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Abstract: We examine three point functions with two scalar operators and a higher spin current in
2d WN minimal model to the next non-trivial order in 1/N expansion. The minimal model was
proposed to be dual to a 3d higher spin gauge theory, and 1/N corrections should be interpreted
as quantum effects in the dual gravity theory. We develop a simple and systematic method to
obtain three point functions by decomposing four point functions of scalar operators with Virasoro
conformal blocks. Applying the method, we reproduce known results at the leading order in 1/N
and obtain new ones at the next leading order. As confirmation, we check that our results satisfy
relations among three point functions conjectured before.
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1. Introduction

Holography is expected to offer a way to learn quantum corrections of gravity theory from 1/N
corrections in dual conformal field theory. In this paper, we address this issue by utilizing one of the
simplest holographies proposed in [1]1, where 2d WN minimal model is dual to Prokushkin-Vasiliev
theory on AdS3 given by [6]. We examine three point functions with two scalar operators and one
higher spin current in the minimal model up to the next leading order in 1/N expansion. They should
be interpreted as one-loop corrections to three point interactions between two bulk scalars and
one higher spin gauge fields in the dual higher spin theory. We develop a simple and systematic
method to compute the three point functions by decomposing four point functions of scalar operators
with Virasoro conformal blocks. Among others, we expect that this way of computation makes
the dual higher spin interpretation easier. Applying the method, we reproduce known results at
the leading order in 1/N obtained by [7,8]. Exact results are available only up to correlators with
spin 5 current [9–11], but a simple relation was conjectured for generic s in [11]. We obtain the 1/N
corrections of correlators with spin s ≤ 8 current, and the results for s = 6, 7, 8 should be new. We check
that they satisfy the conjectured relation as confirmation of our results.

1 Recently, a different method to the issue has been adopted in [2–4] by analyzing the strongly coupled regime of conformal
field theories in 1/N expansion. This becomes possible because of recent developments on conformal bootstrap technique,
e.g., in [5].
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We would like to examine the WN minimal model in 1/N expansion, but we should specify the
expansion in more details. The minimal model has a coset description

su(N)k ⊕ su(N)1

su(N)k+1
(1)

whose central charge is given by

c = (N − 1)
(

1− N(N + 1)
(N + k)(N + k + 1)

)
(2)

The model has two parameters N, k. For our purpose, it is convenient to define the
’t Hooft coupling

λ =
N

N + k
(3)

and label the model by N, λ instead of N, k. We then expand the model in 1/N, where each order
depends on the other parameter λ. The expansion is almost the same as 1/c expansion because of
c ∼ N(1− λ2) +O(N0), but details are different.

The minimal model is argued to be dual to the higher spin theory of [6], which includes higher spin
gauge fields ϕ(s) (s = 2, 3, 4, . . .) and complex scalar fields φ± with mass m2 = −1 + λ2. The large N
limit of minimal model with λ in Equation (3) kept finite corresponds to the classical limit of higher
spin theory, where λ is identified with the parameter in bulk scalar mass. The higher spin gauge fields
ϕ(s) and bulk scalars φ± are dual to higher spin currents J(s) and scalar operators O±, respectively.
Here different boundary conditions are assigned to the bulk scalars φ± and the dual conformal
dimensions are given by ∆± = 2h± = 1± λ at the tree level.

Basic data of conformal field theory may be given by spectrum and three point functions of
primary operators. Since higher spin symmetry of the minimal model is exact, spectrum does not
receive any corrections in 1/N. Namely, there is no anomalous dimension for higher spin current J(s).
Therefore, as simple but non-trivial examples, we examine three point functions and specifically focus
on those with two scalar operators and one higher spin current as

〈O±(z1)Ō±(z2)J(s)(z3)〉 (4)

with s = 2, 3, 4, . . .. Here Ō± are complex conjugate of O±. In [7,8], the three point functions in the
large N limit of the minimal model have been computed from classical higher spin theory. They were
reproduced with conformal field theory approach in [8,12,13]2, but these methods are applicable only
to the leading order analysis in 1/N. Since the WN minimal model is solvable, for instance, by making
use of the coset description in Equation (1), we can obtain the three point functions in Equation (4) with
finite N, k in principle. However, in practice, the computation would be quite complicated, and only
explicit expressions are available only with spin 3, 4, 5 currents [9–11] (see also [15] for an alternative
algebraic method).

In this paper, we develop a different way to compute the three point functions in Equation (4)
from the decomposition of scalar four point functions by Virasoro conformal blocks. Our method may

2 The analysis in [12,13] were made in the context of N = 2 holographic duality in [14], but we can see that the analysis
reduces to that for the bosonic case under a suitable truncation at the leading order in 1/N.
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be explained as follows; Let us consider a generic operator product expansion of scalar operators Oi
with conformal weights (hi, hi) as

O1(z1)O2(z2) = ∑
p

C12p

z
h1+h2−hp
12 z̄

h1+h2−h̄p
12

Ap(z2) + · · · (5)

where the coefficient C12p includes the information of three point function. Moreover,Ap has conformal
weights (hp, h̄p), and dots denote contributions from descendants. Using the expansion, we can
decompose scalar four point function as

〈O1(∞)O2(1)O3(z)O4(0)〉 = ∑
p

C12pC34p

|z|2(h3+h4)
F (c, hi, hp, z)F̄ (c, hi, h̄p, z̄) (6)

Here F (c, hi, hp, z) is Virasoro conformal block, which can be fixed only from the symmetry
in principle. Once we know scalar four point functions and Virasoro conformal blocks, we can
read off coefficients as C12p by solving constraint equations coming from Equation (6). For our case
with Oi = O± or Ō±, four point functions can be computed exactly with finite N, k, for instance,
by applying Coulomb gas approach as in [16]. On the other hand, Virasoro conformal blocks are quite
complicated, but explicit forms may be obtained by applying Zamolodchikov’s recursion relation [17],
see also [18,19]. We can find other works on the 1/c expansion of Virasoro conformal blocks in,
e.g., [20–23]. Gathering these knowledges, we shall obtain the coefficients as C12p up to the next
leading order in 1/N expansion.

The paper is organized as follows; In order to study the decomposition in Equation (6), we need to
examine scalar four point functions and Virasoro conformal blocks. In the next section we decompose
scalar four point functions in terms of cross ratio z, and in Section 3 we give the explicit expressions of
Virasoro conformal blocks in expansions both in 1/N and z. After these preparations, we compute
three point functions in Equation (4) by solving constraint equations coming from Equation (6) in
Section 4. In Section 4.1 we reproduce known results at the leading order in 1/N. In Section 4.2 we
obtain the 1/N corrections of three point functions for s = 3, 4, . . . , 8, and check that they satisfy
the relation conjectured in [11]. Section 5 is devoted to conclusion and discussions. In Appendix A
we examine Virasoro conformal blocks in expansions of 1/c and z by analyzing Zamolodchikov’s
recursion relation. In Appendix B we compute three point functions with higher spin currents of
double trace type.

