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Abstract: We compute the full asymptotic symmetry group of black holes belonging to the
same equivalence class of solutions within the conformal Weyl gravity formalism. We do this
within an AdS2/CFT1 correspondence and by performing a Robinson–Wilczek two-dimensional
reduction, thus enabling the construction of effective quantum theory of the remaining field
content. The resulting energy momentum tensors generate asymptotic Virasoro algebras to s-waves,
with calculable central extensions. These centers, in conjunction with their proper regularized lowest
Virasoro eigenmodes, yield the Bekenstein–Hawking black hole entropy via the statistical Cardy
formula. We also analyze quantum holomorphic fluxes of the dual conformal field theories (CFTs) in
the near horizon, giving rise to finite Hawking temperatures weighted by the central charges of the
respective black hole spacetimes. We conclude with a discussion and outlook for future work.
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1. Introduction

Since the seminal work of Brown and Henneaux [1] and the Kerr/conformal field theory (CFT)
correspondence [2,3], it has become universally accepted that most black holes exhibit a holographic
dual description in terms of a conformal field theory of lesser dimensions. This duality stems in most
part from the fact that the spacetime metric of the (near-)extremal black holes exhibits an anti-de Sitter
(AdS) factor in the near-horizon regime. This is not the case for regular black holes which exhibit
Rindler geometry in their respective near horizons which therefore makes any construction of a pure
Schwarzschild/CFT or non-extremal/CFT correspondence cumbersome and still an open question in
the field of black hole physics. Black hole thermodynamic quantities [4–6],{

TH = h̄κ
2π Hawking Temperature

SBH = A
4h̄G Bekenstein-Hawking Entropy

, (1)

are the usual tests for the above mentioned dualities. It is expected that any candidate theory of
quantum gravity should contain a variant of (1). Since Hawking’s seminal investigation of the density
of quantum states in terms of Bogolyubov coefficients, the effective action approach and associated
energy-momentum tensors for semiclassical matter fields have been explored in various settings for
arriving at TH [7,8]. Of particular interest to our analysis in this article are the conclusions by:
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• Christensen and Fulling [9], whose analysis of an anomalous energy momentum tensor to compute
TH was first carried out by considering the most general solution to the conservation equation,

∇µTµ
ν = 0. (2)

They found that by restricting to the r− t plane of a free scalar field in Schwarzschild geometry
the energy momentum tensor exhibits a trace anomaly leading to the result:

〈Tr
t 〉 =

1
768πG2M2 =

π

12
TH

2, (3)

which is exactly the luminosity (Hawking flux, Hawking radiation) of the four-dimensional black
hole in units h̄ = 1.

• Robinson and Wilczek (RW), who showed that anomalous two-dimensional chiral theories in
the near horizon of black holes are rendered unitary by requiring the black hole to radiate
at temperature TH [10–13]. RW’s analysis also provides a way for obtaining near-horizon
two-dimensional analog black holes coupled to matter fields of parent four-dimensional pure
gravity solutions [14].

Black hole CFT dualities rely on the conjecture that gravity in anti-de Sitter (AdS) space is dual
to a conformal field theory [15]. This paradigm has paved the way for a tremendous program led by
Strominger [2,16], Carlip [17–20], Park [21–23] and others, in applying CFT techniques to compute
the Bekenstein–Hawking entropy of various black holes, in particular (near-)extremal ones. By far,
the most notable example is the Kerr/CFT correspondence and its extensions [2,3], where the general
idea is that the asymptotic symmetry group (ASG), preserving a certain metric boundary or falloff
conditions, is generated by a Virasoro algebra with a calculable central extension:

[Qm,Qn] = (m− n)Qm+n +
c

12
m
(

m2 − 1
)

δm+n,0, (4)

where m, n ∈ Z. The Bekenstein–Hawking entropy is then obtained from Cardy’s formula [24,25] in
terms of the central charge c and the normalized lowest eigenmode Q0 (without Casimir shift):

S = 2π

√
c · Q0

6
. (5)

Since surface gravity is usually employed in regulating the quantum charges of (4), thus leading
to a finite Q0, there is some difficulty in using (5) for the extremal geometries where surface gravity,
and therewith Hawking temperature, vanishes identically. To circumvent this, a thermal Cardy formula
is used:

S =
π2

3
(cLTL + cRTR) (6)

where the subscripts L and R refer to the dual two chiral CFT theories with central charges cL and cR,
Frolov–Thorne vacuum temperatures TL and TR, and where cL = cR, they assume diffeomorphism
invariance of the two chiral halves [3,26–28]. In the specific extremal Kerr case with angular momentum
per unit mass J, the assumption for the central charge is cL = cR = c = 12J, which yields the standard
entropy area law and coincides with the general expression [14,22,29–32],

c =
3A

2πG
(7)

for the central charge in terms of the black hole horizon area A and Newton’s constant.
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It is expected that quantum gravity (a fully formulated ultraviolet complete theory of gravity)
in two dimensions should be dual to a quantum conformal field theory of equal dimensions [16,33],
however two-dimensional dilation gravity theories derived via dimensional reduction of the
four-dimensional Schwarzschild spacetime are in general not conformally invariant. Yet, from the
c-theorem [18,34] we know that these two-dimensional theories must flow, under their renormalization
group, to a CFT. The consensus is that this near-horizon CFT should take the form of a Liouville-type
theory [14,18,19,35–37]. We also note that the computation of either black hole temperature or entropy
is traditionally addressed in separate scenarios (as described above). A novel aspect of our present
calculation is the demonstration that both of these thermodynamics quantities are contained in one
formalism, via a near-horizon Liouville theory.

