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Abstract: How precisely can we estimate cosmological parameters by performing a quantum
measurement on a cosmological quantum state? In quantum estimation theory, the variance of
an unbiased parameter estimator is bounded from below by the inverse of measurement-dependent
Fisher information and ultimately by quantum Fisher information, which is the maximization of
the former over all positive operator-valued measurements. Such bound is known as the quantum
Cramer –Rao bound. We consider the evolution of a massless scalar field with Bunch–Davies vacuum
in a spatially flat FLRW spacetime, which results in a two-mode squeezed vacuum out-state for
each field wave number mode. We obtain the expressions of the quantum Fisher information as
well as the Fisher informations associated to occupation number measurement and power spectrum
measurement, and show the specific results of their evolution for pure de Sitter expansion and de
Sitter expansion followed by a radiation-dominated phase as examples. We will discuss these results
from the point of view of the quantum-to-classical transition of cosmological perturbations and show
quantitatively how this transition and the residual quantum correlations affect the bound on the precision.
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1. Introduction

Particle creation associated with cosmological expansion is a long-studied topic in the literature [1].
Special attention has been paid to the case of the FLRW metrics used in cosmology [2]—in particular to
the maximally symmetric case of the de Sitter spacetime for its role in modeling the early inflationary
phase of the universe and the dark-energy-dominated expansion at late times. We would like to
consider the evolution of such quantum cosmological states from the point of view of cosmological
parameter estimation. Previous work on parameter estimation in cosmological models has been
carried out for example in [3] for a Milne universe described by an expansion law with flat limit in
the asymptotic past and asymptotic future regions [4]. Nevertheless, while entropic properties of
scalar and spinor fields in FLRW metric have been considered in works such as [5,6], an analysis
of information about the parameters of the cosmological information is still missing. Furthermore,
while the effect of the quantum-to-classical transition of cosmological perturbations has been widely
discussed [7–10], its effect on the information we can retrieve from them about cosmological parameters
has not yet been considered.

The main focus of the present work is to study the higher bound put on how precisely we are
allowed to estimate a generic cosmological parameter by performing a chosen quantum measurement
on the out-state of a massless scalar Bunch–Davies vacuum in FLRW space-time. In the specific de Sitter
case, we might identify the scalar field with perturbations of the inflaton field. In parameter estimation
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theory, the lower bound for the variance of an unbiased parameter estimator for a given measurement is
provided by the Cramer–Rao bound as the inverse of the Fisher information. In the context of quantum
estimation, quantum Fisher information is defined as the maximization of the Fisher information over
all choices of quantum measurements. We obtain and discuss the expressions of the quantum Fisher
information and the Fisher informations for the occupation number measurement and the power
spectrum measurement, with special emphasis on the behavior in the pure de Sitter expansion and
de Sitter phase followed by a radiation-dominated phase for the estimation of the Hubble parameter.
Furthermore, we will provide some considerations on how the results can be considered from the
point of view of how the quantum-to-classical transition of the inflaton field perturbations affects the
estimation precision.

The paper is structured as follows. In Section 2, we quickly review the solution of the equation
of motion for a massless scalar field in de Sitter space with Bunch–Davies vacuum and introduce the
Wigner function description of the resulting two-mode squeezed vacua. In Section 3, we remind the
reader of the definition of Fisher information in classical and quantum estimation theory [11], and we
provide its evaluation for the measurement of the occupation number and the field mode amplitude
of the scalar field, together with its maximization over all quantum measurements. In Section 4
we show the specific results for the Hubble parameter estimation in the pure de Sitter case and for
the case of de Sitter expansion followed by a radiation-dominated phase, which show significant
differences. Finally, in Section 5, we address the relation of the results for the Fisher information with
the quantum-to-classical transition of cosmological perturbations, providing final observations and
conclusions in Section 6.