2. Expansions of Four Point Functions

We would like to obtain the coefficients as C12p by solving Equation (6). For the purpose, we need
information on the both sides of the equation, i.e., scalar four point functions and Virasoro conformal
blocks. In this section we examine scalar four point functions. We are interested in three point functions
of two scalar operators O± and a higher spin current J(s) as in Equation (4). We consider the following
four point functions with scalar operators O± as

G++(z) ≡ 〈O+(∞)Ō+(1)O+(z)Ō+(0)〉 (7)

G−−(z) ≡ 〈O−(∞)Ō−(1)O−(z)Ō−(0)〉 (8)

G−+(z) ≡ 〈O−(∞)O+(1)Ō+(z)Ō−(0)〉 (9)

Exact expressions with finite N, k may be found in [16]. From the expansions in z, we can read off
what kind of operators are involved in the decomposition by Virasoro conformal blocks. In the rest of
this section, we obtain the explicit forms of four point functions in z expansion for parts relevant to
later analysis.
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Let us first examine the z expansion of G++(z) in Equation (7), and see generic properties of the
four point functions. The expression with finite N, k is [16]

G++(z) = |z(1− z)|−2∆+

[∣∣∣∣(1− z)1+λ
2F1

(
1 +

λ

N
,− λ

N
;−λ; z

)∣∣∣∣2
+N1

∣∣∣∣z1+λ
2F1

(
1 +

λ

N
,− λ

N
; 2 + λ; z

)∣∣∣∣2
] (10)

with

N1 = −
Γ(1 + λ− λ

N )Γ(−λ)2Γ(2 + λ + λ
N )

Γ(−1− λ− λ
N )Γ( λ

N − λ)Γ(2 + λ)2
(11)

Here the exact value of conformal dimensions ∆+ = 2h+ is

∆+ =
(N − 1)(2N + 1 + k)

N(N + k)
= 1 + λ− 1

N
− 1

N2 λ +O(N−3) (12)

which is expanded in 1/N up to the N−2 order.
In the expansion in z, we would like to pick up the terms corresponding to the three point function

in Equation (4). The operator product of O+ may be expanded as

O+(z)Ō+(0) =
1

|z|2∆+
+ ∑

s

C(s)
+ zs

|z|2∆+
J(s)(0)

+ ∑
(s1,s2;s′)

C(s1,s2;s′)
+ zs′

|z|2∆+
J(s1,s2;s′)(0) + ∑

n,m
C(n,m)
+ zn z̄mA(n,m)(0) · · ·

(13)

Here J(s1,s2;s′)(z) are higher spin currents of double trace type as

J(s1,s2;s′) = J(s1)∂s′−s1−s2 J(s2) + · · · (14)

with s′ ≥ 6 as s1, s2 ≥ 3 and s′ − s1 − s2 ≥ 0. If we use the normalization as 〈J(s) J(s)〉 ∝ N, then the
two point function of this type of operator becomes 〈J(s1,s2;s′) J(s1,s2;s′)〉 ∝ N2. This is related to the fact
that C(s)

+ ∝ N−1/2, while C(s1,s2;s)
+ ∝ N−1. There could be currents of other multi-trace type, but the

contributions are more suppressed in 1/N. Furthermore, A(n,m)(z) are double trace type operators of
the form as

A(n,m) = O+∂n∂̄mŌ+ + · · · (15)

and the conformal weights are (hn,m, h̄n,m) = (2h+ + n, 2h+ + m). The dots in Equation (13) include
the operators dressed by higher spin currents J(s)(z), J̄(s)(z̄) for instance.

The operator product expansion in Equation (13) suggests that the contributions from J(s) or its
descendants are included in terms like zs+l/|z|2∆+ , where l = 0, 1, 2, . . . corresponds to the level of
descendant. In Equation (10), such terms appear as

G++(z) = |z|−2∆+(1− z)−∆++1+λ
2F1

(
1 +

λ

N
,− λ

N
;−λ; z

)
+ · · · (16)

Note that they also include effects from higher spin currents of double trace type J(s1,s2;s′)(z)
among others. For the first term in Equation (10), the other contributions involve at least one
anti-holomorphic current J̄(s)(z̄). For the second term in Equation (10), the expansions become
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polynomials of z and z̄ at the leading order in 1/N, and this implies that double trace type operators
A(n,m) should appear as Ap in Equation (5). At the leading order in 1/N, we can expand Equation (16)
around z ∼ 0 as

G++(z) ∼ |z|−2(λ+1) (17)

This corresponds to the expansion by the identity operator in Equation (13). Thus the non-trivial
contributions to our three point functions come form the terms at least of order 1/N.

At the next and next-to-next orders in 1/N, there are two types of contributions in Equation (16).
One comes from

(1− z)−∆++1+λ = (1− z)
1
N + λ

N2 +O(N−3) (18)

which becomes

(1− z)
1
N (1− z)

λ
N2

= 1− 1
N ∑

k=1

1
k

zk +
1

N2

[
∞

∑
k=1

(
−λ

k
zk
)
+

∞

∑
k=2

1
k

Hk−1zk

]
+O(N−3) (19)

Here we have used for k ≥ 2

(
1
N
k ) =

Γ(1+ 1
N )

k!Γ(1−k+ 1
N )

= (−1)k−1 1
Nk!

(
1− 1

N

) (
2− 1

N

)
· · ·
(

k− 1− 1
N

)
= (−1)k−1 1

Nk

(
1− 1

N ∑k−1
i=1

1
i

)
+O(N−3)

(20)

and the definition of harmonic number

Hn =
n

∑
j=1

1
j

(21)

The other comes from the hypergeometric function, which can be similarly expanded in 1/N as

2F1

(
1 + λ

N ,− λ
N ,−λ; z

)
= Γ(−λ)

Γ(1+ λ
N )Γ(− λ

N )
∑∞

n=0
Γ(1+ λ

N +n)Γ(− λ
N +n)

Γ(−λ+n)
zn

n!

= 1 + Γ(1−λ)
N ∑∞

n=1
Γ(n)

Γ(n−λ)
zn + 1

N2

(
λz + λΓ(1− λ)∑∞

n=2
Γ(n)

nΓ(n−λ)
zn
)
+O(N−3)

(22)

In total, we have

|z|2∆+G++(z) ∼ 1 +
1
N

∞

∑
n=1

(
− 1

n
+

Γ(1− λ)Γ(n)
Γ(n− λ)

)
zn +

1
N2

∞

∑
n=2

f (n)++zn (23)

where

f (n)++ = −
n−1

∑
l=1

Γ(1− λ)Γ(l)
(n− l)Γ(l − λ)

− λ

n
+

Hn−1

n
+

λΓ(1− λ)Γ(n)
nΓ(n− λ)

(24)
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First few expressions are

f (2)++ =
1
2

(
−2− 1

λ− 1
− λ

)
(25)

f (3)++ =
1
3

(
4

λ− 2
+

1
λ− 1

− λ

)
(26)

f (4)++ =
1
8

(
1− 18

λ− 3
+

8
λ− 2

+
14

λ− 1
− 2λ

)
(27)

We would like to move to another four point function G−−(z) in Equation (8), whose expression
with finite N, k can be again found in [16]. We use the four point function in order to obtain the three
point function in Equation (4) with the other type of scalar operator O−. As for G++(z), the relevant
part is

G−−(z) = |z|−2∆−(1− z)
1
N−

λ
N2 2F1

(
1− λ

N
,

λ

N
− λ2

N2 ; λ− λ2

N
; z
)
+ · · · (28)

Here we may need

∆− = 2h− = N−1
N

(
1− N+1

N+k+1

)
= 1− λ− 1

N (1− λ2) + 1
N2 λ(1− λ2) +O(N−3)

(29)

Similarly to G++(z) we can expand G−−(z) in z as

|z|2∆−G−−(z) ∼ 1 +
1
N

∞

∑
n=1

(
− 1

n
+

Γ(1 + λ)Γ(n)
Γ(n + λ)

)
zn +

1
N2

∞

∑
n=2

f (n)−−zn (30)

where
f (n)−− = −∑n−1

l=1
Γ(1+λ)Γ(l)
(n−l)Γ(l+λ)

+ λ
n + Hn−1

n + λΓ(1+λ)Γ(n)
Γ(n+λ)

(
∑n−1

k=1
λ

k+λ −
1
n

)
(31)

First few expressions are

f (2)−− =
λ

2
− 3

2(λ + 1)
+

1
(λ + 1)2 (32)

f (3)−− =
λ

3
− 13

3(λ + 1)
+

2
(λ + 1)2 +

20
3(λ + 2)

− 8
(λ + 2)2 (33)

f (4)−− =
λ

4
− 31

4(λ + 1)
+

3
(λ + 1)2 +

23
λ + 2

− 24
(λ + 2)2 −

63
4(λ + 3)

+
27

(λ + 3)2 +
1
8

(34)