In addition to past explorations into the topic of a possible non-extremal black hole or
Schwarzschild/CFT correspondence [17,37–39], there seems to be renewed contemporary interest on
this topic [30,40,41] with varying strategies, approaches and advantages. The more contemporary
ideas [40,41] implement a conformal map which endows the Schwarzschild spacetime in four
dimensions with an AdS2 factor. This, followed by a dimensional reduction to two dimensions
within the Einstein–Hilbert action, yields interesting boundary dynamics, which include a calculable
central extension. This extension, together with the thermal Cardy formula reproduces the standard
area law for the Schwarzschild entropy. However, the computation of the full ASG with a proper
SL(2,R) subgroup as well as the computation of the lowest Virasoro eigenmode are missing, and
form part of the new results presented in this manuscript. In addition, since the result was derived
from a Weyl rescaling of the Schwarzschild metric, it begs the question as to whether this scenario
is actually true Schwarzschild/CFT correspondence, since the resulting rescaled spacetime is no
longer of the same equivalence class as the Schwarzschild spacetime within the Einstein–Hilbert
action formalism. The result that an AdS/CFT correspondence is achieved, in this specific case, is
due to the fact that the specific conformal transformation coupled with a change of coordinates maps
the Schwarzschild solution to an extremal Segre non-null electromagnetic field solution, which is
known to exhibit AdS2 × S2 topology in the near horizon. This essentially maps the question of
the Schwarzschild/CFT correspondence to the Kerr/CFT correspondence applied to an extremal
Reissner–Nördstom (RN) black hole [3]. However, the map chosen is conformal and we know from
the above mentioned c-theorem [34] that gravity in two dimensions should run to a conformal field
theory under the renormalization group flow, with center promotional to the horizon area of the
parent four-dimensional black hole [18]. Also, under conformal transformations of the metric, the
form of c and L0 are unaffected (see [14] and references therein for a full discussion). In other words,
starting with a two-dimensional spacetime, gab, with an unknown correspondence we are at liberty
to conformally transform (with respect to the pertaining CFT) to a black hole gab = eγφgAdS2

ab , where
gAdS2

ab has a known correspondence with calculable central charge that would be proportional to the
conformal factor, which in turn contains quantum information about gab. The difficulty with the above
paradigm is summarized as follows:

• A general four-dimensional black hole does not necessary have a two-dimensional representation.
• Computation of the center depends on renormalization procedures of either the quantum CFT or

the quantum energy momentum tensor.
• The auxiliary fields in the resulting CFT require physical boundary conditions rendering them

finite on either the black hole horizon, or at asymptotic infinity or both.

Taking advantage of these facts to (liberally) conformally map the Schwarzschild spacetime
to one with global AdS2 × S2 topology in order to implement our CFT construction to compute
the full asymptotic symmetry group provides us with a conformal window into what a full or
complete Schwarzschild CFT construction may look like. We believe this is a novel step in this
specific direction. As mentioned earlier, the vanishing surface gravity makes regulating the quantum
charges of (4) cumbersome, thus leading to difficulty in using (5) for extremal RN geometry and/or
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Kerr. This is where the thermal Cardy formula (6) is employed in addition with the Frolov–Thorne
vacuum temperatures TL and TR. In the case for the famous Kerr/CFT correspondence in the near
extremal limit:

TL =
(GM)2

2π J
and TR =

√
(GM)4 − (GJ)2

2π J
. (8)

Also, in the extremal limit we have TL = 1
2π and TR = 0, where J = GM2. Additionally, since we

have the assumption that cL = cR = c = 12J in the extremal case, the near-horizon extremal Kerr
(NHEK) entropy area law is obtained from (6):

SBH =
π2

3
(cLTL + cRTR) =

π2

3
cTL = 2π J. (9)

The above allows for the identification of a near horizon extremal Kerr temperature,

T = TL + TR =
1

2π
, (10)

which is in contrast to the vanishing Hawking temperature in this limit.
Now, while the implementation of the thermal Cardy formula is motivated by the absence of

a properly regularized lowest Virasoro eigenmode (4), a finite mode may be inferred, not from first
principle of the ASG, but from (9) by the identification,

∂SCFT
∂Q0

=
∂SBH
∂Q0

≡ 1
T
⇒ Q0 =

π2

6
cT2. (11)

