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Abstract: In this paper, we consider the frame-like formulation for the so-called infinite (continuous)
spin representations of the Poincare algebra. In the three-dimensional case, we give explicit
Lagrangian formulation for bosonic and fermionic infinite spin fields (including the complete
sets of the gauge-invariant objects and all the necessary extra fields). Moreover, we find the
supertransformations for the supermultiplet containing one bosonic and one fermionic field, leaving
the sum of their Lagrangians invariant. Properties of such fields and supermultiplets in four and
higher dimensions are also briefly discussed.
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1. Introduction

Besides the very well known finite-component massless and massive representations of the
Poincare algebra, there are rather exotic so-called infinite (or continuous) spin representations
(see e.g., [1,2]). In dimensions d ≥ 4, they have an infinite number of physical degrees of freedom and
so may be of some interest for the higher spins theory. Indeed, they attracted some attention recently
[3–8]. One of the reasons is that, contrary to the finite-component massless fields, such representations
are characterized by a dimensionful parameter (that can play the same role as the cosmological constant
for the massless theories and the mass for the massive ones) and so they may provide an interesting
alternative for the massless higher spin theory in the flat space. Note also that such representations
can appear in the tensionless limit of the string theory.

It has been noted several times that such infinite spin representations may be considered as a limit
of massive higher spin ones where spin goes to infinity and mass goes to zero while the product
remains fixed. Moreover, recently, Metsaev has shown that the metric-like Lagrangian formulation for
the bosonic [9] and fermionic [10] fields in AdSd spaces with d ≥ 4 can be constructed using exactly
the same technique as was previously used for the gauge-invariant formulation of massive higher spin
bosonic [11] and fermionic [12] fields.

The current paper is devoted to the frame-like formulation for such infinite spin fields. In the first
(and main) section, we construct gauge-invariant Lagrangian formulation for bosonic and fermionic
cases in d = 3. We also elaborate on the whole set of the gauge invariant objects (introducing all
necessary extra fields) and rewrite our Lagrangians in the explicitly gauge-invariant form. Moreover,
we managed to find supertransformations for the supermultiplet containing one bosonic and one
fermionic infinite spin field that leaves the sum of their Lagrangians invariant. For this, we heavily
use our previous results on the gauge-invariant formulation for massive bosonic and fermionic
higher spin fields in d = 3 [13,14] (see also [15–17]) as well as results on the massive higher spin
supermultiplets [18–20]. In the last two sections, we briefly discuss the properties of such fields and
supermultiplets in d = 4 and d ≥ 5 dimensions, concluding with explicit details on the forthcoming
publication.

Notations and conventions We will work in the frame-like multispinor formalism (mostly the
same as in [20] but we restrict ourselves to the flat Minkowski space). In this formalism, all objects are
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forms (3, 2, 1, 0-forms) that have totally symmetric local spinor indices. To simplify the expressions,
we will use the condensed notations for the spinor indices such that, e.g.,

Ωα(2k) = Ω(α1α2 ...α2k)

Also, we will always assume that spinor indices denoted by the same letters and placed on the
same level are symmetrized, e.g.,

Ωα(2k)ζα = Ω(α1 ...α2k ζα2k+1)

where symmetrization uses the minimal number of terms necessary without any normalization factor.
The coordinate-free description of the three-dimensional flat Minkowski space will use the background
frame (one-form) eα(2) and external derivative d

d ∧ d = 0

Basic elements of 1,2,3-form space are respectively eα(2), Eα(2), and E where the last two are
defined as the double and triple product of eα(2):

eαα ∧ eββ = εαβEαβ, Eαα ∧ eββ = εαβεαβE

Further on, the wedge product sign ∧ will be omitted.

2. Infinite Spin Fields in d = 3

In this section, we develop the frame-like formalism for the massless infinite spin bosonic and
fermionic fields as well as for the supermultiplet containing such fields.

