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Abstract: We analyze the time evolution of a spherically-symmetric collapsing matter from the
point of view that black holes evaporate by nature. We consider conformal matters and solve the
semi-classical Einstein equation Gµν = 8πG〈Tµν〉 by using the four-dimensional Weyl anomaly with a
large c coefficient. Here, 〈Tµν〉 contains the contribution from both the collapsing matter and Hawking
radiation. The solution indicates that the collapsing matter forms a dense object and evaporates
without horizon or singularity, and it has a surface, but looks like an ordinary black hole from the
outside. Any object we recognize as a black hole should be such an object.
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1. Introduction and the Basic Idea

Black holes are formed by matters and evaporate eventually [1]. This process should be governed
by the dynamics of a coupled quantum system of matter and gravity. It has been believed for a long
time that taking the back reaction from the evaporation into consideration does not change the classical
picture of black holes drastically. This is because evaporation occurs in the time scale ∼ a3/l2

p as
a quantum effect, while collapse does in the time scale ∼ a as a classical effect1. Here, a = 2GM, and
lp ≡

√
h̄G. However, these two effects become comparable near the black hole. Recently, it has been

discussed that the inclusion of the back reaction plays a crucial role in determining the time evolution
of a collapsing matter [3–9].

We first explain our basic idea by considering the following process. Suppose that a spherically
symmetric black hole with mass M = a

2G is evaporating. Then, we consider what happens if we add
a spherical thin shell to it. The important point here is that the shell will never go across “the horizon”
because the black hole disappears before the shell reaches “the horizon”.

To see this, we assume, for simplicity, that Hawking radiation goes to infinity without reflection
and then describe the spacetime outside the black hole by the outgoing Vaidya metric [10]:

ds2 = − r− a(u)
r

du2 − 2dudr + r2dΩ2, (1)

where M(u) = a(u)
2G is the Bondi mass. We assume that a(u) satisfies:

da
du

= − σ

a2 , (2)

1 See, e.g., [2] for a classical analysis of collapsing matters.
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where σ = kNl2
p is the intensity of the Hawking radiation. Here, N is the degrees of freedom of fields

in the theory, and k is an O(1) constant.
If the shell comes close to a(u), the motion is governed by the equation for ingoing radial

null geodesics:
dr(u)

du
= − r(u)− a(u)

2r(u)
(3)

no matter what mass and angular momentum the particles constituting the shell have2. Here, r(u) is
the radial coordinate of the shell. This reflects the fact that any particle becomes ultra-relativistic near
r ∼ a and behaves like a massless particle [11]. As we will show soon in the next section, we obtain the
solution of (3):

r(u) ≈ a(u)− 2a(u)
da
du

(u) + Ce−
u

2a(u)

= a(u) +
2σ

a(u)
+ Ce−

u
2a(u) −→ a(u) +

2σ

a(u)
. (4)

This means the following (see Figure 1): The shell approaches the radius a(u) in the time scale of
O(2a), but during this time, the radius a(u) itself is slowly shrinking as (2). Therefore, r(u) is always
apart from a(u) by −2a da

du . Thus, the shell never crosses the radius a(u) as long as the black hole
evaporates in a finite time, which keeps the (u, r) coordinates complete outside “the horizon”, r > a(u).

Figure 1. Motion of a shell or a particle near the evaporating black hole.

After the shell comes sufficiently close to r = a + 2σ
a , the total system composed of the black hole

and the shell behaves like an ordinary black hole with mass M + ∆M, where ∆M is the mass of the
shell. In fact, as we will see later, the radiation emitted from the total system agrees with that from
a black hole with mass M + ∆M.

We then consider a spherically symmetric collapsing matter with a continuous distribution
and regard it as a set of concentric null shells. We can apply the above argument to each shell because
its time evolution is not affected by the outside shells due to the spherical symmetry. Thus, we
conclude that any object we recognize as a black hole actually consists of many shells. See Figure 2.
Therefore, there is not a horizon, but a surface at r = a + 2σ

a , which is a boundary inside which the
matter is distributed3. If we see the system from the outside, it looks like an evaporating black hole
in the ordinary picture. However, it has a well-defined internal structure in the whole region and
evaporates like an ordinary object4 5.