Additionally, the general temperature T = 1
2π of (10) may be obtained from (11) if the ASG

contains a proper SL(2,R) subgroup. Given the relationship of (11) we conclude that T in general
should be unitless (for h̄ = 1), which coincides with the Hawking temperature scaled by a finite
time regulator 1/κ yielding: T = 1

2π . This result extends smoothly to extremality (similarly to the
identification found in [17,39]). Now, since the extremal result c = 12J is consistent with the general
expression c = 3A

2πG , we may recast c, TL, TR in terms of more general black hole variables:

c =
3A

2πG
, TL =

4(GM)2

A
and TR =

4
√
(GM)4 − (GJ)2

A
(12)

and substituting (12) into (6) yields the standard Bekenstein–Hawking area law SBH = A
4G . Also,

assuming a smooth extension to non-extremality, we have:

T = TL + TR =
4(GM)2

A
+

4
√
(GM)4 − (GJ)2

A
=

1
2π

. (13)

Such a procedure would provide a more wholesome calculation of near-extremal black
hole entropy.

Motivated by the above discussion, the aim of this note is to construct a CFT dual for the
near-horizon Weyl rescaled geometry and compute the full ASG with an SL(2,R) subgroup (which is
absent in [30,40,41]) and obtain its entropy via the statistical Cardy formula (5). We will accomplish
this by performing a Robinson and Wilczek near-horizon dimensional reduction and construct a CFT
out of the resulting two-dimensional Kaluza–Klein field continent. The resulting two-dimensional
black hole is pure AdS2 (not a non-null EM field) and we compute its full asymptotic symmetry group
including lowest renormalized eigenmode. This should complete the near-horizon quantum microstate
study of the Weyl rescaled Schwarzschild geometry. Additionally, we discuss our results and premise
within the conformal Weyl gravity formalism. As aforementioned, it is not entirely transparent why
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the use of a conformally rescaled geometry instead of the actual geometry is valid, since they are
geometrodynamically different. However, the conformal Weyl gravity (CWG) paradigm (see [42] and
the references therein) may straighten this implementation, since any two black holes related by a
conformal transformation would belong to the same equivalence class of solutions to the respective
CWG field equations. To engage in this topic, we solve the CWG vacuum field equations for a solution
with AdS2 × S2 topology. We then study the resulting quantum microstates within an AdS2/CFT1

correspondence and compute its full ASG. Finally we discuss a dimensional reduction of CWG and see
what possible avenues there are for extracting the central extension directly from its action principle.

2. On the Weyl Rescaled Schwarzschild CFT

In this section we complete the study of the near-horizon thermodynamics of the Weyl rescaled
Schwarzschild spacetime within a full computation of its near-horizon ASG and quantum theory.
In addition we demonstrate how both entropy and temperature are contained within one single
respective formalism.

2.1. Geometry

We begin with the standard Schwarzschild spacetime metric:

ds2
ss = −

(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2, (14)

which can be transformed to exhibit AdS2 × S2 topology via the Weyl rescaling,

gµν →Ω−2gµν

for Ω−2 =
(2GM)2

r2

(15)

followed by the map r → 1/r and coordinate transformation:

r → λr, t→ t
(2GM)2λ

, (16)

where the (2GM)2 factor above is chosen to ensure the resulting black hole’s horizon area is equivalent
to the that of the original Schwarzschild spacetime in (14). Next, taking the limit λ→ 0 we obtain the
Weyl rescaled Schwarzschild spacetime:

ds2 = − r2

`2 dt2 +
`2

r2 dr2 + `2dθ2 + `2 sin2 θdφ2, (17)

where `2 = (2GM)2. The above Weyl rescaled Schwarzschild spacetime (WRSS) represents an extremal
solution of Petrov Type D and Segre Type {(11), (1, 1)} (non-null)1 with global AdS2 × S2 topology,
however we will tune it to near-extremality via the finite temperature/mass gauge:

ds2
WRSS = − r2 − 2GMr

`2 dt2 +
`2

r2 − 2GMr
dr2 + `2dθ2 + `2 sin2 θdφ2, (18)

where we have endowed the spacetime with an Arnowitt, Deser and Misner (ADM) mass parameter
and horizon r+ = 2GM, which represents a finite excitation above extremality. The above two line
elements (17) and (18) are classically diffeomerophic [3,43], as they both exhibit identical canonical

1 We employ the standard spacetime classification notation of [44].
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Riemann tensors and covariant derivatives of their canonical Riemann tensors to the tenth order
according to the Cartan–Karlhede spacetime equivalence algorithm/theorem [44–46]:

R(17)
µανβ = R(18)

µανβ (19)

∇ρR(17)
µανβ = ∇ρR(18)

µανβ = 0. (20)

Since the first covariant derivative of both curvature tensors is identically zero, we need not
list additional derivatives. However they induce different quantum theories in their respective near
horizons and the excitation above extremality will aid substantially in our CFT construction.

