φ2 = α1− α2. The reader will recognize this as the partition function Tr
(

e−β H−αi Ji
)

computed in the grand canonical ensemble for the conformal primary with highest weights
(
s + 2, s

2 , s
2
)
.

It was observed in [50] that it is possible to formally invert this procedure, i.e., given a character of the
conformal algebra, one may infer the spectrum of the corresponding kinetic operator which gives rise
to the corresponding grand canonical partition function.

Appendix B. Unitary Irreducible Representations of the so(2, 4) Algebra

Fields in AdS5 carry quantum numbers under so(2, 4), the isometry algebra of AdS5, and fall into
its Unitary Irreducible Representations (UIRs). A necessary condition for any AdS/CFT duality is
that for every field in AdS5, there is a ‘dual’ operator in the CFT4 carrying the same so(2, 4) quantum
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numbers as the AdS5 field. We therefore review very briefly the set of UIRs of so(2, 4). These have
been extensively explored in [51,52] and particularly accessible accounts are available in [35,53].

The starting point is the Verma module V(∆, (`1, `2)) of so(2, 4) . The numbers ∆ and (`1, `2) label
the irreps of so(2)⊕ so(4) subalgebra carried by the lowest weight state of the module. Since so(4) '
su(2)⊕ su(2), we shall also use the su(2)⊕ su(2) label [j+, j−]. The two labels are simply related by
j± = (`1 ± `2)/2 . The Verma module V(∆, (`1, `2)) is unitary and irreducible when ∆ is greater than
the critical dimension ∆`1,`2 , which will be introduced shortly in below.

• The UIR belonging to the interior the unitary region of ∆ is referred as to long representations.
They can be realized as higher-spin operators in CFT4 or as massive higher-spin fields in AdS5 with
the mass-squared given by M2 = [∆(∆− 4)− `1− `2]/L2 (L is the radius of AdS5) [54–56].

In the critical cases lying on the boundary of the unitary region, the Verma module develops an
invariant subspace and an UIR can be obtained by quotienting the Verma module with the invariant
subspace. These ‘critical’ representations are again divided into two groups, semi-short and short,
depending on (`1, `2) .

• The semi-short UIR appears when `1 6= ±`2 and ∆ reaches its critical value ∆`1,`2 = `1 + 2 , and the
UIR is given by the quotient,

D(`1 + 2, (`1,±`2)) = V(`1 + 2, (`1,±`2))/V(`1 + 3, (`1− 1,±`2)) . (A41)

The semi-short representations can be realized as conserved current operator in CFT4 or massless
(mixed-symmetry) higher-spin fields in AdS5 .

• The short representation arises when |`2| = `1 and ∆`1,±`1 = `1 + 1 . The invariant subspace of
the Verma module appearing in this case is a semi-short representation, hence again contains an
invariant subspace. Therefore, the UIR is given by a ‘double’ quotient,

D(`+ 1, (`,±`)) = V(`+ 1, (`,±`))/D(`+ 2, (`,±(`− 1))) ,

D(`+ 2, (`,±(`− 1))) = V(`+ 2, (`,±(`− 1)))/V(`+ 3, (`− 1,±(`− 1))) . (A42)

Differently from the long and semi-short representations, the short representations cannot be
realized as a propagating AdS5 field but only as a conformal field operator in CFT4 .

A convenient way to treat the representation spaces, in particular their tensor products and
decompositions, is to use the Lie algebra character. In case of so(2, 4), it is given by the trace,

χR(q, x+, x−) = TrR
(

qD x+ J+ x− J−
)

, (A43)

over a representation spaceR . Here D, J± are the Cartan subalgebra of so(2, 4) and corresponds to the
subalgebra so(2) and su(2)⊕ su(2) . Since all the UIRs are given in term of the Verma module. Their
characters can be also expressed by the Verma module character. It is given by the following simple
function,

χ∆,[j+,j−](q, x+, x−) = q∆ P(q, x+, x−)χj+(x+)χj−(x−) , (A44)

where χj is the character of the spin-j representation of su(2) taking the form,

χj(x) =
xj+ 1

2 − x−j− 1
2

x
1
2 − x−

1
2

, (A45)

and P(q, x+, x−) is given by

P(q, x+, x−) =
1(

1− q x
1
2
+ x

1
2
−

)(
1− q x−

1
2

+ x
1
2
−

)(
1− q x

1
2
+ x−

1
2
−

)(
1− q x−

1
2

+ x−
1
2
−

) . (A46)
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In the case of long representations, its character is simply that of Verma module. About the
semi-short and short representations, the character is given by the difference,

χD(`1+2,(`1,`2))
= χ`1+2,(`1,`2)

− χ`1+3,(`1−1,`2)
, (A47)

χD(`+1,(`,±`)) = χ`+1,(`,±`) − χ`+2,(`+1,±(`−1)) + χ`+3,(`−1,±(`−1)) . (A48)

It is often useful to work with (β, α+, α−) variables which are related to (q, x+, x−) as q = e−β and
x± = ei α± . Interpreting the character as a partition function, the variables β and α± would correspond
to the inverse temperature and two angular chemical potentials.