2 See Appendix I in [5] for a precise derivation.
3 That is essential for particle creation is a time-dependent metric, but not the existence of horizons. A Planck-like distribution

can be obtained even if there is no horizon [3,5,12].
4 We keep using the term “black hole” even though the system is different from the conventional black hole that has a horizon.
5 See also [13–17]. See, e.g., [18,19] for a black hole as a closed trapped region in the vacuum.
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Figure 2. A black hole as an object that consists of many shells.

In order to prove this idea, we have to analyze the dynamics of the coupled quantum system of
matter and gravity. As a first step, we consider the self-consistent equation:

Gµν = 8πG〈Tµν〉. (5)

Here, we regard matter as quantum fields while we treat gravity as a classical metric gµν. 〈Tµν〉 is
the expectation value of the energy-momentum tensor operator with respect to the state |ψ〉 that stands
for the time evolution of matter fields defined on the background gµν. 〈Tµν〉 contains the contribution
from both the collapsing matter and the Hawking radiation, and |ψ〉 is any state that represents a
collapsing matter at u = −∞.

In this paper, we consider conformal matters. Then, we show that 〈Tµν〉 on an arbitrary spherically
symmetric metric gµν can be determined by the four-dimensional (4D) Weyl anomaly with some
assumption and obtain the self-consistent solution of (5) that realizes the above idea. Furthermore,
we can justify that the quantum fluctuation of gravity is small if the theory has a large c coefficient in
the anomaly.

Our strategy to obtain the solution is as follows. We start with a rather artificial assumption
that 〈Tt

t〉 + 〈Tr
r〉 = 0 (this is equivalent to 〈TUV〉 = 0 in Kruskal-like coordinates). By a simple

model satisfying this assumption, we construct a candidate metric gµν. We then evaluate 〈Tµν〉 on this
background gµν by using the energy-momentum conservation and the 4D Weyl anomaly and show
that the obtained gµν and 〈Tµν〉 satisfy (5). Next, we try to remove the assumption. We fix the
ratio 〈Tr

r〉/〈Tt
t〉, which seems reasonable for the conformal matter. Under this ansatz, the metric is

determined from the trace part of (5), Gµ
µ = 8πG〈Tµ

µ〉, where 〈Tµ
µ〉 is given by the 4D Weyl anomaly.

On this metric, we calculate 〈Tµν〉 as before and check that (5) indeed holds.
This paper is organized as follows. In Section 2, we derive (4). In Section 3, we construct

a candidate metric with the assumption 〈Tt
t〉+ 〈Tr

r〉 = 0. In Section 4, we evaluate 〈Tµν〉 on this
metric and then check that (5) is satisfied. In Section 5, we remove the assumption and construct the
general self-consistent solution. In Section 6, we rethink how the Hawking radiation is created in
this picture.

2. Motion of a Thin Shell Near the Evaporating Black Hole

We start with the derivation of (4) [3–5]. That is, we solve (3) explicitly. Putting r(u) = a(u) +
∆r(u) in (3) and assuming ∆r(u)� a(u), we have:

d∆r(u)
du

= −∆r(u)
2a(u)

− da(u)
du

. (6)

The general solution of this equation is given by:

∆r(u) = C0e
−
∫ u

u0
du′ 1

2a(u′) +
∫ u

u0

du′
(
− da

du
(u′)

)
e
−
∫ u

u′ du′′ 1
2a(u′′) ,
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where C0 is an integration constant. Because a(u) and da(u)
du can be considered to be constant in the

time scale of O(a), the second term can be evaluated as:

∫ u

u0

du′
(
− da

du
(u′)

)
e
−
∫ u

u′ du′′ 1
2a(u′′)

≈ − da
du

(u)
∫ u

u0

du′e−
u−u′
2a(u) = −2

da
du

(u)a(u)(1− e−
u−u0
2a(u) ).