2.2. Quantum Fields in WRSS Spacetime

Similarly to the background discussed in the introduction, we will now perform a semi-classical
analysis in the near horizon of (18) in order to extract the two-dimensional field content relevant for
our CFT construction. We do this by probing the spacetime with a minimally coupled scalar, for which
we know the quantum effective action:

Se f f ∼
β̄ψ

16π

∫
d2x
√
−g(2)R(2) 1

�g(2)
R(2) + · · · , (21)

where β̄ψ = const
G is the Weyl anomaly coefficient [47,48]. Our goal will be to determine the respective

effective theory and value of β̄ψ within an s-wave approximation. This is reasonable if we assume our
scalar probe has gravitational origin, i.e., (18) exhibits a Kaluza–Klein decomposition:

ds2 = − f (r)dt2 + f (r)−1dr2 + α2e−2ψ(r)
[
dθ2 + sin2 θ (dφ + Adt)2

]
= ds2

2D + α2e−2ψ(r)
[
dθ2 + sin2 θ

(
dφ + Aµdxµ

)2
] (22)

in terms of a two-dimensional black hole coupled to a two-dimensional real scalar and two-dimensional
U(1) gauge field. In the case of (18), the only allowable two-dimensional gauge field couplings are
given by linear phase shifts of the form φ→ φ + At, and thus are trivial. Even for spacetimes that do
not have global spherical symmetry, the s-wave approximation is still valid, since all of the gravitational
dynamics seem to be contained in this regime [49]2.

To begin extracting the relevant two-dimensional near-horizon field content, we consider a
four-dimensional massless free scalar field in the background of (18):

S f ree =
1
2

∫
d4x
√
−ggµν∂µ ϕ∂ν ϕ

= − 1
2

∫
d4x ϕ

[
∂µ

(√
−ggµν∂ν

)]
ϕ

= − 1
2

∫
d4x ϕ

[
∂t

(
−`2 sin θ

`2

r2 − 2GMr
∂t

)
+ ∂r

(
`2 sin θ

r2 − 2rGM
`2 ∂r

)
+∂θ

(
`2 sin θ

1
`2 ∂θ

)
+ ∂φ

(
`2 sin θ

1
`2 sin2 θ

∂φ

)]
ϕ.

(23)

2 In [32] it was shown that lm terms above 00 decay exponentially fast in time by analyzing the asymptotic behavior of the
field equation for an axisymmetric spacetime.



Universe 2017, 3, 56 7 of 18

The above functional can be reduced to a two-dimensional theory by expanding ϕ in terms of
spherical harmonics via:

ϕ(t, r, θ, φ) = ∑
lm

ϕlm(r, t)Y m
l (θ, φ), (24)

where ϕlm is an interacting complex two-dimensional scalar field. Next, integrating out angular
degrees of freedom, performing a change of coordinates to tortoise coordinates dr∗ = f (r)dr and
examining the region r ∼ r+, reduces the two-dimensional action even more. This is due to the fact that
interacting, mixing, and potential terms (∼ l(l + 1) . . .) are weighted by a factor of f (r(r∗)) ∼ e2κr∗ ,
which vanishes exponentially fast in the region near the horizon r ∼ r+. This leaves us with a collection
of infinite massless scalar fields with action functional:

S = − `2

2

∫
d2x ϕ∗lm

[
− 1

f (r)
(∂t)

2 + ∂r f (r)∂r

]
ϕlm

= − `2

2

∫
d2x ϕ∗lmDµ

[√
−g(2)gµν

(2)Dν

]
ϕlm,

(25)

where Dµ = ∂µ − imAµ is the gauge covariant derivative. Thus, we arrive at the Robinson and Wilczek
two-dimensional analog (RW2DA) fields for the WRSS spacetime solution given by:

g(2)µν =

(
− f (r) 0

0 1
f (r)

)
f (r) =

r2 − 2GMr
`2 (26)

with trivial U(1) gauge field.

A = Atdt = constant = 0. (27)

Again, given the WRSS ansatz (18), it is not surprising that the only relevant physical fields in the
region r ∼ r+ are the above RW2DAs, with a trivial gauge sector. This is due to its spherical symmetry
and we will continue in the next section with a holographic semiclassical analysis of g(2)µν, A and ϕlm
to obtain the dual quantum CFT in the near-horizon regime.