2. Massless Scalar Field in an Expanding Universe

Consider a massless minimally coupled scalar field φ in a spatially flat FLRW universe of metric

ds2 = −dt2 + a2 dx2 = a2(−dη2 + dx2), (1)

with the scale factor a and the conformal time dη = a−1(t) dt. The Lagrangian for this field, rescaled as
ϕ = a φ, is given by

L =
∫

d3x
1
2

[(
ϕ′ − a′

a
ϕ

)2

− (∂i ϕ)
2

]
, (2)

where ′ = ∂/∂η. This Lagrangian leads to equations of motion of the form

ϕ′′ −
(

∂2
i +

a′′

a

)
ϕ = 0. (3)

We introduce the Fourier mode of the field and its conjugate momentum as

ϕ(η, x) =
∫ d3k

(2π)3/2 ϕk(η) eik·x, p(η, x) =
∫ d3k

(2π)3/2 pk(η) eik·x, (4)

where pk = ϕ′∗k − (a′/a)ϕ∗k. Following the usual quantization procedure, we express the field
mode and conjugate momentum in terms of the time-dependent creation and annihilation operators
ĉk(η)

† and ĉk(η)

ϕ̂k =
1√
2k

(
ĉk + ĉ†

−k

)
, p̂k = −i

√
k
2

(
ĉk − ĉ†

−k

)
, (5)

so that we can express the Hamiltonian as

Ĥ =
∫
R3+

d3k
[

k
(

ĉk
† ĉk + ĉ−k

† ĉ−k + 1
)
+ i

a′

a
(ĉ†

k ĉ†
−k − ĉk ĉ−k)

]
, (6)
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where in order to treat k and −k modes as independent variables, integral over k is performed in half
the Fourier space, k ∈ R3+. The Heisenberg equations of motion for the operators ĉk and ĉk

† for the
±k modes are

ĉk
′ = i

[
Ĥ, ĉk

]
= −ik ĉk +

a′

a
ĉ†
−k (7)

ĉ†
−k
′ = i

[
Ĥ, ĉ−k

†
]
= ik ĉ†

−k +
a′

a
ĉk, (8)

where k = |k|. In the Heisenberg formalism, the relation between operators at a given conformal time
η0 and at a later time η > η0 is given by the Bogoliubov transformation(

ĉk(η)

ĉ†−k(η)

)
=

(
αk(η) βk(η)

β∗k(η) α∗k (η)

)(
ĉk(η0)

ĉ†−k(η0)

)
, (9)

where αk and β∗k are the Bogoliubov coefficients satisfying |αk|2 − |βk|2 = 1 with initial conditions
αk(η0) = 1 and βk(η0) = 0. The time evolution of these coefficients is obtained straightforwardly from (8)

αk
′ = −ik αk +

a′

a
β∗k , βk

′ = −ik βk +
a′

a
α∗k . (10)

We define the vacuum state as the eigenstate of the annihilation operator at time η0

ĉk(η0)|ψ〉 = 0. (11)

Introducing the Schrödinger picture of the state at η, the transformation (9) gives the vacuum condition(
α∗(η)ĉk − β(η)ĉ†

−k

)
|ψ(η)〉 = 0, (12)

the solution of which provides the the out-state

|ψ(η)〉 =
∞⊗

k=0

1
|αk(η)|

∞

∑
n=0

(
βk(η)

α∗k(η)

)n
|nk〉 ⊗ |n−k〉 . (13)

In the following, we will consider only the component for a fixed value of k, as different modes
do not interact with each other in the linear order. For each value of k, components of (13) are
two-mode (±k) squeezed vacuum states, with squeezing parameters rk, θk, φk related to the Bogoliubov
coefficients by

αk = e−iθk cosh rk, βk = ei(θk+2φk) sinh rk , (14)

θk being a free phase. For simplicity of notation, in the following we will omit the index k in
the parameters.

The squeezing magnitude r and phase 2φ follow the evolution equations

r′ =
a′

a
cos 2φ, φ′ = −k− a′

a
coth 2r sin 2φ, θ′ = k +

a′

a
tanh r sin 2φ . (15)

In the basis that diagonalizes {ϕ̂k, ϕ̂−k}, the vacuum condition (12) provides the Gaussian
wave function

ψ(ϕk, ϕ−k) = 〈ϕk, ϕ−k|ψ(η)〉k ∝ exp
[
− γϕkϕ−k

]
, (16)

where γ = β/α∗. In order to deal with real coordinates, in the following we will introduce Hermitian
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field mode variables q̂k and π̂k as

q̂k =
1
2

[
ϕ̂k + ϕ̂−k +

i
k
(p̂k − p̂−k)

]
, (17)