From the four point functions G±±(z), we can read off the square root of coefficients (C(s)
± )2,

but relative phase factor cannot be fixed. In order to determine it, we also need to examine G−+(z) in
Equation (9), which can be computed as [16]

G−+(z) = |1− z|−2∆+ |z|
2
N

∣∣∣∣1 + 1− z
Nz

∣∣∣∣2 (35)

with finite N, k. For later arguments, we need

|1− z|2∆+G−+(z) ∼ 1 +
1
N

∞

∑
n=2

n− 1
n

(1− z)n (36)

which is expanded in (1− z) up to the 1/N order.
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3. Virasoro Conformal Blocks

In the previous section we analyzed the left hand side of Equation (6). In order to obtain
three point functions by solving the equations in Equation (6), we further need information on
F (c, hi, hp, z). In general, the forms of Virasoro conformal blocks are quite complicated. In practice,
we actually do not need to know closed forms but expansions in z up to some orders. For this
purpose, a standard approach may be solving Zamolodchikov’s recursion relation in [17]. Following
the algorithm developed in [18] (see also [19]), we obtain the expressions of Virasoro conformal blocks
to several orders in z and 1/c in Appendix A. Related works may be found in [19–23], and in particular,
some closed form expressions were given, e.g., in [20]. Our findings agree with their results after minor
modifications.

Let us consider the four point function in the decomposition of Equation (6) with h1 = h2 and
h3 = h4. In the decomposition, intermediate operator Ap can be the identity or other. As observed in
the examples of previous section, only the Virasoro conformal block with the identity operator (called
as vacuum block) survives at the leading order in 1/N. This simply means that the four point functions
are factorized into the products of two point ones at the leading order in 1/N. Virasoro conformal
block with Ap of single trace type would appear at the next leading order in 1/N. We would like to
examine 1/N corrections to three point functions, so we need 1/N corrections to the Virasoro block
of Ap. This also implies that we need the expression of vacuum block up to the next-to-next leading
order in 1/N.

Let us first examine the vacuum block with h1 = h3 = h±. As was explained in Appendix A,
the 1/c-expansion of vacuum block is given by

V0(x) = 1 + 2h1h3
c z2

2F1(2, 2; 4; z)

+ 1
c2

[
h2

1h2
3ka(z) + h1h3(h1 + h3)kb(z) + h1h3kc(z)

]
+O(c−3)

(37)

with

ka(z) = 2z4 + 4z5 +
28z6

5
+

34z7

5
+

2687z8

350
+O(z9)

kb(z) =
2z4

5
+

4z5

5
+

39z6

35
+

47z7

35
+

263z8

175
+O(z9) (38)

kc(z) =
2z4

25
+

4z5

25
+

109z6

490
+

131z7

490
+

1879z8

6300
+O(z9)

The 1/c order term corresponds to the exchange of spin 2 current (energy momentum tensor) in
terms of global block. We need to rewrite the expansion in 1/c by that in 1/N as

V0(z) = V
(0)
0 (z) + V (1)0 (z)

1
N

+ V (2)0 (z)
1

N2 +O(N−3) (39)

The first two terms can be easily read off as

V (0)0 (z) = 1 , V (1)0 (z) =
1
2

(
1± λ

1∓ λ

)
z2

2F1(2, 2; 4; z) (40)

Since there are two types of contributions to V (2)0 , we separate it into two parts as

V (2)0 = V (2,1)
0 (z) + V (2,2)

0 (z) (41)
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One comes from the 1/c order term with the next leading contribution from h2
±/c as

V (2,1)
0 (z) = f (2)±±z2

2F1(2, 2; 4; z)

= f (2)±±
(

z2 + z3 + 9z4

10 + 4z5

5 + 5z6

7 + 9z7

14 + 7z8

12

)
+O(z9)

(42)

where f (2)±± were given in Equations (25) and (32). Here we have used

2h2
±

c = 1
2N

(
1±λ
1∓λ

)
+ 1

N2 f (2)±± +O(N−3) (43)

which are obtained from the 1/N expansions of h± as in Equations (12) and (29) and c in Equation (2) as

c = N(1− λ2)
[
1− 1

N

(
λ + 1

1+λ

)]
+O(N−1) (44)

The other comes from the 1/c2 order terms in Equation (37) as

V (2,2)
0 (z) =

(1± λ)2

16(1∓ λ)2 ka(z) +
(1± λ)

4(1∓ λ)2 kb(z) +
1

4(1∓ λ)2 kc(z) (45)

with ka(z), kb(z), and kc(z) in Equation (38).
We also need Virasoro blocks of Ap up to the next non-trivial order in 1/N. It is known that the

Virasoro block is expanded in 1/c as (see, e.g., [23])

Vp(z) = g(hp, z) +
1
c
[
h1h3 fa(hp, z) + (h1 + h3) fb(hp, z) + fc(hp, z)

]
+O(c−2) (46)

Here g(hp, z) is the global block of Ap and the expressions of fa(hp, z), fb(hp, z), and fc(hp, z)
were obtained in [23]. See also Appendix A. For our application, we set h1 = h3 = h± and hp = s.
We need the expansion in 1/N instead of 1/c as

Vs(z) = V (0)s (z) + V (1)s (z)
1
N

+O(N−2) (47)

The leading term V (0)p (z) is given by the global block as

V (0)s (z) = g(s, z) = zs
2F1(s, s; 2s; x) (48)

The next order contributions in 1/N are

V (1)s (z) =
1
4

1± λ

1∓ λ
fa(s, z) +

1
(1∓ λ)

fb(s, z) +
1

(1− λ2)
fc(s, z) (49)
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where the functions fa(s, z), fb(s, z), and fc(s, z) are given by

fa(s, z) = zs
[
2z2 + (s + 2)z3 + (s+3)(5s(s+3)+6)z4

20s+10 + (s+3)(s+4)(5s(s+4)+8)z5

60(2s+1)

+O(z6)
]

fb(s, z) = s(s− 1)zs
[

z2

2s+1 + (s+2)z3

4s+2 + (s+3)(5s(s+4)+18)z4

20(4s(s+2)+3)

+ (s+3)(s+4)(5s(s+5)+24)z5

120(4s(s+2)+3) +O(z6)
]

fc(s, z) = s2(s−1)2

2(2s+1)2 zs
[
z2 + (s+2)z3

2 + (s+3)(s(10s(2s+11)+191)+108)z4

40(2s+3)2

+ (s+3)(s+4)(s(10s(2s+13)+243)+144)z5

240(2s+3)2 +O(z6)
]

(50)

4. Three Point Functions

After the preparations in previous sections, we now work on the decompositions of four point
functions by Virasoro conformal blocks as in Equation (6). In the current case, the decompositions are

|z|2∆±G±±(z) = V0(z) +
∞

∑
s=3

(C(s)
± )2Vs(z) + ∑

(s1,s2;s′)
(C(s1,s2;s′)
± )2Vs′(z) + · · · (51)

Here G±±(z) are four point functions defined in Equations (7) and (8), and the expansions in
z were obtained as in Equations (23) and (30). Moreover, V0(z) is the vacuum block and Vs(z) is
the Virasoro block of higher spin current J(s) (or J(s1,s2;s)). Their expansions in z can be found in the
previous section.

Solving constraint equations from Equation (51), we read off the coefficients C(s)
± , which are

proportional to the three point functions in Equation (4). It is convenient to expand the coefficients in
1/N as

C(s)
± =

1
N1/2

(
C(s)
±,0 +

1
N

C(s)
±,1 +O(N−2)

)
(52)

Then we can see that the constraint equations from Equation (51) at the order N0 is trivially
satisfied as 1 = 1. The non-trivial conditions arise from order 1/N terms, and they determine the
leading order expressions C(s)

±,0 as seen in the next subsection. The main purpose of this paper is

to compute C(s)
±,1, which are 1/N corrections to the leading order expressions. We derive them by

solving order N−2 conditions up to s = 8 in Section 4.2. Notice that we should take care of C(s1,s2;s′)
± in

Equation (51) for s ≥ 6, which may be expanded as

C(s1,s2;s′)
± =

1
N

C(s1,s2;s′)
±,0 +O(N−2) (53)

The coefficients C(s1,s2;s′)
±,0 are analyzed in Appendix B.