The quantum effective functional of (25), to s-wave ϕ00 =
√

6
G ψ for unitless3 ψ, is obtained via

path integration over ψ, which amounts to a zeta-function regularization of the functional determinant

of Dµ

[√
−g(2)gµν

(2)Dν

]
. In general it is comprised of the two parts [11,50]:

Γ = Γgrav + ΓU(1), (28)

where,

Γgrav =
`2

16πG

∫
d2x
√
−g(2)R(2) 1

�g(2)
R(2),

ΓU(1) =
3e2`2

πG

∫
F 1
�g(2)

F
(29)

and in concurrence with (21) for β̄ψ = `2

G . R(2) above is the Ricci scalar curvature obtained from g(2)µν

and F = dA is the U(1) invariant curvature two form. Naturally, ΓU(1) = 0 in (28) for the case of

3 The factor
√

6 is chosen to coincide with the normalization of (21) for the gravitational sector of the effective action.
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WRSS, but we will keep it in our analysis for completeness and use in later sections. Next, we wish to
restore locality in (29), which may be done by introducing auxiliary scalars Φ and B such that:

�g(2)Φ = R(2) and �g(2)B = εµν∂µAν, (30)

which for general f (r) and At(r) have the form:

− 1
f (r)

∂2
t Φ + ∂r f (r)∂rΦ = R(2)

− 1
f (r)

∂2
t B + ∂r f (r)∂rB = − ∂r At,

(31)

with general solutions:

Φ(t, r) = α1t +
∫

dr
α2 − f ′(r)

f (r)

B(t, r) = β1t +
∫

dr
β2 −At(r)

f (r)
,

(32)

where αi and βi are integration constants. Using (30) in (29) yields a near-horizon Liouville-type CFT
of the form:

SNHCFT =
`2

16πG

∫
d2x
√
−g(2)

{
−Φ�g(2)Φ + 2ΦR(2)

}
+

3e2`2

πG

∫
d2x
√
−g(2)

−B�g(2)B + 2B

 εµν√
−g(2)

 ∂µ Aν


(33)

2.3. Asymptotic Symmetries

Now, we will compute the non-trivial asymptotic symmetries of relevance for the gravitational
sector of (26) with large r behavior defined by,

g(0)µν =

 −
r2

`2 +
2rGM
`2 +O

((
1
r

)3
)

0

0 `2

r2 +O
((

1
r

)3
)
 (34)

which yield a asymptotically AdS2 configuration with the Ricci scalar, R = − 2
l2 + O

((
1
r

)1
)

. We

couple this with the following metric fall-off conditions:

δgµν =

 O
((

1
r

)3
)
O
((

1
r

)0
)

O
((

1
r

)0
)

O (r)

 , (35)

which are preserved by the following set of asymptotic diffeomorphisms:

χ = −C1
rξ(t)

r− 2GM
∂t + C2rξ ′(t)∂r, (36)

where ξ(t) is an arbitrary function and Ci are arbitrary normalization constants. Switching to conformal
light cone coordinates given by:

x± = t± r∗ (37)
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and transforming (36), we obtain:

χ± =

(
−C1r(r∗)ξ(x+, x−)± C2`

2ξ ′(x+, x−)
)

r(r∗)− 2GM
, (38)

which are smooth on the asymptotic boundary.

2.4. Energy Momentum and Central Charge

The energy momentum tensor is defined in the usual way:

〈
Tµν

〉
=

2√
−g(2)

δSNHCFT

δg(2)µν

=
`2

8πG

{
∂µΦ∂νΦ− 2∇µ∂νΦ + g(2)µν

[
2R(2) − 1

2
∇αΦ∇αΦ

]} (39)

Next, we substitute the general solution (32) into (39) and adopt modified Unruh vacuum
boundary conditions (MUBC) [51],{

〈T++〉 = 0 r → ∞, `→ ∞

〈T−−〉 = 0 r → r+
, (40)

which infer the general behavior: {
f (r) = 0 r → r+
f (r) = 0 `→ ∞

. (41)

These results allows the determination of the integration constants αi, yielding:

α1 = − α2 =
1
2

f ′(r+) (42)

and thus, determining the energy momentum tensor (EMT). The above EMT exhibits a Weyl (trace)
anomaly given by:

〈
T µ

µ

〉
= − β̄ψ

4π
R(2), (43)

which uniquely determines the value of central charge via [28]:

c
24π

=
β̄ψ

4π
⇒ c = 6`2/G =

3A
2πG

, (44)

in agreement with (7). Additionally, due to the use of the MUBC (and to O( 1
` )

2, which we denote
by the single limit x+ → ∞), the asymptotic boundary of interest of the EMT is dominated by one
holomorphic component 〈T−−〉. Expanding this component in terms of the boundary fields (34) and
computing its response to the asymptotic symmetry yields:

δχ− 〈T−−〉 = χ− 〈T−−〉′ + 2 〈T−−〉
(
χ−
)′
+

c
24π

(
χ−
)′′′

+O
((

1
r

)3
)

, (45)

where the prime denotes temporal derivatives. The above implies that 〈T−−〉 transforms asymptotically
as the EMT of a one-dimensional CFT with center (44).
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2.5. Full Asymptotic Symmetry Group

Next, we compute the full ASG or charge algebra by compactifying the x− coordinate to a circle
from 0→ 4π`2/r+ and defining the asymptotic conserved charge:

Qn = lim
x+→∞

∫
dxµ

〈
Tµν

〉
χν

n, (46)

where we replaced ξ(x+, x−) with circle diffieomorphisms e−in(r+/2`2)x±

r+/2`2 in (38) and the Cis are fixed by

requiring the χ−n to form an asymptotic centerless Witt or Di f f (S1) subalgebra:

i
{

χ−m , χ−n
}
= (m− n)χ−m+n. (47)

Now, we calculate the canonical response of Qn with respect to the asymptotic symmetry yields:

δχ−m
Qn = [Qm,Qn] = (m− n)Qn +

c
12

m
(

m2 − 1
)

δm+n,0, (48)

i.e., the asymptotic quantum generators form a centrally extended Virasoro algebra with central charge
(44) and computable non-zero lowest eigenmode:

Q0 =
`2

4G
=

A
16πG

. (49)

2.6. AdS2/CFT1 and WRSS Thermodynamics

Summarizing from the previous section, we showed that the WRSS is holographically dual to a
CFT with center:

c =
3A

2πG
(50)

and lowest Virasoro eigenmode,

Q0 =
A

16πG
. (51)

Using this results in the statistical (not thermal) Cardy formula (5),

S = 2π

√
cQ0

6
=

A
4G

=
`2

4G
, (52)

which is in agreement with the Bekenstein–Hawking area law (1) for the Schwarzschild spacetime (14).
Next, to compute the WRSS black hole temperature we turn our attention back to the EMT (39),

which on the horizon r → r+ is dominated by one holomorphic component:

〈T++〉 = −
`2

32πG
f ′
(
r+
)2 (53)

which is precisely the Hawking flux (HF, radiation flux ∼ T t
r ) of the WRSS metric, weighted by the

central charge (44):

〈T++〉 = cHF = −c
π

12
(TH)

2 (54)
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with Hawking temperature [52,53]

TH =
f ′ (r+)

4π
. (55)

The above are interesting results, as they demonstrate that the AdS2/CFT1 correspondence
constructed here contains information about both black hole entropy and black hole temperature.
However, we should note that the 〈T++〉 component in the respective limit is not precisely the Hawking
flux of the four-dimensional parent black hole, yet having prior knowledge of the central extension,
it is possible to read off the relevant information from the correspondence.

3. Canonical Microstates from the ASG and Conformal Weyl Gravity

As mentioned in the introduction we turn our attention now to the computation of the full ASG of
a black hole originating from the conformal Weyl gravity (CWG) paradigm. The CWG action function
is given by,

SCWG = αg

∫
d4x
√
−gWαµβνWαµβν, (56)

where αg is a unit-less coupling and Wαµβν is the Weyl tensor defined in its usual way. The above action
is invariant under conformal transformations and thus (14) and (18) belong to the same equivalence
class of solutions within this formalism. The unit-less coupling makes CWG a naively attractive
candidate for pursuing quantum gravity, it also includes cosmological dynamics as part of its vacuum,
however the fourth-order nature and unitarity issues endow it with some difficulties. It is nonetheless
an attractive theory and includes all the standard solar-system tests of general relatively and warrants
investigation in its own right. In this section will construct a near-horizon CFT dual to a black hole
belonging uniquely to the CWG vacuum solution space. We compute the resulting implied ASG and
thermodynamics. This analysis strengthens the premise of equivalent black hole thermodynamic
systems related by a conformal transformation of the parent black holes.

3.1. CWG Geometry

The vacuum equation of motion of CWG resulting from varying (56) with respect to the inverse
metric reads:

2∇α∇βW αβ
µ ν + RαβW αβ

µ ν = 0 (57)

We will solve the above equation starting with the initial Kaluza–Klein ansatz:

ds2 = K1(θ)
[
− f (r)dt2 + f (r)−1dr2 + `2dθ2

]
+

`2sin2θ

K2(θ)

(
dφ− Aµ(r)dxµ

)2 , (58)

which includes a particular interesting solution (conformal Weyl gravity solution, CWGS) with finite
mass/temperature:

f (r) =
r2 − 2GMr

`2 Aµ(r)dxµ = − r− 2GM
`2 dt and (59)

K1(θ) = sin θ K2(θ) = sin θ (60)

and line element:

ds2
CWGS = sin θ

[
− r2 − 2GMr

`2 dt2 +
`2

r2 − 2GMr
dr2 + `2dθ2

]
+ `2sinθ

(
dφ +

r− 2GM
`2 dt

)2
. (61)
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The above line element exhibits local AdS2 × S2 topology and non trivial two-dimensional U(1)
gauge potential. It is a black hole of global Petrov Type O and Segre Type {(111), 1} (perfect fluid),
with the Kretschmann invariant:

RµναβRµναβ =
15 csc6 θ

4`2 (62)

and horizon located at r+ = 2GM with area A = 4π`2. We computed and listed the classification
here for completeness, however in general we are not interested in the novelty of (61), only in the
near-horizon quantum theory. The AdS2 factor and finite mass/temperature in (61) will aid (as before)
considerably in our next analytical pursuits.