π̂k =
1
2
[p̂k + p̂−k − ik (ϕ̂k − ϕ̂−k)] , (18)

and analogously for the variables in−k. In the basis that diagonalizes {q̂k, q̂−k}, the wave function reads

ψ(qk, q−k) = 〈qk, q−k|ψ(η)〉k ∝ exp
[
− k

4

(
1− γ

1+ γ

)
(qk + q−k)

2− k
4

(
1+ γ

1− γ

)
(qk − q−k)

2
]

. (19)

It is convenient to consider the Wigner function associated to the wave function of the pure state
ψ(qk, q−k) for which explicit calculation gives the Gaussian distribution

W(qk, πk, q−k, πk) ≡
1

π2

∫ ∞

−∞
dx dy e−2i(πk x+π−k y) ψ(qk + x, q−k + y)ψ∗(qk − x, q−k − y)

=
1

π2 exp
(
−1

2
ξTV−1ξ

)
, (20)

where we have defined ξT = {qk, πk, q−k, π−k} and Vij = 〈ξiξ j + ξ jξi〉/2 is the covariance matrix,
which specifies completely the state and can be expressed in the block form as

V =
1
2

cosh(2r)

(
I tanh(2r) (cos(2φ)σ3 + sin(2φ)σ1)

tanh(2r) (cos(2φ)σ3 + sin(2φ)σ1) I

)
, (21)

σ1 and σ3 being Pauli matrices and I the 2× 2 identity matrix.

3. Fisher Information of the Scalar Field

In order to discuss the bound on the estimation precision, we consider the Fisher information.
In the classical case, let P(x; θ) be the probability distribution to obtain a certain measurement result x,
parametrized by a single scalar θ. The Cramer–Rao bound provides a lower bound for the variance of
the estimator θ̂est({x}) of the parameter θ through the single measurement of a variable x

〈(∆θ̂)2〉 ≥ 1
F(θ)

, (22)

where ∆θ̂ = θ̂est({x})− θ and F(θ) is the Fisher information defined by

F(θ) =
∫

X
dx P(x; θ)

(
∂ log P(x; θ)

∂θ

)2

. (23)

For simplicity, we consider a single scalar parameter θ, but the extension to the multiparameter
case is straightforward.

In the context of quantum estimation theory [11], the Fisher information can be expressed in
terms of a positive operator-valued measurement {Π̂x}. For a state ρ̂ parametrized by the quantity
θ, the result of the measurement has probability distribution P(x; θ) = Tr(Π̂x ρ̂) and the Fisher
information is

FΠ̂x
(θ) =

∫
dx

Re
(
Tr[ ρ̂ Π̂x L̂θ]

)2

Tr[ ρ̂ Π̂x]
, (24)

where one makes use of the symmetric logarithmic derivative (SLD) L̂θ , a self-adjoint operator implicitly
defined by

∂ρ̂

∂θ
=

1
2
(
L̂θ ρ̂ + ρ̂L̂θ

)
. (25)
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The Fisher information can be shown to be maximized over all positive operator-valued
measurements {Π̂x} by the quantum Fisher information

FQ(θ) = Tr[ ρ̂ L̂2
θ] = Tr[∂θ ρ̂ L̂θ], (26)

which provides the ultimate quantum Cramer–Rao bound

〈(∆θ̂)2〉 ≥ 1
FΠ̂x

(θ)
≥ 1

FQ(θ)
, (27)

with the equality being satisfied when the measurement {Π̂x} projects over the eigenstates of the SLD
operator. For a pure state ρ̂ = |ψ〉〈ψ|, ρ̂ = ρ̂ ρ̂ and

∂ρ̂

∂θ
=

∂ρ̂

∂θ
ρ̂ + ρ̂

∂ρ̂

∂θ
. (28)

Hence, the SLD operator takes the simple form

L̂θ = 2
∂ρ̂

∂θ
. (29)

Therefore, for the pure state, the quantum Fisher information can be expressed as

FQ = 4
[
〈∂θψ|∂θψ〉 − 〈ψ|∂θψ〉〈∂θψ|ψ〉

]
. (30)