4.1. Leading Order Expressions in 1/N

We start from three point functions at the leading order in 1/N. We examine the constraint
equations from Equation (51) up to 1/N order. Up to this order, the vacuum block is given by
(see Equation (37))

V0(z) = 1 +
1
N
(C(2)
±,0)

2z2
2F1(2, 2; 4; z) +O(N−2) (54)
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where we have defined

C(2)
±,0 =

√
2(h±)2

c

∣∣∣∣∣
O(N−1/2)

=

√
1
2

1± λ

1∓ λ
(55)

The Virasoro block of J(s) is

Vs(z) = zs
2F1(s, s; 2s; z) +O(N−1) (56)

as in Equation (47) with Equation (48). Therefore, the expansion in Equation (51) can be written as

|z|2∆±G±±(z) = 1 +
1
N

∞

∑
s=2

(C(s)
±,0)

2zs
2F1(s, s; 2s; z) + · · · (57)

up to the order of 1/N. The four point functions G±±(z) can be expanded as

|z|2∆±G±±(z) ∼ 1 +
1
N

∞

∑
n=1

zn
(
− 1

n
+

Γ(1∓ λ)Γ(n)
Γ(n∓ λ)

)
+ · · · (58)

as in Equations (23) and (30) up to the same order. On the other hand, the global blocks can be
written as

zs
2F1(s, s; 2s; z) =

Γ(2s)
(Γ(s))2

∞

∑
n=0

(Γ(s + n))2

Γ(2s + n)
zn+s

n!
(59)

Comparing the coefficients in front of zn, we obtain

− 1
n
+

Γ(1∓ λ)Γ(n)
Γ(n∓ λ)

= (Γ(n))2
n

∑
s=2

Γ(2s)(C(s)
±,0)

2

(Γ(s))2Γ(s + n)(n− s)!
(60)

They are the constraint equations for (C(s)
±,0)

2 with s = 3, 4, . . ..
In order to fix relative phase factor, we examine G−+(z) in Equation (9) as well. The decomposition

in Equation (6) become

|1− z|2∆+G−+(z) ∼ 1 +
1
N

∞

∑
s=2

(−1)sC(s)
−,0C(s)

+,0(1− z)s
2F1(s, s; 2s; 1− z) (61)

in this case. The extra phase factor (−1)s may require explanation; Now we need to use a slightly
different expression of operator product expansion as

O+(1)Ō+(z) = C(s)
+

(1− z)s

|1− z|2∆+
J(s)(1) + · · · (62)

Then the coefficients in front of global blocks are given by

C(s)
+ 〈O−(∞)J(s)(1)Ō−(0)〉 = C(s)

+ (−1)s〈O−(∞)Ō−(1)J(s)(0)〉 ∝ (−1)sC(s)
− C(s)

+ (63)

Here the factor (−1)s can be obtained from the coordinate dependence of three point function,
which is completely fixed by conformal symmetry, see Equation (65) below. Therefore, we have
constraint equations for three point functions as

n− 1
n

= (Γ(n))2
n

∑
s=2

(−1)sΓ(2s)C(s)
−,0C(s)

+,0

Γ(s)2Γ(s + n)(n− s)!
(64)



Universe 2017, 3, 70 11 of 24

by comparing the coefficients in front of zn.
Now we have three types of constraint equation as in Equations (60) and (64), and we would like

to show that the known results satisfy these equations. At the leading order in 1/N, the three point
functions have been computed as [8]

〈O±(z1)Ō±(z2)J(s)(z3)〉 =
η
(s)
±

2π

Γ(s)2

Γ(2s− 1)
Γ(s± λ)

Γ(1± λ)

(
z12

z13z23

)s
〈O±(z1)Ō±(z2)〉 (65)

The phase factors η
(s)
± depends on the convention of higher spin currents, but we may set η

(s)
+ = 1

and η
(s)
− = (−1)s. The two point function of higher spin current J(s) in Equation (65) is (see (6.1) of [8])

〈J(s)(z1)J(s)(z2)〉 =
B(s)

z2s
12

, B(s) =
N

22sπ5/2
sin(πλ)

λ

Γ(s)Γ(s− λ)Γ(s + λ)

Γ(s− 1
2 )

(66)

at the leading order in 1/N. The coefficients C(s)
±,0 are given by normalization independent ratios as

C(s)
±,0 =

〈O±Ō± J(s)〉
〈O±Ō±〉〈J(s) J(s)〉1/2

∣∣∣∣∣
O(N−1/2)

(67)

which become

C(s)
±,0 = η

(s)
±

√
Γ(s)2

Γ(2s− 1)
Γ(1∓ λ)

Γ(1± λ)

Γ(s± λ)

Γ(s∓ λ)
(68)

The first few coefficients are

C(3)
±,0 = η

(3)
±

√
1
6
(2± λ)(1± λ)

(2∓ λ)(1∓ λ)
, C(4)

±,0 =

√
1

20
(3± λ)(2± λ)(1± λ)

(3∓ λ)(2∓ λ)(1∓ λ)
(69)

along with Equation (55) for s = 2. Using these explicit expressions, we can check that the constraint
equations in Equations (60) and (64) are indeed satisfied3.

4.2. 1/N Corrections

We would like to move to the main part of this paper. In this subsection, we derive 1/N corrections
to three point functions by examining the equations in Equation (51). With the help of analysis in
previous sections, we have already ingredients necessary to the task. For examples, the expansions of
G±±(z) were given in Equations (23) and (30) up to order 1/N2. Moreover, the vacuum block and the
Virasoro block of J(s) are expanded as in Equations (39) and (47), respectively. Using these expansions,
the equations in Equation (51) become

∑∞
m=2 f (m)

±± zm = V (2)0 (z) + ∑∞
s=3 2C(s)

±,1C(s)
±,0V

(0)
s (z) + ∑∞

s=3(C
(s)
±,0)

2V (1)s (z)

+∑(s1,s2;s′)(C
(s1,s2;s′)
±,0 )2V (0)s′ (z)

(70)

at the order of 1/N2. Here f (m)
±± are defined in Equation (24) and Equation (31). At this order we should

include the effects from higher spin currents of double trace type as (C(s1,s2,s′)
±,0 )2 in Equation (70) with

s′ ≥ 6.

3 We have confirmed this for Equation (60) with spin s = 2, 3, . . . , 70 and for Equation (64) with all spin.
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Let us examine the equations in Equation (70) from low order terms in z. There are no z0 and z1

order terms in the both sides. We can see that the equality in Equation (70) is satisfied at the order of z2

from Equation (42). Non-trivial constraint equations appear at the z3 order as

f (3)±± = f (2)±± + 2C(3)
±,0C(3)

±,1 (71)

where f (2)±± comes from V (2,1)
0 in Equation (42). Solving them we find

C(3)
+,1

C(3)
+,0

= − 1
2

(
−λ + 1

1+λ + 4
2+λ

)
,

C(3)
−,1

C(3)
−,0

= 1
2

(
−λ + 1

λ+1 + 4
λ+2 − 6

)
(72)

The z4 order constraints are

f (4)±± = f (2)±±
9
10

+
(1± λ)2

8(1∓ λ)2 +
(1± λ)

10(1∓ λ)2 +
1

50(1∓ λ)2 + 2C(4)
±,0C(4)

±,1 + 2C(3)
±,0C(3)

±,1
3
2

where the contribution from Equation (45) starts to enter. The constraints lead to

C(4)
+,1

C(4)
+,0

= 1
10

(
5λ + 6

λ−1 −
11

λ+1 −
20

λ+2 −
45

λ+3

)
C(4)
−,1

C(4)
−,0

= 1
10

(
−5λ + 6

λ−1 −
1

λ+1 + 20
λ+2 + 45

λ+3 − 60
) (73)