As a final remark we explicitly evaluate (A48) for the case of the the boundary singletons that we
need. We obtain

χ0(g) = χD(1,(0,0)) =
eβ − e−β

4 (cos α1− cosh β) (cos α2− cosh β)
(A49)

for the scalar,

χ 1
2
(g) = χD( 3

2 ,( 1
2 , 1

2 ))
+ χD( 3

2 ,( 1
2 ,− 1

2 ))
=

(
e

β
2 − e−

β
2

)
cos α1

2 cos α2
2

(cos α1− cosh β) (cos α2− cosh β)
(A50)

for the fermion, and

χ1(g) =
e−2β

(
−2eβ (cos α1 + cos α2) + e2β(2 cos α1 cos α2 + 1) + 1

)
2 (cos α1− cosh β) (cos α2− cosh β)

(A51)

for the spin-1 field. These expressions are useful for the computations in the main text.

Appendix C. Vector Models

Let us first consider the one-loop vacuum energy of the higher spin gravities in AdS5 , which are
dual to free vector model CFTs in four dimensions. In even boundary dimensions, we have more
possibilities of free CFT as there are infinitely many singleton representations. In four boundary
dimensions, they correspond simply to the massless spin j representations. Here, we consider the
j = 0, 1/2 and 1 cases whose AdS duals are referred to as the type A, B and C higher spin theories,
respectively. The other CFTs with j > 1 are rather exotic as they do not have local stress tensor (hence
the dual higher spin theory contains gravity inside). See [39] for the general j cases.

In each of these type A, B, C cases, we have again two different higher spin theories depending
on their spectrum contains only even spin fields or all integer spin fields. And these models are
referred to as minimal or non-minimal and correspond in boundary to O(N) or U(N) free CFT,
respectively. Practically they are distinguished whether the two fields in a bilinear operator are
symmetric. The non-minimal model does not enjoy such symmetry whereas the minimal model does so.
This symmetry of the bilinear CFT operators can be simply reflected at the level of character. The space
of bilinear operators without any symmetry, hence giving the U(N)-model operator spectrum, can be
obtained from

χU(N)(β, α1, α2) =
[
χsing(β, α1, α2)

]2 . (A52)

About the O(N) model, the space of bilinear operators symmetric in two fields can be
obtained from

χO(N)(β, α1, α2) =
1
2

[
χsing(β, α1, α2)

2 + (−1)Fsing χsing (2β, 2α1, 2α2)
]

. (A53)

Here Fsing is the fermion number associated with the singleton representation. Following standard
conventions, it is 0 for bosonic fields, and 1 for fermionic fields. By AdS/CFT dualities, the contents
in (A52) and (A53) correspond to AdS5 fields in non-minimal and minimal theories, respectively.
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With the above inputs, we will now use the techniques reviewed in Section 3 to compute the one-loop
vacuum energy for higher-spin theories in global AdS5 and the one-loop Casimir energy in thermal AdS5.
The singletons for type A, type B and type C dualities have the lowest weights [∆, j+, j−],

A : [1, 0, 0] , B : [ 3
2 , 1

2 , 0]⊕ [ 3
2 , 0, 1

2 ] , C : [2, 1, 0]⊕ [2, 0, 1] , (A54)

respectively, and the corresponding characters can be determined from (A48). We will first focus on
the simpler case of Casimir energies.

Appendix C.1. Casimir Energies

Firstly, we note that though singletons do not represent propagating degrees of freedom, formally
their partition function may be evaluated through a one-loop determinant in AdS5 and the answer
matched with the CFT result. In particular, using the prescription of (10) and Laurent expanding the
characters (−1)Fsing χsing (β, 0, 0) about β = 0 and picking − 1

2 times the O (β) coefficient, we find

Ec;(0) =
1

240
, E

c;(1
2 )

=
17
960

, Ec;(1) =
11
120

, (A55)

where the subscript (s) reminds us that this is the Casimir energy of a spin-s singleton. Next, the Casimir
energies of the corresponding bulk non-minimal and minimal higher-spin theories may be found using
the partition functions (A52) and (A53) respectively. We find that for the non-minimal version of all
three dualities the Casimir energy vanishes [38]

E non-min
c;(A/B/C) = 0. (A56)

In contrast, for the minimal cases [38]

E min
c;(A/B/C) = E

c;(0/ 1
2 /1)

respectively . (A57)

We now review the argument of [25] for interpreting the non-vanishing result as a shift in the
dictionary between the bulk coupling constant g and N. In particular, it turns out that the total Casimir
energy in the boundary theory scales as [25]

FO(N) sing (β) = N β Esing + F̂O(N) sing. (A58)