For our purposes, we can restrict ourselves to consider a pure Gaussian state (i.e., a quantum state
with Gaussian Wigner function) whose wave function and Wigner function are given by (19) and (20),
respectively (for a reference on quantum estimation theory using single-mode Gaussian states,
see e.g., [12]). By taking derivative of the Wigner function W with respect to a parameter θ,

∂θW(qk, πk, q−k, π−k)

=
∫ ∞

−∞
dx dy e2i(πk x+π−k y) ∂θ [ψ(qk − x, q−k − y)ψ∗(qk + x, q−k + y)] , (31)

it is possible to show that∫
dqk dq−k dπk dπ−k (∂θW)2 =

1
2π2

[
〈∂θψ|∂θψ〉+ 〈ψ|∂θψ〉2

]
, (32)

and the quantum Fisher information can be expressed in terms of the covariance matrix as

FQ = 8π2
∫

dqk dq−k dπk dπ−k (∂θW)2 =
1
4

Tr
[(

(∂θV)V−1
)2]

. (33)

For the covariance matrix (21), we obtain

FQ = 4(α∗∂θβ− β∂θα∗)(α∂θβ∗ − β∗∂θα) = 4
[
(∂θr)2 + (sinh 2r)2(∂θφ)2

]
. (34)

Let us now consider specific measurements of the scalar field. A first natural choice could be to
evaluate the Fisher information for the projective measurement of the occupation number,

Π̂n = |nk〉〈nk| ⊗ |n−k〉〈n−k|. (35)
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The state after the measurement is

ρ̂cl =
∞

∑
n=0

P(n)|nk〉〈nk| ⊗ |n−k〉〈n−k|, (36)

with measurement outcome probability

P(n) = Tr(Π̂n ρ̂) =
1
|α|2

∣∣∣∣βα
∣∣∣∣2n

. (37)

We found that the Fisher information associated to (37) is simply

Fn(θ) = 4 (∂θ ln |α|) (∂θ ln |β|) = 4(∂θr)2 . (38)

This shows that the number measurement is allowed to access the part of quantum Fisher
information associated to the parameter-dependency of the squeezing magnitude, but not that
associated to the parameter-dependency of the squeezing phase. In other words, the number
measurement allows the highest precision for the estimation of a cosmological parameter as long as
the squeezing phase of the state does not depend on that parameter, which generally does.

To have a better insight into the effect of decoherence on the allowed estimation precision,
which we will discuss in Section 5, let us consider also the measurement of the power spectrum of the
field (i.e., the modulus squared of the amplitude of its modes). For this purpose, we introduce new
variables as

2X1 = qk + q−k, 2X2 = qk − q−k, 2Y1 = πk + π−k, 2Y2 = πk −π−k . (39)

The original field mode ϕk is expressed as

ϕk = X1 +
i
k

Y2, ϕk ϕk
∗ = (X1)

2 +
1
k2 (Y2)

2 . (40)

From the Wigner function (20), by integrating over X2, Y1, the marginal probability distribution
for variables X1, Y2 is obtained

P(X1, Y2) =
2

π(cosh 2r + cos 2φ sinh 2r)
exp

[
−

2(k2X2
1 +Y2

2 )

k(cosh 2r + cos 2φ sinh 2r)

]
. (41)

As the operators associated to X1, Y2 commute, it is possible to measure these variables
simultaneously by homodyne detection for the quadratures X̂1, Ŷ2 (notice that choice of variables
X2, Y1 corresponds to the measurement of conjugate momentum amplitude). The Fisher information
for the probability distribution (41) is

Fϕ(θ) = 4 (∂θ ln |α + β∗|)2 = 4
(

tanh 2r + cos 2φ

1+ cos 2φ tanh 2r
∂θr− sin 2φ tanh 2r

1+ cos 2φ tanh 2r
∂θφ

)2
, (42)

where the contributions from parameter-dependency of the squeeze magnitude and squeeze phase are
now mixed.