2.1. Infinite Spin Boson

As we have already noted, there is a tight connection between the gauge invariant description for
the massive finite spin fields and the one for the massless infinite spin fields. Recall that the general
idea of such a description is to begin with the appropriate set of massless (finite component) fields and
then glue them together in such a way that keeps all their gauge symmetries. This, in turn, guarantees
the correct number of physical degrees of freedom. Thus, we will follow the same approach as in [13]
but this time without restriction on the number of components. So, we introduce an infinite set of
physical and auxiliary one-forms Ωα(2k), Φα(2k), 1 ≤ k ≤ ∞ as well as one-form A and zero-forms Bα(2),
πα(2) and ϕ 1. We begin with the sum of kinetic terms for all these fields (recall that the Lagrangians
are three-forms in our formalism):

L0 =
∞

∑
k=1

(−1)k+1[kΩα(2k−1)βeβ
γΩα(2k−1)γ + Ωα(2k)dΦα(2k)]

+EBα(2)B
α(2) − Bα(2)e

α(2)dA− Eπα(2)π
α(2) + πα(2)E

α(2)dϕ (1)

as well as their initial gauge transformations:

δ0Ωα(2k) = dηα(2k), δ0Φα(2k) = dξα(2k) + eα
βηα(2k−1)β, δ0 A = dξ (2)

1 Note that in three dimensions, such an infinite spin bosonic field (as any massive higher spin boson) has just two physical
degrees of freedom, while an infinite spin fermionic field (as any massive higher spin fermion) has just one. However it is
impossible to realize such representations using a finite number of components (see e.g., [6]).
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Then, following a general scheme, we add to the Lagrangian a set of cross terms gluing all these
components together:

L1 =
∞

∑
k=1

(−1)k+1[ãkΩα(2k)β(2)e
β(2)Φα(2k) + akΩα(2k)eβ(2)Φ

α(2k)β(2)]

+ã0Ωα(2)e
α(2)A− a0ΦαβEβ

γBαγ + â0πα(2)E
α(2)A (3)

and introduce appropriate corrections for the gauge transformations:

δ1Ωα(2k) =
(k + 2)

k
akeβ(2)η

α(2k)β(2) +
ak−1

k(2k− 1)
eα(2)ηα(2k−2)

δ1Φα(2k) = akeβ(2)ξ
α(2k)β(2) +

(k + 1)ak−1
k(k− 1)(2k− 1)

eα(2)ξα(2k−2)

δ1Ωα(2) = 3a1eβ(2)η
α(2)β(2), δ1Φα(2) = a1eβ(2)ξ

α(2)β(2) + 2a0eα(2)ξ (4)

δ1Bα(2) = 2a0ηα(2), δ1 A =
a0

4
eα(2)ξ

α(2), δ1 ϕ = −â0ξ

Here, consistency of the gauge transformations with the Lagrangian requires:

ãk = −
(k + 2)

k
ak, ã0 = 2a0

At last, we introduce mass-like terms for all components and appropriate corrections to the
gauge transformations:

L2 =
∞

∑
k=1

(−1)k+1bkΦα(2k−1)βeβ
γΦα(2k−1)γ + b0Φα(2)E

α(2)ϕ + b̃0Eϕ2 (5)

δ2Ωα(2k) =
bk
k

eα
βξα(2k−1)β, δ2πα(2) = b0ξα(2) (6)

Now, we require that the whole Lagrangian L = L0 + L1 + L2 will be invariant under the gauge
transformations δ = δ0 + δ1 + δ2. This produces the following general relations on the parameters:

(k + 2)2bk+1 = k(k + 1)bk (7)

2(k + 2)(2k + 3)
(k + 1)(2k + 1)

ak
2 − 2(k + 1)

(k− 1)
ak−1

2 + 4bk = 0 (8)

as well as some relations for the lower components:

5a1
2 − a0

2 + 4b1 = 0

â0
2 = 64b1, b0 =

â0a0

4
, b̃0 =

3a0
2

2
The general solution of all these relations has two free parameters. In the massive finite spin case,

it is just the mass and spin but in our case we choose a0 and b1 as the main parameters. Then, all other
parameters can be expressed as follows:

bk =
4b1

k(k + 1)2 (9)

ak
2 =

k
(2k + 3)

[
3(k + 1)
2(k + 2)

a0
2 − 8k

(k + 1)
b1] (10)
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Now, we are ready to analyze the solution obtained. Let us begin with the case a0
2 < 16b1.