We would like to keep going to the cases with s ≥ 5, where fa(s, z), fb(s, z), and fc(s, z) in
Equation (50) contribute. For s = 5, the conditions become

f (5)±± = f (2)±±
4
5
+

(1± λ)2

4(1∓ λ)2 +
(1± λ)

5(1∓ λ)2 +
1

25(1∓ λ)2 + 2C(5)
±,0C(5)

±,1 + 2C(4)
±,0C(4)

±,1 · 2

+2C(3)
±,0C(3)

±,1 ·
12
7

+ (C(3)
±,0)

2
[

1
2

1± λ

1∓ λ
+

6
7(1∓ λ)

+
18

49(1− λ2)

] (74)

We then find

C(5)
+,1

C(5)
+,0

= λ
2 + 25

7(λ−1) −
57

14(λ+1) −
2

λ+2 −
9

2(λ+3) −
8

λ+4

C(5)
−,1

C(5)
−,0

= − λ
2 + 25

7(λ−1) −
43

14(λ+1) +
2

λ+2 + 9
2(λ+3) +

8
λ+4 − 10

(75)

by solving the constraints.
For s ≥ 6, the contributions from higher spin currents of double trace type should be considered.

They are given by

J(3,3;6) ∼: J(3) J(3) : , J(3,4;7) ∼: J(3) J(4) : (76)

for s = 6, 7 and4

J(4,4;8) ∼: J(4) J(4) : , J(3,5;8) ∼: J(3) J(5) : , J(3,3;8) ∼: J(3)∂2 J(3) : (77)

4 There could be another current J(3,4;8) ∼: J(3)∂J(4), but it does not give any contribution as shown in Appendix B.
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for s = 8. Their precise forms are fixed such as to be primary in the sense of Virasoro algebra as
derived in Appendix B5. Once we have the expressions of these currents, we can obtain the coefficients

(C(s1,s2;s′)
±,0 )2, which are defined as

(C(s1,s2;s′)
±,0 )2 = 〈O±Ō± J(s1,s2;s′)〉2

〈O±Ō±〉2〈J(s1,s2;s′) J(s1,s2;s′)〉

∣∣∣∣
O(N−2)

(78)

In Appendix B we also compute the three point functions 〈O±Ō± J(s1,s2;s′)〉 and the two point
functions 〈J(s1,s2;s′) J(s1,s2;s′)〉 for the currents in Equations (76) and (77) at the leading order in 1/N.

Utilizing these results, we obtain 1/N corrections to three point functions with single trace
currents of s = 6, 7, 8. The constraint equations for s = 6 are

f (6)±± = f (2)±±
5
7 + 7(1±λ)2

20(1∓λ)2 +
39(1±λ)

140(1∓λ)2 +
109

1960(1∓λ)2 + 2C(6)
±,0C(6)

±,1 + 2C(5)
±,0C(5)

±,1 ·
5
2

+2C(4)
±,0C(4)

±,1 ·
25
9 + 2C(3)

±,0C(3)
±,1 ·

25
14 + (C(3)

±,0)
2
[

5
4

1±λ
1∓λ + 15

7(1∓λ)
+ 90

98(1−λ2)

]
+(C(4)

±,0)
2
[

1
2

1±λ
1∓λ + 4

3(1∓λ)
+ 8

9(1−λ2)

]
+ (C(3,3;6)

±,0 )2

(79)

where the effect of J(3,3;6) in Equation (76) enters. Solving these equations we find

C(6)
+,1

C(6)
+,0

= λ
2 −

5
3(λ−2) +

1315
84(λ−1) −

1357
84(λ+1) −

1
3(λ+2) −

9
2(λ+3) −

8
λ+4

− 25
2(λ+5)

C(6)
−,1

C(6)
−,0

= − λ
2 −

5
3(λ−2) +

1315
84(λ−1) −

1273
84(λ+1) +

11
3(λ+2) +

9
2(λ+3) +

8
λ+4

+ 25
2(λ+5) − 15

(80)

For spin 7, another double trace operator J(3,4;7) in Equation (76) should be considered as

f (7)±± = f (2)±±
9

14 + 17(1±λ)2

40(1∓λ)2 +
846(1±λ)

2520(1∓λ)2 +
131

1960(1∓λ)2 + 2C(7)
±,0C(7)

±,1 + 2C(6)
±,0C(6)

±,1 · 3

+2C(5)
±,0C(5)

±,1 ·
45
11 + 2C(4)

±,0C(4)
±,1 ·

10
3 + 2C(3)

±,0C(3)
±,1 ·

25
14 + (C(3)

±,0)
2 (3467±42λ(89±24λ))

490(1−λ2)

+(C(4)
±,0)

2 (7±3λ)
6(1−λ2)

+ (C(5)
±,0)

2 (31±11λ)
242(1−λ2)

+ (C(3,3;6)
±,0 )2 · 3 + (C(3,4;7)

±,0 )2

(81)

5 From the decomposition by Virasoro conformal blocks as in Equation (6), we can read off three point functions among
primary operators including intermediate oneAp by construction. For s ≤ 5, only J(s) starts to contribute as the intermediate
operator at the zs order, so we do not need to worry about if the operator is primary or not. However, for s ≥ 6, there are

degeneracies among J(s) and J(s1 ,s2 ;s), and the 1/N corrections C(s)
±,1 could be read off once we have the information of

C(s1 ,s2 ;s)
±,0 , see Equation (70). Since we compute C(s1 ,s2 ;s)

±,0 by hand as explained in Appendix B, we have to explicitly construct
primary operators of double trace type. We only need the leading order expressions, so it is enough to use commutation
relations surviving in the large c limit as in Equation (A15) and higher spin charges at the leading order as in Equation (A18).
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which lead to

C(7)
+,1

C(7)
+,0

= λ
2 −

490
33(λ−2) +

8183
132(λ−1) −

8249
132(λ+1) +

424
33(λ+2) −

9
2(λ+3)

− 8
λ+4 −

25
2(λ+5) −

18
λ+6

C(7)
−,1

C(7)
−,0

= − λ
2 −

490
33(λ−2) +

8183
132(λ−1) −

8117
132(λ+1) +

556
33(λ+2) +

9
2(λ+3)

+ 8
λ+4 + 25

2(λ+5) +
18

λ+6 − 21

(82)

The constraint equations for C(8)
±,1 are

f (8)±± = f (2)±±
7

12 + (1±λ)2

(1∓λ)2
2687
5600 + (1±λ)

(1∓λ)2
263
700 + 1

(1∓λ)2
1879

25200 + 2C(8)
±,0C(8)

±,1

+2C(7)
±,0C(7)

±,1
7
2 + 2C(6)

±,0C(6)
±,1

147
26 + 2C(5)

±,0C(5)
±,1

245
44 ++2C(4)

±,0C(4)
±,1

245
66 + 2C(3)

±,0C(3)
±,1

7
4

+(C(3)
±,0)

2
(

387±418λ+113λ2

40(1−λ2)

)
+ (C(4)

±,0)
2
(

7(47977±41162λ+8833λ2)
21780(1−λ2)

)
+(C(5)

±,0)
2
(

7(31±11λ)2

484(1−λ2)

)
+ (C(6)

±,0)
2
(
(43±13λ)2

338(1−λ2)

)
+ (C(3,3;6)

±,0 )2 147
26 + (C(3,4;7)

±,0 )2 7
2

+(C(4,4;8)
±,0 )2 + (C(3,5;8)

±,0 )2 + (C(3,3;8)
±,0 )2

(83)

Here we have taken care of double trace operators J(4,4;8), J(3,5;8), and J(3,3;8) in Equation (77).
We then have

C(8)
+,1

C(8)
+,0

= λ
2 + 525

143(λ−3) −
12572

143(λ−2) +
101311

429(λ−1) −
203051

858(λ+1) +
12286

143(λ+2)