On the bulk side we find a non-vanishing result at one-loop. The bulk answer therefore has
the structure

ΓA/B/C, min =
1
g

SA/B/C, min + βE min
c;(A/B/C) + F̂A/B/C, min (β) + . . . , (A59)

where SA/B/C, min is the corresponding classical on-shell action. With F̂O(N) sing = F̂A/B/C, min, (A58)
and (A59) are consistent provided

g−1 = N− 1, SA/B/C, min = β E
c;(0/ 1

2 /1)
. (A60)

Appendix C.2. Vacuum Energies

We now turn to the computation of one-loop vacuum energies in global AdS5. The computations are
a bit more invloved in practice but conceptually they are very similar to the Casimir energy computations
presented above. The only difference is that instead of expanding the characters and corresponding
partition functions, we shall first be computing the functions fH|n defined in (28) and Laurent series
expanding those to extract the corresponding γH|ns defined in (32). As in the Casimir energy case,
we have picked the computationally most convenient prescription to work in. We remind the reader
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that all three prescriptions are equivalent for higher-spin partition functions, and emphasize that a priori
this will not be true for bulk duals of matrix CFTs. We also mention that while we are focussed here
on the cases of Higher-Spin/CFT dualities involving singletons carrying spins 0, 1

2 and 1, the results
presented here are valid for more general spin s [39]. For the singleton cases, it is straightforward to
compute the fsing|n and expand in β to extract the coefficients

γ(s)|2 =
15 s4− 1

30
, γ(s)|1 =

6 s4− 3 s2 + 1
18

, γ(s)|0 =
s4− s2

2
. (A61)

Finally, summing these three numbers, we obtain the vacuum energy as

Γ(1) ren
(s) = (−1)2s

(
1− 1

2 δs,0

) 60 s4− 30 s2 + 1
45

log R , (A62)

where (−1)2s arises from the possibly fermionic statistics of the singleton. The reader would recognize,
for the s = 0, 1

2 , 1 instances, the coefficient of the log R term as the conformal anomaly of the spin-s
singleton on S4.

We next turn to the vacuum energy of the non-minimal theory, whose partition function is given
by (A52). Again we may evaluate the fH|n and expand in β to obtain

γnon-min
(s)|2 =

2
105

ns

(
72 s4− 24 s2 + 1

)
, γnon-min

(s)|1 =
4

315
ns

(
60 s4− 27 s2 + 2

)
,

γnon-min
(s)|0 =

8
15

ns (s4− s2) ,
(A63)

where ns =
(2s−1)2s(2s+1)

6 is an integer. The terms in (A63) add to give the full one-loop vacuum energy.
Using (A62), we find that

Γ(1) ren
A/B/C,non-min = 2 n0/ 1

2 /1 Γ(1) ren

(0/ 1
2 /1)

. (A64)

We thus reproduce the results that the one-loop vacuum energy vanishes for type A and B
theories [24] and equals twice that of the singleton for the type C theory [28].

Having thus reproduced the results for the non-minimal dualities, we now turn to the minimal
ones, where the thermal partition function is given by (A53). The contribution to the one-loop vacuum
energy of the first term there has already been evaluated in the minimal case, but for the overall factor
of 1

2 . It turns out that the second term contributes Γ(1) ren
(s) to the vacuum energy [37–39]. We finally obtain

Γ(1) ren
A/B/C,min =

1
2

Γ(1) ren
s,non-min + Γ(1) ren

(s) =
[
(−1)2s ns + 1

]
Γ(1) ren
(s) . (A65)

This reproduces using CIRZ, the results of [24] for the Type A, B dualities and of [28] for the Type
C duality.

We conclude this section with a discussion of the proposal of [23,24] for interpreting the non-zero
one-loop answer derived above for the bulk higher-spin theory. For definiteness, we will work with
a spin-0 field, but the discussion readily generalizes, and we will state the final result for all cases
discussed above. Firstly, the logarithmically divergent part of the free energy for a theory with N scalar
fields defined on S4 is [57,58]

FCFT4 =
N
90

log ΛCFT +O
(

Λ0
CFT

)
. (A66)

Next, the computation of the one-loop vacuum energy above indicates that the bulk free energy
has the expansion

FAdS5 =

(
L0

g
+

1
90

)
log R +O (g) , (A67)
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where L0 log R is the on-shell action of the AdS5 theory. Then equating (A66) with (A67) while using
log ΛCFT ∼ log R and identifying L0 = 1

90 yields [24]

g−1 = N− 1. (A68)

This discussion generalizes for the Type B and Type C cases also. In summary, for the non-minimal
case, we find [24,28]

Type A, B: g−1 = N, Type C: g−1 = N− 1, (A69)

while for the minimal case we find [24,28]

Type A, B: g−1 = N− 1, Type C: g−1 = N− 2. (A70)

The corresponding expressions for spin-s singletons is available in [39].
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