In general, it means that starting from some value of k, all ak
2 become negative so that we obtain

non-unitary theory. The only exceptions happen when one adjusts the values of a0
2 and b1 so that at

some k0 we obtain ak0 = 0. In this case, we obtain unitary theory with the finite number of components
and this case corresponds to the gauge-invariant description for the massive bosonic field with the
spin k0 + 1. Let us turn to the case a0

2 = 16b1 (this corresponds to the case µ0 = 0 in [9]). In this case,
we obtain:

ak
2 =

3k
2(k + 1)(k + 2)(2k + 3)

a0
2 (11)

so we get a unitary theory with an infinite number of components. Note that for the case a0
2 > 16b1 we

also obtain unitary theory but as it was shown by Metsaev [9] it corresponds to the tachyonic infinite
spin field. Thus, in what follows, we will restrict ourselves to the case a0

2 = 16b1 only.
Naturally, all the physical properties of the solutions obtained are the same as in the metric-like

formulation by Metsaev because metric-like and frame-like formalisms are equivalent and so, for the
free theories, which one to use is just a matter of preference. However, for the investigation of possible
interactions, the frame-like formalism may provide some advantages. In-particular, one of the nice
and general features of the frame-like formalism is that for each field (physical or auxiliary) one can
construct a corresponding gauge-invariant object. For the case at hand, we will follow the massive
case in [17,20]. For almost all fields, corresponding gauge-invariant objects can be directly constructed
from the known form for the gauge transformations given above (here, for convenience, we changed
the normalization for the zero-forms Bα(2) ⇒ 2a0Bα(2), πα(2) ⇒ b0πα(2)):

Rα(2k) = dΩα(2k) +
bk
k

eα
βΦα(2k−1)β +

(k + 2)
k

akeβ(2)Ω
α(2k)β(2) +

ak−1
k(2k− 1)

eα(2)Ωα(2k−2)

T α(2k) = dΦα(2k) + eα
βΩα(2k−1)β + akeβ(2)Φ

α(2k)β(2) +
(k + 1)ak−1

k(k− 1)(2k− 1)
eα(2)Φα(2k−2)

Rα(2) = dΩα(2) + b1eα
βΦαβ + 3a1eβ(2)Ω

α(2)β(2) − a0
2Eα

βBαβ + b0Eα(2)ϕ

T α(2) = dΦα(2) + eα
βΩαβ + a1eβ(2)Φ

α(2)β(2) + 2a0eα(2)A (12)

A = dA− 2a0Eα(2)B
α(2) +

a0

4
eα(2)Φ

α(2)

Φ = dϕ−
√

3
2

a0
2eα(2)π

α(2) + 2
√

3a0 A

However, to construct gauge-invariant objects for Bα(2) and πα(2), one must introduce a first pair
of the so-called extra fields 2 Bα(4) and πα(4):

Bα(2) = dBα(2) −Ωα(2) + b1eα
βπαβ + 3a1eβ(2)B

α(2)β(2)

Πα(2) = dπα(2) + eα
βBαβ −Φα(2) − 1√

3
eα(2)ϕ + a1eβ(2)π

α(2)β(2) (13)

which transform as follows:
δBα(4) = ηα(4), δπα(4) = ξα(4)

2 Recall that extra fields are the fields that do not enter the free Lagrangian but are necessary for the construction of the whole
set of gauge-invariant objects. Moreover, such fields play an important role in the construction of the interactions.



Universe 2017, 3, 63 5 of 12

However, to construct gauge-invariant objects for these new fields, one must introduce the next
pair of extra fields and so on. This results in the infinite chain of zero forms Bα(2k) and πα(2k), 1 ≤ k ≤ ∞
with the following set of gauge-invariant objects:

Bα(2k) = dBα(2k) −Ωα(2k) +
bk
k

eα
βπα(2k−1)β +

(k + 2)
k

akeβ(2)B
α(2k)β(2)

+
ak−1

k(2k− 1)
eα(2)Bα(2k−2)

Πα(2k) = dπα(2k) −Φα(2k) + eα
βBα(2k−1)β + akeβ(2)π

α(2k)β(2) (14)