Therefore, we obtain:

∆r(u) ≈ C0e−
u−u0
2a(u) − 2

da
du

(u)a(u)(1− e−
u−u0
2a(u) ),

which leads to (4):

r(u) ≈ a(u)− 2a(u)
da
du

(u) + Ce−
u

2a(u)

= a(u) +
2σ

a(u)
+ Ce−

u
2a(u) −→ a(u) +

2σ

a(u)
.

This result indicates that any particle gets close to:

R(a) ≡ a +
2σ

a
(7)

in the time scale of O(2a), but it will never cross the radius a(u) as long as a(u) keeps decreasing
as (2)6. In the following, we call R(a) the surface of the black hole.

Here, one might wonder if such a small radial difference ∆r = 2σ
a makes sense, since it looks

much smaller than lp. However, the proper distance between the surface R(a) and the radius a is
estimated for the metric (1) as7:

∆l =

√
R(a)

R(a)− a
2σ

a
≈
√

2σ . (8)

In general, this is proportional to lp, but it can be large if we consider a theory with many species
of fields. In fact, in that case, we have:

σ ∼ Nl2
p � l2

p. (9)

We assume that N is large, but not infinite, for example, O(100) as in the standard model.
Then, ∆r = 2σ

a is a non-trivial distance.

3. Constructing the Candidate Metric

The purpose of this section is to construct a candidate metric by considering a simple model
corresponding to the process given in Section 1 [3,5]. At this stage, we do not mind whether it is
a solution of (5) or not, which will be the task for the next section.

3.1. Single-Shell Model

As a preliminary for the next subsection, we begin with a simpler model [3]. See Figure 3.

6 The above analysis is based on the classical motion of particles, but we can show that the result is valid even if we treat
them quantum mechanically. See Section 2-B and Appendix A in [5].

7 For the general metric, the proper length in the radial direction is given by ∆l =
√

grr − (gur)2

guu
∆r. See [11].
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Figure 3. A spherical null shell evaporating in accordance with (2).

Suppose that a spherical null shell with mass M = a
2G comes from infinity and evaporates like the

ordinary black hole. Here, we consider the shell infinitely thin. We model this process by describing
the spacetime outside the shell as the Vaidya metric (1) with (2). On the other hand, the spacetime
inside it is flat because of spherical symmetry, and we express the metric by:

ds2 = −dU2 − 2dUdr + r2Ω2. (10)

Now, we have two time coordinates (u, U), and we need to connect them along the trajectory of
the shell, r = rs(u). This can be done by noting that the shell is moving along an ingoing null geodesic
in the metrics of the both sides, (1) and (10). Therefore, the junction condition is given by:

rs(u)− a(u)
rs(u)

du = −2drs = dU. (11)

This determines the relation between U and u for a given a(u).
Generally, connecting two different metrics along a null hypersurface Σ leads to a surface

energy-momentum tensor Tµν
Σ . Indeed, by using the Barrabes–Israel formalism [20,21], we can estimate

the surface energy ε2d and the surface pressure p2d as8:

ε2d =
a

8πGr2
s

, p2d =
−ȧrs

4πG(rs − a)2 . (12)

Note that ε2d is nothing but the energy per unit area of the shell with energy M = a
2G and that the

positive pressure p2d is proportional to the energy being lost, −ȧ(u) > 0.
Thus, we have obtained the metric without coordinate-singularity that describes the formation

and evaporation process of a black hole. Note again that we do not claim yet that this metric satisfies (5),
but we here construct a candidate metric which formally expresses such a process.

3.2. Multi-Shell Model

Now, we consider a spherically-symmetric collapsing matter consisting of n spherical thin null
shells. See Figure 4, where the position of the i-th shell is depicted by ri.

8 The surface tensor is given by Tµν
Σ = (−k · v)−1δ(τ) (ε2dkµkν + p2dσµν). Here, v = ∂

∂τ is the four-vector of a timelike
observer with proper time τ who crosses the shell at τ = 0, k is the ingoing radial null vector along the locus of the shell
which is taken as k = 2rs(u)

rs(u)−a(u) ∂u − ∂r for r > rs and k = 2∂U − ∂r for r < rs, and σµν is the metric on the two-sphere

(σµνdxµdxν = r2dΩ2). See Appendix F in [5] for the detail.
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Figure 4. A multi-shell model.