3.2. Quantum Fields in CWGS

Following from Section 2.2, we will similarly begin by probing (61) with a free scalar field:

S f ree =
1
2

∫
d4x
√
−ggµν∂µ ϕ∂ν ϕ

= − 1
2

∫
d4x ϕ

[
∂µ

(√
−ggµν∂ν

)]
ϕ

= − 1
2

∫
d4x ϕ

[
∂t

(
−`2 sin θ

`2

r2 − 2GMr
∂t

)
+ ∂r

(
`2 sin θ

r2 − 2rGM
`2 ∂r

)
+∂θ

(
`2 sin θ

1
`2 ∂θ

)
+ ∂φ

({
sin θ − `2 sin θ

r2

`4
`2

r2 − 2GMr

}
∂φ

)
+2∂t

(
−`2 sin θ

r
`2

`2

r2 − 2GMr
∂φ

)]
ϕ.

(63)

Again, we reduce to a two-dimensional theory by expanding ϕ in terms of spherical
harmonics (24), integrating out angular degrees of freedom, changing to tortoise coordinates and
taking the limit r ∼ r+, which leaves us with a (similar to (25)) collection of infinite massless scalar
fields with action functional:

S = − `2

2

∫
d2x ϕ∗lm

[
− 1

f (r)
(∂t − imAt(r))

2 + ∂r f (r)∂r

]
ϕlm

= − `2

2

∫
d2x ϕ∗lmDµ

[√
−g(2)gµν

(2)Dν

]
ϕlm,

(64)

Thus, we arrive at the RW2DA fields for the CWGS spacetime given by:

g(2)µν =

(
− f (r) 0

0 1
f (r)

)
f (r) =

r2 − 2GMr
`2 (65)

and U(1) gauge field.

A = At(r)dt = − r− 2GM
`2 dt. (66)
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At this point we follow the same steps as in the previous section going from (28) to (33), yielding
again a Liouville-type near-horizon CFT for the RW2DA of the CWGS spacetime:

SNHCFT =
`2

16πG

∫
d2x
√
−g(2)

{
−Φ�g(2)Φ + 2ΦR(2)

}
+

3e2`2

πG

∫
d2x
√
−g(2)

−B�g(2)B + 2B

 εµν√
−g(2)

 ∂µ Aν


(67)

3.3. CWGS Asymptotic Symmetries

We will now focus on the non-trivial asymptotic symmetries of relevance for the RW2DA fields (65)
and (66) with large r behavior defined by:

g(0)µν =

 −
r2

`2 +
2rGM
`2 +O

((
1
r

)3
)

0

0 `2

r2 +O
((

1
r

)3
)
 (68)

A(0)
t =

r
`2 +O

(
1
r

)3
(69)

which yield an asymptotically AdS2 configuration with the Ricci scalar, R = − 2
l2 + O

((
1
r

)1
)

. We

couple this with the following metric and gauge field fall-off conditions:

δgµν =

 O
((

1
r

)3
)
O
((

1
r

)0
)

O
((

1
r

)0
)

O (r)

 (70)

δA = O
(

1
r

)0
(71)

which are again preserved by the following set of asymptotic diffeomorphisms:

χ = −C1
rξ(t)

r− 2GM
∂t + C2rξ ′(t)∂r, (72)

The variation of the gauge field with respect to the above diffeomorphisms yields δχA = O
(

1
r

)0

and thus, δχ is trivially elevated to a total symmetry,

δχ → δχ+Λ (73)

of the action. Finally, again switching to conformal light cone coordinates and transforming (72),
we obtain:

χ± =

(
−C1r(r∗)ξ(x+, x−)± C2`

2ξ ′(x+, x−)
)

r(r∗)− 2GM
, (74)

which are still smooth on the relevant asymptotic boundary.
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3.4. Energy Momentum and CWGS Central Charge

The energy momentum is given by (39), and the U(1) current is defined as:

〈Jµ〉 = 1√
−g(2)

δSNHCFT
δAµ

=
6e2`2

π

1√
−g(2)

εµν∂νB. (75)

Again, substituting the general solution (32) into (75) and employing MUBC on both
currents above: {

〈T++〉 = 〈J+〉 = 0 r → ∞, `→ ∞

〈T−−〉 = 〈J−〉 = 0 r → ε
(76)

we obtain the general behavior: {
f (r) = 0 r → ε

f (r) = At(r) = 0 `→ ∞
. (77)

These results allow the determination of the integration constants αi and βi:

α1 = − α2 =
1
2

f ′(ε)

β1 = − β2 =
1
2
At(ε)

(78)

and thus, determine the EMT and U(1) current. As before, computing the Weyl (trace) anomaly:

〈
T µ

µ

〉
= − β̄ψ

4π
R(2), (79)

determines uniquely the value of central charge:

c
24π

=
β̄ψ

4π
⇒ c = 6`2/G =

3A
2πG

, (80)

which again agrees with (7). Additionally and due to the use of the MUBC, the EMT is dominated by
one holomorphic component 〈T−−〉 on the asymptotic boundary x+ → ∞. Expanding this component
in terms of the boundary fields (68) and computing its response to a total symmetry yields:

δχ−+Λ 〈T−−〉 = χ− 〈T−−〉′ + 2 〈T−−〉 (χ−)′ + c
24π (χ−)

′′′
+O

((
1
r

)3
)

δχ−+Λ 〈J−〉 = O
((

1
r

)3
) (81)

and thus, 〈T−−〉 transforms again asymptotically as the EMT of a one-dimensional CFT with
center (80).