Notice that the Fisher information for the power spectrum measurement is related to the strength
of correlations between the +k and −k modes, which are given by the expectation value for the field
mode amplitude

〈ϕk ϕ−k〉 = 〈ϕk ϕk
∗〉 =

∫ ∞

−∞
dX1dY2

(
X2

1 +
Y2

2
k2

)
P(X1, Y2) =

1
2k

(cosh 2r + cos 2φ sinh 2r) (43)
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since ϕ∗k = ϕ−k. By writing explicitly the wave function in the ϕk, ϕk
∗ representation, it is possible to

show that these correlations can be expressed in terms of the Bogoliubov coefficients simply as

〈ϕk ϕ−k〉 =
1
2k
|αk + β∗k |

2 , (44)

and therefore from (42) one has
Fϕ(θ) = (∂θ ln (〈ϕk ϕ−k〉))2 . (45)

The correlations (43) may be compared to the ones associated to the projection of the state on the
number basis

〈ϕk ϕ−k〉cl =
1
2k

cosh(2r) . (46)

In the limit of large squeezing, these correlations are related as

〈ϕkϕ−k〉 ' (1+ cos 2φ)〈ϕkϕ−k〉cl . (47)

The correlations (43) and (46) are related to the Shannon entropy of the respective measurement
distributions as follows. The probability density function of the power spectrum of the field is

P(|ϕk|2) =
1

2〈ϕkϕ−k〉
exp

[
−1

2
|ϕk|2
〈ϕkϕ−k〉

]
, (48)

which has the following Shannon entropy

Sϕ = −
∫ ∞

0
d
(
|ϕk|2

)
P(|ϕk|2) ln

(
P(|ϕk|2)

)
= 1+ ln 2+ ln〈ϕ̂k ϕ̂−k〉 . (49)

This provides us with the simple relation between the Fisher information and the Shannon entropy
for field mode amplitude

Fϕ̂(θ) =
(
∂θSϕ

)2 . (50)

The entropy for the number state projection is

Scl = −
∞

∑
n=0

P(n) log P(n) = |α|2 log |α|2− |β|2 log |β|2

= cosh(r)2 ln cosh(r)2− sinh(r)2 ln sinh(r)2, (51)

which coincides with the entropy of entanglement between +k and −k modes. In the large squeezing
limit, we then have

Scl ' Sϕ ' 2r . (52)

As we will explain in Section 5, the value 2r corresponds to the maximal attainable value of the
entropy via coarse graining of the state with complete randomization. Notice that the result (50) is exact
and directly relates the Fisher information for the power spectrum measurement to the field entropy.

4. Fisher Information in de Sitter Universe

As an example of the results of the previous section, let us consider a pure de Sitter space-time
with conformal factor a(η) = −1/(Hη),−∞ < η < 0. For the Bunch–Davies vacuum, the Bogoliubov
coefficients are

αk =

(
1− i

2kη

)
e−ikη, βk =

i
2kη

eikη . (53)

The squeezing parameters are

rk = − sinh−1
(

1
2kη

)
, φk = −

π

4
− 1

2
tan−1

(
1

2kη

)
. (54)
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Fisher informations are given by

FQ =
e2αH2

k2 G(θ)2, Fϕ = 4
(

e2αH2

e2αH2 + k2

)2

G(θ)2, Fn =
4e2αH2

e2αH2 + 4k2 G(θ)2, (55)

where α = log a is the e-foldings of cosmic expansion and G(θ) = ∂α/∂θ represents the parameter
dependence of the e-foldings. Figure 1 (left panel) shows the evolution of the squeezing parameter
and squeezing phase. When the physical wavelength is smaller than the Hubble horizon a/k < H−1

(i.e., for modes inside the Hubble horizon), the squeezing parameter and phase are constant. After the
horizon exit at α = 0, we have a/k > H−1 and r grows while φ approaches zero.

r

sin(ϕ)

-4 -2 0 2 4
-1

0

1

2

3

4

5

α

FQ

Fφ

Fn

-4 -2 0 2 4

10-6

0.001

1

1000

α

Figure 1. (Left) Evolution of squeezing parameter and squeezing phase for k = 1; (Right) Evolution of
Fisher informations divided by G2 for k = 1.