+
(k + 1)ak−1

k(k− 1)(2k− 1)
eα(2)πα(2k−2)

Here:
δBα(2k) = ηα(2k), δπα(2k) = ξα(2k)

Now, we have an infinite set of gauge one-forms as well as an infinite set of Stueckelberg
zero-forms. As in the massive finite spin case [17,20], this allows us to rewrite the Lagrangian in the
explicitly gauge-invariant form:

L = −1
2

∞

∑
k=1

(−1)k+1[Rα(2k)Π
α(2k) + Tα(2k)Bα(2k)] +

1
2

eα(2)Bα(2)Φ (15)

By construction, each term here is separately gauge-invariant and the explicit values for all
coefficients are determined by the so-called extra field decoupling conditions:

δL
δBα(2k)

= 0,
δL

δπα(2k)
= 0, 2 ≤ k ≤ ∞

2.2. Fermionic Case

In this case, we will also follow the construction for the massive finite spin field [14] but this
time for the infinite set of components. So, we introduce a set of one-forms Ψα(2k+1), 0 ≤ k ≤ ∞ and
a zero-form ψα. Once again, we begin with the sum of kinetic terms for all fields:

1
i
L0 =

∞

∑
k=0

(−1)k+1

2
Ψα(2k+1)dΨα(2k+1) +

1
2

ψαEα
βdψβ (16)

as well as with their initial gauge transformations:

δ0Ψα(2k+1) = dζα(2k+1) (17)

Now we add a set of cross terms gluing them together

1
i
L1 =

∞

∑
k=1

(−1)k+1ckΨα(2k−1)β(2)e
β(2)Ψα(2k−1) + c0ΨαEα

βψβ (18)

and corresponding corrections to the gauge transformations:

δ1Ψα(2k+1) = ck+1eβ(2)ζ
α(2k+1)β(2) +

ck
k(2k + 1)

eα(2)ζα(2k−1),

δ1ψα = c0ζα (19)
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At last, we add the mass-like terms for all fields and appropriate corrections to the
gauge transformations:

1
i
L2 =

∞

∑
k=0

(−1)k+1 dk
2

Ψα(2k)βeβ
γΨα(2k)γ − m0

2
Eψαψα (20)

δ2Ψα(2k+1) =
dk

(2k + 1)
eα

βζα(2k)β (21)

Now, we require that the whole Lagrangian L = L0 + L1 + L2 will be invariant under the gauge
transformations δ = δ0 + δ1 + δ2. This produces a number of general relations on the parameters

(2k + 5)dk+1 = (2k + 3)dk (22)

(k + 2)(2k + 1)
(k + 1)(2k + 3)

ck+1
2 − ck

2 +
dk

2

(2k + 1)
= 0 (23)

as well as
8
3

c1
2 − c0

2 + 4d0
2 = 0, d0 =

m0

3
As in the bosonic case, the general solution for all these relations has two free parameters and we

choose c0 and m0 this time. Then, all other coefficients can be expressed as follows:

dk =
m0

(2k + 3)
(24)

ck
2 =

(2k + 1)
4(k + 1)

c0
2 − k

2(2k + 1)
m0

2 (25)

The properties of this solution appear to be the same as in the bosonic case. Namely, for the
case m0

2 > 2c0
2, in general, we obtain non-unitary theory. The only exceptions appear if one adjusts

these parameters so that at some k0 we get ck0 = 0. In this case, we obtain unitary theory with a finite
number of components which corresponds to the gauge-invariant description for a massive fermionic
field with spin k0 + 3/2. For the m0

2 = 2c0
2 (this corresponds to µ0 = 0 in [10]), we obtain

ck
2 =

c0
2

4(k + 1)(2k + 1)
(26)

that corresponds to the unitary massless infinite spin field while for the m0
2 < c0

2, we again obtain
tachyonic infinite spin case. As in the bosonic case, in what follows, we will restrict ourselves to the
case m0

2 = 2c0
2 only.