3.5. Full ASG for CWGS

Having done most of the legwork now, this section parallels Section 2.5 very closely. To compute
the charge algebra we compactify the x− coordinate to a circle from 0 → 4π`2/r+ and define the
asymptotic conserved charge:

Qn = lim
x+→∞

∫
dxµ

〈
Tµν

〉
χν

n, (82)
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Next, making the same substations and requirements as in Section 2.5 we obtain:

δχ−m
Qn = [Qm,Qn] = (m− n)Qn +

c
12

m
(

m2 − 1
)

δm+n,0, (83)

i.e., the asymptotic quantum generators of the CWGS spacetime form a centrally extended Virasoro
algebra with central charge (80) and computable non-zero lowest eigenmode:

Q0 =
`2

4G
=

A
16πG

. (84)

3.6. AdS2/CFT1 and CWGS Thermodynamics

Substituting (84) and (80) into the statistical Cardy formula (5), we again reproduce the
Bekenstein–Hawking area law for the CWGS:

S = 2π

√
cQ0

6
=

A
4G

=
`2

4G
, (85)

Next, to compute the CWGS black hole temperature we turn our attention back to (39), since we
need only consider the gravitational sector, which on the horizon r → r+ is dominated by one
holomorphic component:

〈T++〉 = −
`2

32πG
f ′
(
r+
)2 (86)

from which we again are able to read off the Hawking flux, given prior knowledge of the central
charge (80):

〈T++〉 = cHF = −c
π

12
(TH)

2 (87)

and thus we obtain the Hawking temperature,

TH =
f ′ (r+)

4π
. (88)

Once more, the above analysis demonstrates that our constructed AdS2/CFT1 correspondence
contains information about both black hole entropy and black hole temperature.

4. Discussion and Concluding Remarks

In this paper we have shown that the Weyl rescaled Schwarzschild spacetime (18) and the
conformal Weyl gravity solution (61) are both holographically dual to a Liouville CFT (33) and
have also computed their full ASG in their respective near-horizon regimes. These parallel results
strengthens the use of conformal Weyl rescalings to study the thermodynamics of the Schwarzschild
spacetime, since both belong to the same equivalence class of solutions within the CWG formalism.
Additionally we have performed our analysis by analyzing specific black holes of the solution spaces
of Einstein and conformal Weyl gravities. Equally interesting would be to perform the ASG calculation
at the action level of CWG. That is, starting with a general spacetime of the form:

ds2 = − f (r)dt2 +
1

f (r)
dr2 + e−2ψ(r)`2dθ2 + e−2ψ(r)`2 sin2 θdφ2, (89)
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substituting into (56) and integrating out angular degrees of freedom yielding a two-dimensional
Conformal Weyl dilation gravity:

SCWDG =
16π`2αg

3

∫
d2√−ge−2ψ(r)

[
−R

2
+�ψ− e2ψ

`2

]2

, (90)

up to total derivatives. The above two-dimensional theory is not conformally invariant anymore (as
compared to its parent CWG) and signals the presence of an anomaly. A holographic regularization of
its boundary stress tensor dynamics would be interesting and should reveal the details of the respective
anomaly and how it relates to the centers derived in the previous sections. This would be a good
starting point for additional future interesting work on the central charge of CWG.

Since we are on the topic of holographic regularization, our derived zero-mode in (84) computed
from (82) in terms of a holographic regulated energy momentum tensor is in congruence with the
definition of ADM mass in a gravitation system [54] and in fact is proportional to the irreducible mass:

Q0 = GM2
irr, (91)

where the irreducible mass is the final ADM mass state of a Kerr black hole after it has completed
its Penrose process. This relation may have broad generality and larger avenues of application,
in particular for extremal black hole CFT correspondences where temperature vanishes, but mass
is non-zero.
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The following abbreviations are used in this manuscript:

CFT conformal field theory
AdS anti-de Sitter
RW Robinson and Wilczek
ASG asymptotic symmetry group
RN Reissner-Nördstrom
NHEK near-horizon extremal Kerr
CWG conformal Weyl fravity
ADM Arnowitt, Deser and Misner
RW2DA Robinson and Wilczek two-dimensional analog
WRSS Weyl rescaled Schwarzschild spacetime
EMT energy momentum tensor
NH near horizon
MUBC modified Unruh Vacuum boundary conditions
Di f f diffeomorphism
CWGS conformal Weyl gravity solution
CWDG conformal Weyl dilaton gravity
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