In the super-horizon scale k/a� H, these Fisher informations behave as

Fϕ ≈ Fn � FQ. (56)

On the other side, in the small scale k/a� H, we have

Fn ≈
(

H
k/a

)2
G(θ)2 = FQ, Fϕ ≈ 4

(
H

k/a

)4
G(θ)2. (57)

Thus, we obtain the relation
Fϕ � Fn ≈ FQ. (58)

As the state is squeezed more and more in the super horizon scale, most of the quantum Fisher
information becomes inaccessible to either of the measurements. As we discussed before, the difference
between FQ and Fn is due to the parameter dependency of the squeezing phase φ. As one may notice
by looking at the covariance matrix (21), obtaining such information requires a measurement that
properly accesses the correlations between the +k and −k modes, represented by the off-diagonal
blocks of the matrix. Notice that for any given k-mode, the squeezing phase φ is related to the quantum
phases of the two modes of the squeezed vacuum in the number representation by 〈φ̂+ + φ̂−〉 = 2φ,
where φ̂± is the operator appearing at exponent in the Pegg–Barnett phase operator, acting on the ±k
modes [13].

Now let us consider a cosmological model with transition from de Sitter expansion to decelerated
expansion (radiation-dominated phase). The scale factor in this case is

a(η) =

{
−1/(Hη) for η ≤ η1 < 0

(η − 2η1)/(Hη2
1) for η > η1

. (59)
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Figure 2 shows the evolution of squeezing parameters and Fisher informations for the k = 1 mode.
The transition from de Sitter expansion to decelerated expansion is at η1 = −1/e3, which corresponds
to α1 = 3.

r

sin(ϕ)

-4 -2 0 2 4 6 8 10

0

2

4

6

α

FQ

Fφ

Fn

-4 -2 0 2 4 6 8 10
10-9

10-5

0.1

1000.0

107

1011

1015

α

Figure 2. (Left) Evolution of squeezing parameters for k = 1; (Right) Evolution of Fisher informations
divided by G2 for k = 1.

During the de Sitter phase, the physical wavelength of this mode exceeds the Hubble horizon
length. After α ≈ 6, the wavelength again becomes smaller than the Hubble horizon length, and after
this time, the squeezing magnitude and phase start to oscillate, as already observed in [14]. After the
reentry of the mode in the Hubble horizon, Fisher informations Fϕ and Fn also oscillate. In particular,
the Fisher information Fϕ reaches the same values as FQ for some values of α. This means that there is
the possibility that the estimation through measurement of the power spectrum can attain the quantum
Cramer–Rao bound. The reason for this is that in the radiation-dominated era, a contour of the Wigner
function becomes an elongated ellipse with fixed hlaxes (since r approaches a constant value) and
rotates in the phase space in such a way that at some point it becomes completely accessible to the
measurement of quadratures X̂1, Ŷ2. The equality FQ = Fϕ̂ holds for

φ ≈ −1
2

tan−1
(

1
cosh 2r

)
+ nπ, n = 0,±1,±2, · · · . (60)

Thus, if we consider the homodyne measurement of the field quadrature, we have a chance to
attain the quantum Cramer–Rao bound periodically in time. On the other hand, the amplitude of Fn

keeps the same maximal value when the mode is outside of the Hubble horizon, and this value is far
smaller than the value of FQ in the radiation-dominated era.

5. Quantum-to-Classical Transition of Cosmological Perturbations

In the previous sections, we have considered the amount of quantum Fisher information of a
cosmological parameter that is accessible by performing two different projective measurements on the
pure cosmological state. In this case, the fact that not all of the quantum Fisher information for the
parameter can be accessed is ascribed to the fact that the choice of measurement is non-optimal, in the
sense that it does not satisfy the equality in the quantum Cramer–Rao bound (27). Now, we would like
to adopt a different point of view and see the projection over the chosen set of states as representing
the interaction of the cosmological state with an external environment rather than with an observer.
From this point of view, the fact that quantum Fisher information becomes partially inaccessible is
ascribed to the entanglement of the initially pure state with the degrees of freedom of the environment,
which are inaccessible to the observer. As a consequence, to such an observer the state will appear not
pure but mixed.