Now, we proceed with the construction of the full set of gauge-invariant objects. For all one-forms,
the construction is pretty straightforward (again, for convenience, we changed the normalization for
the zero-form ψα ⇒ c0ψα):

F α(2k+1) = dΨα(2k+1) +
dk

(2k + 1)
eα

βΨα(2k)β + ck+1eβ(2)Ψ
α(2k+1)β(2)

+
ck

k(2k + 1)
eα(2)Ψα(2k−1) (27)

F α = DΨα + d0eα
βΨβ + c1eβ(2)Ψ

αβ(2) − c0
2Eα

βψβ

However, to construct a gauge-invariant object for the zero-form, one must introduce a first
extra field:

Cα = dψα −Ψα + d0eα
βψβ + c1eβ(2)ψ

αβ(2), δψα(3) = ζα(3) (28)
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Then, to construct a gauge-invariant object for this field, one must introduce the second one and
so on. This results in the infinite set of zero-forms with the corresponding gauge-invariant objects:

Cα(2k+1) = dψα(2k+1) −Ψα(2k+1) +
dk

(2k + 1)
eα

βψα(2k)β + ck+1eβ(2)ψ
α(2k+1)β(2)

+
ck

k(2k + 1)
eα(2)ψα(2k−1) (29)

where
δψα(2k+1) = ζα(2k+1)

Now, we have an infinite set of one-form and zero-form fields and their gauge-invariant two and
one forms. This allows us to rewrite the Lagrangian in the explicitly gauge-invariant form:

L = − i
2

∞

∑
k=0

(−1)k+1Fα(2k+1)Cα(2k+1) (30)

As in the bosonic case, each term is separately gauge-invariant while the specific values of all
coefficients are determined by the extra field decoupling condition:

δL
δψα(2k+1)

= 0, 1 ≤ k ≤ ∞

2.3. Infinite Spin Supermultiplet

It is interesting (see e.g., [1]) that, similarly to the usual massless and massive fields, such massless
infinite spin fields can also form supermultiplets. In d = 3, the minimal supermultiplets contain just
one bosonic and one fermionic field. Due to the tight relation with gauge-invariant formulation for
the massive higher spin fields and supermultiplets, here we will heavily use the results of our recent
paper [20]. The main difference (besides the infinite set of components) is the essentially different
expressions for the coefficients ak and ck.

The general strategy will be to find the explicit form of the supertransformations for all fields
such that all gauge-invariant two and one forms transform covariantly and to check the invariance
of the Lagrangian. Let us begin with the bosonic fields. For the general case k ≥ 2, we will use the
following ansatz:

δΩα(2k) = iρkΨα(2k−1)ζα + iσkΨα(2k)βζβ

δΦα(2k) = iαkΨα(2k−1)ζα + iβkΨα(2k)βζβ (31)

and require that the corresponding two-form transform covariantly:

δRα(2k) = iρkF α(2k−1)ζα + iσkF α(2k)βζβ

δT α(2k) = iαkF α(2k−1)ζα + iβkF α(2k)βζβ (32)

First of all, this gives us an important relation

c0
2 = 6a0

2 (33)

Recall that the parameters a0 and c0 are the main dimension-full parameters that determine the
whole construction for the bosonic and fermionic fields. So this relation plays the same role as the
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requirement that masses of bosonic and fermionic fields in the supermultiplet must be equal. Further,
we obtain explicit expressions for all parameters

αk
2 = kα̂2, βk

2 =
(k + 1)

2k(2k + 1)
α̂2

σk
2 =

3a0
2

4k(k + 1)2 α̂2, ρk
2 =

3a0
2

8k3(k + 1)(2k + 1)
α̂2

where α̂ is an arbitrary parameter that can be fixed by the normalization of the superalgebra.
For the three bosonic components that require separate consideration, we obtain:

δΩα(2) = iρ1Ψαζα + iσ1Ψα(2)βζβ −
i
√

3a0
2

4
α̂eα(2)ψβζβ

δA =
iα̂
2

Ψαζα +
i
√

3a0

2
α̂ψαeαβζβ, δϕ = −i

√
3a0α̂ψαζα (34)

At last, the supertransformations for the zero-forms look like:

δBα(2k) = iσkψα(2k)βζβ + iρkψα(2k−1)ζα

δπα(2k) = iβkψα(2k)βζβ + iαkψα(2k−1)ζα (35)

where all coefficients αk, βk, ρk and σk are the same as above.
Now, let us turn to the fermionic components. For the general case k ≥ 1, we will consider the

following ansatz:

δΨα(2k+1) =
αk

(2k + 1)
Ωα(2k)ζα + 2(k + 1)βk+1Ωα(2k+1)βζβ

+γkΦα(2k)ζα + δkΦα(2k+1)βζβ (36)

Then, the requirement that the corresponding two-forms transform covariantly:

δF α(2k+1) =
αk

(2k + 1)
Rα(2k)ζα + 2(k + 1)βk+1Rα(2k+1)βζβ

+γkT α(2k)ζα + δkT α(2k+1)βζβ (37)

gives us the same relation on the parameters a0 and c0 as before and also gives:

γk
2 =

3a0
2

4k(k + 1)2(2k + 1)2 α̂2

δk
2 =

3a0
2

2(k + 1)(k + 2)(2k + 3)
α̂2

Again, there are a couple of components that need to be considered separately:

δΨα = 2β1Ωαβζβ + δ0Φαβζβ + a0α̂eβ(2)B
β(2)ζα +

√
3a0α̂Aζα −

√
3a0

2
α̂ϕeα

βζβ

δψα =
2
√

3
3

α̂Bαβζβ +
a0

2
α̂παβζβ +

α̂

2
ϕζα (38)
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At last, for the Stueckelberg zero-forms, we obtain:

δψα(2k+1) =
αk

(2k + 1)
Bα(2k)ζα + 2(k + 1)βk+1Bα(2k+1)βζβ

+γkπα(2k)ζα + δkπα(2k+1)βζβ (39)

where all parameters αk, βk, γk and δk are the same as before.
We have explicitly checked that the sum of the bosonic and fermionic Lagrangians is invariant

under these supertransformations up to the terms proportional to the auxiliary fields Bα(2) and πα(2)

equations in the same way as in the case of massive higher spin supermultiplets [20].

3. Infinite Spin Fields in d = 4

Similarly to the three-dimensional case in d = 4, there exist just one bosonic and one
fermionic infinite spin representation corresponding to the completely symmetric (spin-)tensors.
Metric-like gauge-invariant Lagrangian formulation (valid also in d > 4) has been constructed
recently [9,10]. Frame-like Lagrangian formulation can be straightforwardly obtained from the
frame-like gauge-invariant formalism for the massive completely symmetric (spin-)tensors developed
in [21]. These results will be presented elsewhere.

The complete set of the gauge-invariant objects for the massive bosonic higher spin fields in d ≥ 4
has been constructed in [22]. It requires the following three sets of fields:

Φµ
a(k),b(l), Sa(k),b(l) 0 ≤ k ≤ s− 1, 0 ≤ l ≤ k

Wa(k),b(l) k ≥ s, 0 ≤ l ≤ s− 1

where notation Φµ
a(k),b(l) means that local indices correspond to the Young tableau with two rows.

Thus, we have two finite sets of gauge one-forms and Stueckelberg zero-forms as well as an infinite
number of gauge-invariant zero-forms. As in the three-dimensional case, one can try to consider the
limit where spin goes to infinity and mass goes to zero, but in d > 3 it appears to be a rather involved
task. As for the analogous formulation for the massive fermionic higher spin fields, to the best of our
knowledge, it still remains to be elaborated.

As is quite well known, in d = 4, there exist two types of massive higher spin N = 1
supermultiplets corresponding to the integer or half-integer superspins: s + 1

2
s s′

s− 1
2


 s + 1

s + 1
2 s + 1

2
s


Their explicit Lagrangian description was constructed in [23] using gauge-invariant description for

massive bosonic and fermionic higher spin fields. The main idea was that the massive supermultiplet
can be constructed out of the appropriately chosen set of massless supermultiplets. The decomposition
of these two massive supermultiplets into the massless one is as follows: Φs+ 1
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It was crucial for the whole construction that each pair of bosonic fields with equal spins must
have opposite parities and one has to consider a kind of duality mixing between these fields. Moreover,
such mixing arises already at the massless supermultiplets level so that even in the massless infinite
spin limit these pairs do not decouple and we still have two infinite spin bosonic and two infinite
spin fermionic components. It is still possible that by abandoning parity one can construct the
supermultiplet containing just one bosonic and one fermionic field but it remains to be checked.