We assume that each shell behaves like the ordinary evaporating black hole if we look at it from
the outside. We postulate again that the radiation goes to infinity without reflection. Then, because of
spherical symmetry, the region just outside the i-th shell can be described by the Vaidya metric:

ds2
i = − r− ai(ui)

r
du2

i − 2duidr + r2dΩ2 (13)

with:
dai
dui

= − σ

a2
i

(14)

for i = 1 · · · n. Here, ai = 2Gmi � lp, and mi is the energy inside the i-th shell (including
the contribution from the shell itself). For i = n, un = u is the time coordinate at infinity, and
an = a = 2GM, where M is the Bondi mass for the whole system. On the other hand, the center, which
is below the first shell, is the flat spacetime (10):

a0 = 0, u0 = U. (15)

In this case, the junction condition (11) is generalized to:

ri − ai
ri

dui = −2dri =
ri − ai−1

ri
dui−1 for i = 1 · · · n. (16)

This is equivalent to:
dri(ui)

dui
= − ri(ui)− ai(ui)

2ri(ui)
(17)

and:
dui

dui−1
=

ri − ai−1

ri − ai
= 1 +

ai − ai−1

ri − ai
. (18)

As in the single-shell model, we have the surface energy-momentum tensor on each shell.
By generalizing (12), we can show that the energy density ε

(i)
2d and the surface pressure p(i)2d on the i-th

shell are given by [5]:

ε
(i)
2d =

ai − ai−1

8πGr2
i

, p(i)2d = − ri
4πG(ri − ai)2

(
dai
dui
−
(

ri − ai
ri − ai−1

)2 dai−1

dui−1

)
. (19)
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ε
(i)
2d expresses the energy density of the shell with energy mi =

ai−ai−1
2G . In the expression of p(i)2d , the first

term corresponds to the total energy flux observed just above the shell, and the second one represents
the energy flux below the shell that is redshifted due to the shell. Thus, the pressure is induced by
the radiation from the shell itself9.

3.3. The Candidate Metric

Finally, we take the continuum limit in the multi-shell model and construct the candidate
metric [3–5]. Especially, we focus on a configuration in which each shell has already come close
to R(ai):

ri = R(ai) = ai +
2σ

ai
, (20)

where (7) has been used10 (a more general case is discussed in [8]).
We first solve the Equation (16). By introducing:

ηi ≡ log
dU
dui

, (21)

we have:

ηi − ηi−1 = log
dU
dui
dU

dui−1

= − log
dui

dui−1

= − log
(

1 +
ai − ai−1

ri − ai

)
≈ − ai − ai−1

ri − ai
= − ai − ai−1

2σ
ai

≈ − 1
4σ

(
a2

i − a2
i−1

)
. (22)

Here, at the second line, we have used (18); at the third line, we have used (20) and assumed
ai−ai−1

2σ
ai

� 1, which is satisfied for a continuous distribution; and at the last line, we have approximated

2ai ≈ ai + ai−1. With the initial conditions (15), we obtain:

ηi = −
1

4σ
a2

i . (23)

Now, the metric at a spacetime point (U, r) inside the object is obtained by considering the shell
that passes the point and evaluating the metric (13). We have at r = ri:

r− ai
r

=
ri − ai

ri
=

2σ
ai

ri
≈ 2σ

r2 (24)

dui
dU

= e−ηi = e
a2
i

4σ ≈ e
r2
4σ , (25)

where (20) and (23) have been used. From these, we obtain the metric:

9 See [5] for more detailed discussions.
10 Due to the spherical symmetry, the motion of each shell in the “local time” ui is determined independently of the shells

outside it. Therefore, the analysis for (7) can be applied to each shell.
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ds2 = − r− ai
r

du2
i − 2duidr + r2dΩ2

= − ri − ai
ri

(
dui
dU

)2
dU2 − 2

(
dui
dU

)
dUdr + r2dΩ2

≈ −2σ

r2 e
r2
2σ dU2 − 2e

r2
4σ dUdr + r2dΩ2. (26)

Note that this is static, although each shell is shrinking, and that it does not exist in the classical
limit σ→ 0.