− 2337
286(λ+3) −

8
λ+4 −

25
2(λ+5) −

18
λ+6 −

49
2(λ+7)

C(8)
−,1

C(8)
−,0

= − λ
2 + 525

143(λ−3) −
12572

143(λ−2) +
101311

429(λ−1) −
202193

858(λ+1) +
12858

143(λ+2)

+ 237
286(λ+3) +

8
λ+4 + 25

2(λ+5) +
18

λ+6 + 49
2(λ+7) − 28

(84)

as solutions to the constraint equations.
Since the three point functions were already obtained with finite N, k in [9–11] for s = 3, 4, 5,

they can be compared to our results in principle. Instead of doing so, we utilize a simpler relation,
which is on the ratio of three point functions (see (4.52) of [11])

〈O+Ō+ J(s)〉
〈O−Ō− J(s)〉

= (−1)s (k + N + 1)
(k + N)

s−1

∏
n=1

[
nk + (n + 1)N + n

nk + (n− 1)N

]
(85)

The relation was derived for s = 2, 3, 4, 5 by using the explicit results and conjectured for generic
s based on them. The expression up to the 1/N order becomes

〈O+Ō+ J(s)〉
〈O−Ō− J(s)〉 =

C(s)
+,0+

1
N C(s)

+,1

C(s)
−,0+

1
N C(s)
−,1

+O(N−2)

= (−1)s ∏s−1
n=1

(
n+λ
n−λ

) [
1 + 1

N

(
λ + ∑s−1

m=1
mλ

m+λ

)
+O(N−2)

] (86)

Thus, at the leading order in 1/N, we have

C(s)
+,0

C(s)
−,0

= (−1)s
s−1

∏
n=1

(
n + λ

n− λ

)
(87)
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We can easily check that Equation (68) satisfy this condition. The relation in Equation (86) at the
next leading order in 1/N implies

C(s)
+,1

C(s)
+,0

−
C(s)
−,1

C(s)
−,0

= λ +
s−1

∑
m=1

mλ

m + λ
(88)

We have confirmed our results (and the conjectured relation in Equation (86)) by showing that
our results on C(s)

±,1 for s = 3, . . . , 8 satisfy this equation.
Before ending this section, we would like to make comments on normalized three point functions

C(2)
± =

〈O±Ō± J(2)〉
〈O±Ō±〉〈J(2) J(2)〉1/2

(89)

with the energy momentum tensor T ∝ J(2). They do not appear in the decomposition of Virasoro
conformal blocks but can be fixed by the conformal Ward identity as

C(2)
± =

1
N1/2

(
C(2)
±,0 +

1
N

C(2)
±,1 +O(N−2)

)
=

√
2h2
±

c
(90)

In particular, they lead to Equation (55) and

2C(2)
±,0C(2)

±,1 = f (2)±± (91)

with Equation (43), or equivalently

C(2)
+,1

C+,0
=

λ

2
− 1

2(λ + 1)
,

C(2)
−,1

C−,0
= −λ

2
+

1
2(λ + 1)

− 1 (92)

As a consistence check, we can show that they satisfy Equation (88) as well.

5. Conclusions and Open Problems

We have developed a new method to compute three point functions of two scalar operators
and a higher spin current in Equation (4) in 2d WN minimal model. This model can be described
by the coset in Equation (1) with two parameters N, k, and we analyze it in 1/N expansion in terms
of ’t Hooft parameter λ = N/(N + k) in Equation (3). We decompose scalar four point functions
G±±(z) in Equations (7) and (8) and G−+(z) in Equation (9) by Virasoro conformal blocks. The four
point functions were computed exactly with finite N, k in [16], and Virasoro conformal blocks can
be obtained including 1/N corrections, say, by analyzing Zamolodchikov’s recursion relation [17].
Solving the constraint equations from the decomposition, we can obtain three point functions including
1/N corrections. At the leading order in 1/N, we can easily reproduce the known results in [8] because
Virasoro conformal blocks reduce to global blocks in this case. At the next leading order, we have
obtained 1/N corrections to the three point functions up to spin 8. Previously exact results were
known for s = 3, 4, 5 in [9–11], and our findings for s = 6, 7, 8 are new. We have confirmed our results
by checking that the conjectured relation in Equation (88) is satisfied.

We have evaluated 1/N corrections only up to spin 8 case because of the following two obstacles.
One comes from 1/c corrections to Virasoro conformal blocks. Up to the required order in 1/c, closed
forms can be obtained, for instance, by following the method in [23] except for fc(s, z) in Equation (49).
In Equation (50) (or in [23]), the function fc(s, z) is given up to the order z5+s, but we need the
term at order z6+s with s = 3 for spin 9 computation. We have not tried to do so, but it should be
possible to obtain the terms at higher orders in z without a lot of efforts. Another is related to the
contributions from higher spin currents of double trace type as analyzed in Appendix B. In order
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to obtain primary operators of this type, we have used commutation relations in Equation (A15),
which are borrowed from [24]. For spin 9, a current of the form J(3,6;9) ∼: J(3) J(6) : would give some
contributions. However, in order to find its primary form, we need the commutation relation between
W, Y, which is currently not available. At the order in 1/c which do not vanish at c→ ∞, we can derive
the commutation relations involving more higher spin currents, for instance, from dual Chern-Simons
description as in [25–28]. The computation is straightforward but might be tedious. In any case, it is
definitely possible to obtain the 1/N corrections of three point functions for s ≥ 9, and it is desired to
have expressions for generic s.

There are many open problems we would like to think about. Because of the simplicity of our
method, it is expected to be applicable to more generic cases. For example, it is worth generalizing the
current analysis to supersymmetric cases. Recently, it becomes possible to discuss relations between
3d higher spin theory and superstrings by introducing extended supersymmetry to the duality by [1].
Higher spin holography with N = 3 supersymmetry has been developed in a series of works [29–31],
while large or smallN = 4 supersymmetry has been utilized through the well-studied holography with
symmetric orbifold in [32,33]. Previous works on the subject may be found in [34–36]. As mentioned
in introduction, the main motivation to examine 1/N corrections in 2d WN minimal model is to learn
quantum effects in dual higher spin theory. We would like to report on our recent progress in a separate
publication [37].
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Appendix A. Recursion Relations and Virasoro Conformal Blocks

In this appendix we derive the expressions of Virasoro conformal blocks in expansions of 1/c
and z by solving Zamolodchikov recursion relation in [17], and we compare our results to those
previous obtained especially in [23]. We decompose a four point function by Virasoro conformal blocks
F (c, hi, hp, z) as in Equation (6). In the following we set h1 = h2 and h3 = h4. The recursion relation
for Virasoro conformal blocks is [17]

F (c, hi, hp, z) = zhp 2F1(hp, hp; 2hp; z)

+∑∞
m≥1,n≥2

Rmn(hi ,hp)

c−cmn(hp)
F (cmn(hp), hi, hp + mn, z)

(A1)

Here the poles for c are located at c = cmn(hp) with

cmn(hp) = 13− 6
(

tmn(hp)
−1 + tmn(hp)

)
(A2)

where

tmn(hp) =

(
2hp + mn− 1 +

√
4hp(hp + mn− 1) + (m− n)2

)
/(n2 − 1) (A3)

The residua are

Rmn(hi, hp) = Amn(hp)Pmn(hi, hp) (A4)
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where

Pmn(hi, hp) = ∏
j,k

(
2l1 −

ljk

2

)(
2l3 −

ljk

2

)( ljk

2

)2

Amn(hp) =
−12(t−1

mn − tmn)

(m2 − 1)t−1
mn − (n2 − 1)tmn

∏
a,b

1
lab

(A5)

ljk(m, n, hp) = (j− ktmn)t−1/2
mn , li(m, n, hi, hp) = (hi + l2

11/4)1/2

The sum is taken over j = −m + 1,−m + 3, . . . , m − 1, k = −n + 1,−n + 3, . . . , n − 1,
a = −m + 1,−m + 2, . . . , m, b = −n + 1,−n + 2, . . . , n without (a, b) = (0, 0), (m, n).