The mixing angles for the bosonic components take rather different values for the two types of
supermultiplets but as can be seen from their explicit expressions in [23], in the infinite spin limit, they
all become equal. At the same time, the main structural difference between them—the presence of
the left most multiplet (As+1, Φs+1/2)—in the infinite spin limit disappears, so both types of massive
supermultiplets produce the same result (up to some field re-definitions).

4. Infinite Spin Fields in d ≥ 5

Contrary to the three- and four-dimensional cases in d ≥ 5, there exists an infinite number of
such infinite spin representations. Let us briefly reiterate how their classification arises [1]. For the
massless fields, we have pµ

2 = 0 and by the Lorentz transformations one can always bring this vector
to the canonical form pµ = (1, 0, . . . , 0, 1). This leads to the so-called little group (i.e., group of
transformations leaving this vector intact) that, besides the group SO(d − 2), contains pseudo
translations Ti, i = 1, 2, . . . , d − 2 that are specific combinations of spatial rotations and Lorentz
boosts. Usual finite helicity massless representations correspond to the case where all Ti = 0 while to
construct infinite spin representations one can follow the same root as for the Poincare group itself.
Namely, one can consider eigen vectors for these pseudo translations Ti|ξi >= ξi|ξi >, ξi

2 being
invariant. By using SO(d − 2) transformations, one can always bring such a vector to the form
(1, 0, . . . , 0) and this, in turn, leads to the so-called short little group SO(d− 3), leaving this vector
intact. Thus, infinite spin representations are determined by the corresponding representations of this
short little group.

Now, it is clear that for the d = 3 and d = 4, this short little group is trivial; that is why we have
just one bosonic and one fermionic representation while in d ≥ 5 there exists an infinite number of them.
For example, in d = 5 and d = 6, such representations can be labeled by the parameter l taking integer
l = 0, 1, 2, . . . or half integer l = 1

2 , 3
2 , . . . values for the bosonic and fermionic cases correspondingly.

Lagrangian formulation for such representations can be obtained from the frame-like gauge-invariant
formulation for the massive mixed symmetry bosonic and fermionic fields corresponding to the Young
tableau Y(k, l) with two rows developed in [24–26]. Namely, one has to consider a limit where mass
goes to zero, k goes to infinity while l remains fixed. This construction will be presented in the
forthcoming publication, so here let us just illustrate how the spectrum of such representations appears
(by the spectrum, we mean a collection of usual massless fields that we have to combine to obtain an
infinite spin one).

The completely symmetric case considered before corresponds to the l = 0 and has the following
spectrum (dot stands for the scalar field):

· . . .

For the first non-trivial case l = 1, we will have two infinite chains of components:

. . .

. . .
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The first line begins with the anti-symmetric second rank tensor, then it contains a hook and the
whole set of long hooks, while in the second line we again have completely symmetric tensors starting
with the vector field this time.

Let us give here one more concrete example for l = 3:

. . .

. . .

. . .

. . .

Hopefully, the general pattern is clear now. In general, in the upper left corner, we have a
rectangular diagram with length l. Moving to the right, we add one box to the first row, while moving
down we cut one box from the second row until we end again with the completely symmetric tensors
in the bottom line.

5. Conclusions

Thus, we have seen that the same frame-like gauge-invariant formalism that has been developed
for the description of massive higher spin fields can be successfully applied to the massless infinite
spin case as well providing an explicit realization for the general idea that massless infinite spin
representations can be obtained as an appropriate limit from the massive ones. As we have already
noted, the presence of the dimensionful parameter gives hope that it may be possible to consider
interactions for such fields directly in the flat space without any need to go to the anti de Sitter
space. A close relationship between the frame-like gauge-invariant description for the massive higher
spin fields and massless infinite spin fields means that we can try to use the same technique for the
construction of possible interactions, as in the massive case. At the same time, it means that we must be
ready to face the same technical difficulties as we have seen in our attempts to work with the massive
high spin fields.
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