Thus, our candidate metric for the evaporating black hole is given by:

ds2 =

− 2σ
r2 e−

R(a(u))2−r2
2σ du2 − 2e−

R(a(u))2−r2
4σ dudr + r2dΩ2, for r ≤ R(a(u)) ,

− r−a(u)
r du2 − 2drdu + r2dΩ2, for r ≥ R(a(u)),

(27)

which corresponds to Figure 2. Here, we have converted U to u by du = e
R(a(u))2

4σ dU and expressed (26)
in terms of u. This metric is continuous at the surface r = R(a(u)) = a(u) + 2σ

a(u) , where a(u)
decreases as (2).

Next, we consider a stationary black hole. Suppose that we put this object into the heat bath with
temperature TH = h̄

4πa . Then, the ingoing energy flow from the bath and the outgoing one from the
object become balanced each other11, and the system reaches a stationary state, which corresponds
to a stationary black hole in the heat bath [22] (see also Figure 5). The object has its surface at
r = R(a), where a = const. Then, the Vaidya metric for the outside spacetime is replaced with the
Schwarzschild metric:

ds2 = − r− a
r

dt2 +
r

r− a
dr2 + r2dΩ2. (28)

By introducing the time coordinate T around the origin as:

dT = dU +
r2

2σ
e−

r2
4σ dr, (29)

we can write the interior metric (26) as:

ds2 = −2σ

r2 e
r2
2σ dT2 +

r2

2σ
dr2 + r2dΩ2. (30)

Thus, by changing T to t through dt = e
R(a)2

4σ dT, we obtain our candidate metric for the stationary
black hole:

ds2 =

− 2σ
r2 e−

R(a)2−r2
2σ dt2 + r2

2σ dr2 + r2dΩ2, for r ≤ R(a) ,

− r−a
r dt2 + r

r−a dr2 + r2dΩ2, for r ≥ R(a) ,
(31)

where R(a) = a + 2σ
a with a = const. The remarkable feature of (31) is that the redshift is exponentially

large inside, and time is almost frozen in the region deeper than the surface by ∆r & σ
a .

4. Evaluating the Expectation Value of the Energy-Momentum Tensor

In this section, we evaluate the expectation value of the energy-momentum tensor 〈Tµν〉 in
the candidate metrics (27) and (31) assuming that the matter is conformal. We show that 〈Tµν〉
can be determined by the four-dimensional Weyl anomaly and the energy-momentum conservation

11 We can see how this “equilibration” occurs, by introducing interactions between radiations and matters. See Section 2-E
in [5] for a detailed discussion.
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∇µ〈Tµν〉 = 0 if we introduce a rather artificial assumption 〈TUV〉 = 0. Then, we show that the
self-consist Equation (5) is indeed satisfied if σ in (27) and (31) is chosen properly.

4.1. Summary of the Assumptions So Far

We start with summarizing the assumptions that we have made to obtain the metric (27).
Firstly, we assume that the system is spherically symmetric. Then, the time evolution of each shell is not
affected by its exterior region after it becomes ultra-relativistic. Secondly, we assume that the radiation
coming out of each shell flows to infinity without reflection. Then, the metric of each inter-shell region
is given by the Vaidya metric.

We consider what these assumptions mean in terms of 〈Tµν〉. Here, we discuss in Kruskal-like
coordinates (U, V): U and V are coordinates, such that outgoing and ingoing null lines are
characterized by U = const. and V = const., respectively. Therefore, the second assumption means
that in the inter-shell regions only 〈TUU〉 is nonzero12, and in particular,

〈TUV〉 = 0. (32)

Furthermore, noting the surface energy-momentum tensor (19), we find that ε
(i)
2d and p(i)2d lead

to nonzero values of 〈TVV〉 and 〈Tθ
θ〉 = 〈Tφ

φ〉, respectively, on each shell (see the footnote at (12)).
Thus, after taking the continuum limit, we have nonzero values for 〈Tµν〉 except for 〈TUV〉.