For our purpose, it is enough to obtain first several terms of Virasoro blocks in z expansion,
and we obtain them by following the strategy of [18], see also [19]. We decompose Virasoro conformal
blocks by global blocks as

F (c, hi, hp, z) = zhp
∞

∑
q=0

χq(c, hi, hp)zq
2F1(hp + q, hp + q; 2(hp + q); z) (A6)

The generic expressions of χq are given in (2.28) of [18]. With h1 = h2 and h3 = h4, it can be shown
that χq = 0 for odd q. The explicit expressions for q = 2, 4, 6 can be found in (C.1) of the paper as

χ2(c, hp) = γ12(c, hp)

χ4(c, hp) = γ14(c, hp) + γ22(c, hp) + γ12(c, hp)γ12(c12(hp, hp + 2))

χ6(c, hp) = γ16(c, hp) + γ23(c, hp) + γ32(c, hp) + γ12(c, hp)γ14(c12(hp), hp + 2) (A7)

+ γ12(c, hp)γ22(c12(hp), hp + 2) + γ14(c, hp)γ12(c14(hp), hp + 4)

+ γ22(c, hp)γ12(c22(hp), hp + 4) + γ12(c, hp)γ12(c12(hp), hp + 2)γ12(c12(hp + 2), hp + 4)

with

γmn(c, hp) =
Rmn(hi, hp)

c− cmn(hp)
(A8)

Inserting these expressions into Equation (A6), we can obtain the Virasoro conformal blocks up to
the order of zhp+7.

Let us start from vacuum block. As discussed in the main context, we need its expression up to
the 1/c2 order. For hp = 0 the coefficients χq can be found in (2.15) of [18], and they are expended in
1/c as

χ2(c, hi, 0) =
2h1h3

c

χ4(c, hi, 0) =
2(5h2

1 + h1)(5h2
2 + h2)

25c2 +O(c−3) (A9)

χ6(c, hi, 0) =
(14h2

1 + h1)(14h2
3 + h3)

4410c2 +O(c−3)

Note that there is no 1/c-correction to χ2(c, hi, 0). Using

2F1(4, 4; 8; z) = 1 + 2z + 25
9 z2 + 10

3 z3 +O(z4)

2F1(6, 6; 12; z) = 1 + 3z +O(z2)
(A10)

and Equation (A6), we find Equation (37) with ka(z), kb(z), and kc(z) in Equation (38) but up to the
order z7.
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We would like to compare the expressions to Equation (3.14) in [23]. Firstly, there is no contribution
like ka(z)6. Secondly, our kb(z) is twice of the corresponding one in [23]. Finally, we can see that kc(z)
reproduces their expressions. In conclusion, we find very similar but different results. After carefully
repeated the analysis, say, in [23], we obtain

ka(z) = 2z4(2F1(2, 2; 4; z))2

kb(z) =
72
z2 ((z− 2)z log(1− z) + 2(1− z) log2(1− z)− 4z2) (A11)

kc(z) =
12
z2 (12(z− 2)zLi2(z) + 16z2 + 6(z− 1)2 log2(1− z) + (z− 2)z log(1− z))

This version matches the above expressions in z expansion. Using these closed form results,
we can go to more higher orders in z as in Equation (38).

Let us move to the case with non-trivial hp, where expressions are needed up to the 1/c order.
Using the expressions of χq in Equation (A7), we obtain

χ2(c, hp) =
1
c

(
h2

p(hp − 1)2

2(2hp + 1)2 + (h1 + h3)
hp(hp − 1)

2hp + 1
+ 2h1h3

)
+O(c−2)

χ4(c, hp) =
1
c

(
(hp − 1)2h3

p(hp + 3)

80(2hp + 1)(2hp + 3)2(2hp + 5)
(A12)

+(h1 + h3)
(hp − 1)h2

p(hp + 3)

20(2hp + 1)(2hp + 3)(2hp + 5)
+ h1h3

hp(hp + 3)
5(2hp + 1)(2hp + 5)

)
+O(c−2)

With the expansions of hypergeometric function in z such as

2F1(hp + 2, hp + 2; 2hp + 4; z) = 1 +
2 + hp

2
z +

(2 + hp)(3 + hp)2

4(5 + 2hp)
z2

+
(hp + 2)(hp + 3)(hp + 4)2

24(2hp + 5)
z3 +O(z4) (A13)

2F1(hp + 4, hp + 4; 2hp + 8; z) = 1 +
4 + hp

2
z +O(z2)

we find Equation (46), where the functions fa(hp, z), fb(hp, z), and fc(hp, z) are given by Equation (50)
but with s = hp. These were analyzed in [23] and, in particular, closed forms were obtained for fa(hp, z)
and fb(hp, z) as

fa(hp, z) = −12zhp−1
2F1(hp, hp; 2hp; z)(2z + (2z + (2− z) log(1− z)))

fb(hp, z) = 12hpzhp
(

2F1(hp, hp; 2hp; z)
(

log(1− z)
(

z−1 − 1
)
+ 1
)

(A14)

+ 1
2 log(1− z) 2F1(hp, hp; 2hp + 1; z)

)
Our results match with their findings in this case.

Appendix B. Higher Spin Currents of Double Trace Type

In this appendix, we analyze higher spin currents of double trace type with s′ = 6, 7, 8 in
Equations (76) and (77). We first present basics on higher spin algebra, which are needed to obtain

6 It seems that the authors of [23] did not consider this type of contribution because it is not new but essentially given by the
square of 1/c order term in Equation (37).
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the precise expressions of these currents primary with respect to Virasoro algebra. We then derive the

three and two point functions of these currents, which are used to obtain (C(s1,s2;s′)
±,0 )2 in Equation (78).

Appendix B.1. Higher Spin Algebra

In order to find out higher spin currents of double trace type, which are primary to Virasoro
algebra, we utilize commutation relations among higher spin currents given in [24] (see also [15,27,28]).
The currents are denoted as W, U, X, Y, which are proportional to J(s) with s = 3, 4, 5, 6. In order to

obtain the leading order expression (C(s1,s2;s′)
±,0 )2, we only need commutation relations up to the terms

vanishing at c→ ∞ as7

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n , [Lm, Wn] = (2m− n)Wm+n

[Lm, Un] = (3m− n)Um+n , [Lm, Xn] = (4m− n)Xm+n , [Lm, Yn] = (5m− n)Ym+n

[Wm, Wn] = 2(m− n)Um+n −
N3

12
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

− N3c
144

m(m2 − 1)(m2 − 4)δm+n

[Wm, Un] = (3m− 2n)Xm+n −
N4

15N3
(n3 − 5m3 − 3mn2 + 5m2n− 9n + 17m)Wm+n

[Um, Un] = 3(m− n)Ym+n − n44(m− n)(m2 −mn + n2 − 7)Um+n (A15)

− N4

360
(m− n)(108− 39m2 + 3m4 + 20mn− 2m3n− 39n2 + 4m2n2 − 2mn2 + 3n4)Lm+n

− cN4

4320
m(m2 − 1)(m2 − 4)(m2 − 9)δm+n

[Wm, Xn] = (4m− 2n)Ym+n +
1
56

N5

N4
(28m3 − 21m2n + 9mn2 − 2n3 − 88m + 32n)Um+n ,

[Xm, Xn] = −
cN5

241920
m(m2 − 1)(m2 − 4)(m2 − 9)(m2 − 16)δm+n + · · ·

The constants are

N3 = 1
5 (λ

2 − 4) , N4 = − 3
70 (λ

2 − 4)(λ2 − 9)

N5 = 1
105 (λ

2 − 4)(λ2 − 9)(λ2 − 16) , n44 = 1
30 (λ

2 − 19)
(A16)

in the current notation.
With the conventions, higher spin charges are given by

L0|O±〉 = h|O±〉 , W0|O±〉 = w|O±〉 , U0|O±〉 = u|O±〉

X0|O±〉 = x|O±〉 , Y0|O±〉 = y|O±〉
(A17)

Here |O±〉 ≡ O±(0)|0〉 and

h = 1
2 (1± λ) , w = ± 1

6 (2± λ)(1± λ) , u = 1
20 (3± λ)(2± λ)(1± λ)

x = ± 1
70 (4± λ)(3± λ)(2± λ)(1± λ) , y = 1

252 (5± λ)(4± λ)(3± λ)(2± λ)(1± λ)
(A18)

at the leading order in 1/c.