The motivation behind this slight change of perspective is that the field mode amplitude states
that we considered can be taken approximatively as the pointer basis of the evolution of cosmological
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perturbations; i.e., the basis “naturally chosen” by the interaction with the environment leading
from quantum perturbations to classical ones [14]. This environment-induced interpretation of the
information loss requires the interaction to be strong enough as to be analogous to an instantaneous
projective measurement. Such interaction of the cosmological system with the environment is a realistic
consideration, in particular when one takes into account the frailty of squeezing [8]. The interaction with
the environment can be generically modeled by attaching a dumping factor to the initial pure state ρ0

ρξ(ϕk, ϕ′k) = ρ0(ϕk, ϕ′k) exp
(
−ξ

2
|ϕk − ϕ′k|2

)
, (61)

ξ being a parameter that encodes the details of the interaction. The decoherence from the initial pure
state to the final mixed state can be quantified by the von Neumann entropy S(vN)(ρξ) of the total state
(61). In the limit ξ〈ϕ̂k ϕ̂−k〉 � 1, [14] found

S(vN)(ρξ) ' 1− ln 2+
1
2

ln ξ〈ϕ̂k ϕ̂−k〉 , (62)

when expressed in the present notation. By substituting (49), taking the limit for large squeezing, we
have the following relation:

S(vN)(ρξ) ≤ Smax/2 ' Sϕ/2 ' Scl/2 , (63)

where Smax represents the maximum value of the entropy for this bipartite system. In terms of the
Wigner function, this value is obtained by smearing the Wigner ellipse to become a circle. As discussed
in [14], such a bound shows that the reduction over the field amplitude pointer states does not lead to
complete quantum decoherence but retains some amount of “quantumness”.

From the point of view of decoherence, as a result of the quantum-to-classical transition of
cosmological perturbations, the quantum Fisher information for the local system is reduced from the
initial FQ(θ) to a lower value FQ(θ)

′ = Fϕ(θ) after the transition, power spectrum becoming the optimal
measurement in terms of parameter estimation. Corresponding to this decrease in quantum Fisher
information, there is an increase in the von Neumann entropy from its minimal value of zero for the
initial pure state to its maximal value of Smax/2. Notwithstanding this cosmological decoherence,
the interaction with the environment does not lead to total loss of quantum correlations, whose
contribution to the final quantum Fisher information FQ(θ)

′ can be determined as Fϕ(θ)− Fn(θ). In the
radiation-dominated case, such contributions periodically allow access to all of the Fisher information
of the cosmological parameter that presented before the quantum-to-classical transition through a
measurement of power spectrum, while this information is lost in the limit of pure de Sitter space.
Notice that in the large squeezing limit, the entropy consistently shows log-periodic fluctuations due
to the factor cos φ in (47), and such fluctuations disappear in the large squeezing limit of the de Sitter
case, where φ→ 0 and 〈ϕkϕ−k〉 ' 2〈ϕkϕ−k〉cl.

One may observe then that the fact that the mechanism of cosmological decoherence is not
perfectly efficient turns out to be extremely important from the point of view of observation, not only
for generating observable features such as the acoustic peaks in the anisotropy spectrum of the CMB
(as observed in [10]), but also for being determinant in how well we can estimate cosmological parameters
from our observations by accessing quantum correlations by a proper choice of the measurement.

6. Conclusions

In conclusion, constraining ourselves to the case of the massless Bunch–Davies scalar vacuum in a
FLRW metric parametrized by some scalar cosmological parameter, we found the explicit expressions
for the quantum Fisher information and the Fisher informations associated to the measurement
of the power spectrum and occupation number, both in terms of the Bugoliubov coefficients of
the cosmological unitary transformation and in terms of the squeezing magnitude and phase of
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the two-mode squeezed out-vacuum state. While quantum Fisher information cannot be accessed
completely by the two chosen measurements in the pure de Sitter case, it can be accessed periodically by
the power spectrum measurement when we introduce a radiation-dominated phase, such periodicity
being related to the rotation of the Wigner function in the quantum phase space. In the context of
the quantum-to-classical transition of cosmological perturbations, we have shown quantitatively how
the transition affects the value of the quantum Fisher information before and after the cosmological
decoherence, as well as how the residual quantumness of the correlations of the final state contribute to it.

Notice that the periodicity of the saturation of the quantum Cramer–Rao bound is both in
conformal time and field wavenumber. That is, for a fixed conformal time we can find a specific
value of the field mode that satisfies (60), preserves the total quantum Fisher information, and whose
observation allows the highest estimation precision. These results can be straightforwardly extended to
the multi-parameter case and model-specific conformal factors. From a more theoretical point of view,
since bosonic and fermionic cosmological particle creation show qualitatively different entanglement
behaviors, it could be interesting to study the same problem for fermionic fields.
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