7 Here we have changed some signs, see, e.g., footnote 6 of [38]. The changes here are associated with redefinitions as
W → iW, U → −U, X → −iX, and Y untouched.
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Appendix B.2. Three and Two Point Functions

We start from spin 6 current J(3,3;6) ∼: J(3) J(3) : in Equation (76). Let us assume the form as

J(3,3;6)(0)|0〉 = J(3,3;6)
−6 |0〉 = (W−3W−3 + aU−6 + bL−6)|0〉 (A19)

Then the coefficients a, b are fixed by the condition L1 J(3,3;6)
−6 |0〉 = 0 as

a = −10
9

, b =
5N3

7
(A20)

We may rewrite

J(3,3;6)(z) = ∑m ∑n
:WmWn :
zm+n+6 + a

2 ∑n
(n+4)(n+5)Un

zn+6

+ b
24 ∑n

(n+2)(n+3)(n+4)(n+5)Ln
zn+6

(A21)

where the prescription of normal ordering is (see, e.g., (6.144) of [39])

: AB :m = ∑
n≤−hA

AnBm−n + ∑
n>−hA

Bm−n An (A22)

with hA as the conformal weight of A. We then obtain (C(3,3;6)
±,0 )2 with the three point function

〈O±|J(3,3;6)
0 |O±〉 = 〈O±|(W+2W−2 + W+1W−1 + W0W0 + 10aU0 + 5bL0)|O±〉

=
(

8
9 u + 1

14 N3h + w2
)
〈O±|O±〉

(A23)

and the normalization of higher spin current

〈J(3,3;6) J(3,3;6)〉 = 2
(
−5cN3

6

)2
(A24)

For spin 7 there is a double trace operator J(3,4;7) ∼: J(3) J(4) : as in Equation (76). As above, we can
show that

J(3,4;7)(0)|0〉 = J(3,4;7)
−7 |0〉 = (W−3U−4 + aX−7 + bW−7) |0〉 (A25)

with

a = −10
11

, b = −2
9

N4

N3
(A26)

is primary. Rewriting

J(3,4;7)(z) = ∑m≥1,n
:WmUn :
zm+n+7 + a

2 ∑n
(n+5)(n+6)Xn

zn+7

+ b
24 ∑n

(n+3)(n+4)(n+5)(n+6)Wn
zn+7

(A27)

we find that

〈O±|J(3,4;7)
0 |O±〉 = 〈O±| (U2W−2 + U1W−1 + U0W0 + 15aX0 + 15bW0) |O±〉

=
(

15
11 x− 2

15
N4
N3

w + uw
)
〈O±|O±〉

(A28)
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Normalization is given by

〈J(3,4;7) J(3,4;7)〉 =
(
−5cN3

6

)(
−7cN4

6

)
(A29)

There are three types as in Equation (77) for s = 8, and we start from J(4,4;8) ∼: J(4) J(4) :.
We assume its form as

J(4,4;8)(0)|0〉 = J(4,4;8)
−8 |0〉 = (U−4U−4 + aY−8 + bU−8 + dL−8)|0〉 (A30)

The condition L1 J(4,4;8)
−8 |0〉 = 0 fixes the constants as

a = −21
13

, b =
42
11

n44 , d =
7N4

9
(A31)

The operator J(4,4;8) is then obtained as

J(4,4;8)(z) = ∑m,n
:UmUn :
zm+n+8 +

a
2 ∑n

(n+6)(n+7)Yn
zn+8 + b

24 ∑n
(n+4)···(n+7)Un

zn+8

+ d
6! ∑n

(n+2)···(n+7)Ln
zn+8

(A32)

Thus we find

〈O±|J(4,4;8)
0 |O±〉

= 〈O±|(U3U−3 + U2U−2 + U1U−1 + U0U0 + 21aY0 + 35bU0 + 7dL0|O±〉 (A33)

=

(
−hN4

45
+

18n44u
11

+ u2 +
27y
13

)
〈O±|O±〉

The normalization is

〈J(4,4;8) J(4,4;8)〉 = 2
(
−7cN4

6

)2
(A34)

We then move to J(3,5;8) ∼: J(3) J(5) : in Equation (77). We find

J(3,5;8)(0)|0〉 = J(3,5;8)
−8 |0〉 = (W−3X−5 + aY−8 + bU−8)|0〉 (A35)

with

a = −10
13

, b = − 15
154

N5

N4
(A36)

is primary. With this expression, we compute

〈O±|J(3,5;8)
0 |O±〉 = 〈O±|(X2W−2 + X1W−1 + X0W0 + 21aY0 + 35bU0|O±〉 (A37)

=

(
−15N5u

77N4
+ wx +

24y
13

)
〈O±|O±〉 (A38)

and

〈Λ(3,5)Λ(3,5)〉 =
(
−5cN3

6

)(
−9cN5

6

)
(A39)
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For J(3,3;8) ∼: J(3)∂2 J(3) : in Equation (77), we define

J(3,3;8)
−8 |0〉 = (W−5W−3 + aW−4W−4 + bU−8 + dL−8)|0〉 (A40)

where the condition L1 J(3,3;8)
−8 |0〉 = 0 leads to

a = − 7
12

, b =
7

11
, d = −35N3

36
(A41)

Using

J(3,3;8)(z) = 1
2 ∑m,n

:(m+3)(m+4)WmWn :
zm+n+8 + a ∑m,n

:(m+3)Wm(n+3)Wn :
zm+n+8

+ b
24 ∑n

(n+4)···(n+7)Un
zn+8 + d

6! ∑n
(n+2)···(n+7)Ln

zn+8

(A42)

we find

〈O±|J(3,3;8)
0 |O±〉 = 〈O±| 12 (2W2W−2 + 6W1W−1 + 12W0W0)

+ a(5W2W−2 + 8W1W−1 + 9W0W0) + 21bY0 + 35dU0|O±〉 (A43)

=

(
hN3

36
+

3u
11

+
3w2

4

)
〈O±|O±〉

Here we have applied the normal ordering prescription as in Equation (A22). For instance,
we may set

Am = (m + 3)(m + 4)Wm , Bn = Wn, hA = 5 (A44)

The normalization is

〈J(3,3;8) J(3,3;8)〉 =
(
−5cN3

6

)(
−35cN3

2

)
+ 2a2 (−5cN3)

2 (A45)

There could be another spin 8 current of double trace type as J(3,4;8) ∼: J(3)∂J(4) :. We can see that

J(3,4;8)(0)|0〉 = J(3,4;8)
−8 |0〉 = (W−3U−5 + aW−4U−4 + bX−8 + dW−8)|0〉 (A46)

is primary for

a = −4
3

, b = −5
3

, d = −4N4

5N3
(A47)

Since J(3,4;8)(z) is given by

J(3,4;8)(z) = −∑m,n
:Wm(n+4)Un :

zm+n+8 − a ∑m,n
:(m+3)WmUn :

zm+n+8

− b
6 ∑n

(n+5)(n+6)(n+7)Xn
zn+8 − d

5! ∑n
(n+3)···(n+7)Wn

zn+8

(A48)

we find

〈O±|J(3,4;8)
0 |O±〉 = 〈O±| − (6U2W−2 + 5U1W−1 + 4U0W0)

−a(U2W−2 + 2U1W−1 + 3U0W0)− 35bX0 − 21dW0|O±〉 = 0
(A49)

which means that there is no contribution from J(3,4;8).
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