Therefore, the assumption we have made so far are essentially the spherical symmetry and (32).
We keep the assumption (32) within this section and will remove it in the next section.

4.2. Relations among 〈Tµν〉 from the Energy-Momentum Conservation

We investigate the relations among the components of 〈Tµν〉 obtained from the energy-momentum
conservation, which will be used to determine 〈Tµν〉. The general spherically symmetric metric can be
expressed in Kruskal-like coordinates as:

ds2 = −eϕ(U,V)dUdV + r(U, V)2dΩ2. (33)

We assume that 〈Tµν〉 is spherically symmetric, that is, the non-zero components are:

〈TUU〉, 〈TVV〉, 〈TUV〉, 〈Tθ
θ〉 = 〈Tφ

φ〉, (34)

which depend only on U and V. Here, we keep 〈TUV〉 for the convenience of the next section.
Then, ∇µ〈TµU〉 = 0 and ∇µ〈TµV〉 = 0 are expressed as, respectively,

〈Tθ
θ〉 = −

e−ϕ

r∂Ur

[
∂V(r2〈TUU〉) + ∂U(r2〈TUV〉)− ∂U ϕ(r2〈TUV〉)

]
, (35)

〈Tθ
θ〉 = −

e−ϕ

r∂Vr

[
∂U(r2〈TVV〉) + ∂V(r2〈TUV〉)− ∂V ϕ(r2〈TUV〉)

]
. (36)

The other components are satisfied trivially.

12 We can see this explicitly as follows. Because the Vaidya metric has only Guu, we can expect that only 〈Tuu〉 exists
in the inter-shell regions. From the definitions of U and V, we have a transformation between (u, r) and (U, V)

such that
(

∂u
∂V

)
U
= 0. Therefore, we evaluate 〈TUU〉 =

(
∂u
∂U

)2
〈Tuu〉 6= 0, 〈TUV〉 =

(
∂u
∂U

) (
∂u
∂V

)
〈Tuu〉 = 0 and

〈TVV〉 =
(

∂u
∂V

)2
〈Tuu〉 = 0.
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On the other hand, because the trace of the energy-momentum tensor is expressed as
〈Tµ

µ〉 = 2gUV〈TUV〉+ 2〈Tθ
θ〉, we have:

〈Tθ
θ〉 =

1
2
〈Tµ

µ〉+ 2e−ϕ〈TUV〉. (37)

Substituting (37) into (35) and (36), we obtain:

∂U(r2〈TUV〉)−
(

∂U ϕ− 2
r

∂Ur
)
(r2〈TUV〉) = −∂V(r2〈TUU〉)−

1
2

r∂Ureϕ〈Tµ
µ〉, (38)

∂V(r2〈TUV〉)−
(

∂V ϕ− 2
r

∂Vr
)
(r2〈TUV〉) = −∂U(r2〈TVV〉)−

1
2

r∂Vreϕ〈Tµ
µ〉. (39)

Once 〈Tµ
µ〉 is given, we can determine 〈Tµν〉 from these equations with some boundary conditions

if one of the four functions (34) is known [23].

4.2.1. The Static Case

As a special case, we suppose that the spacetime is static. Then, ϕ(U, V) and r(U, V) satisfy:

ϕ(U, V) = ϕ(r(U, V)), ∂Vr = −∂Ur. (40)

Then, we can rewrite (33) as:

ds2 = − 1
B(r)

eA(r)dT2 + B(r)dr2 + r2dΩ2, (41)

where:

eϕ(r) =
eA(r)

B(r)
, ∂Vr = −∂Ur =

e
A(r)

2

2B(r)
(42)

and:
dU = dT − Be−

A
2 dr, dV = dT + Be−

A
2 dr. (43)

In this case, the expectation value of the energy-momentum tensor 〈Tµν〉 should also be static
and satisfy:

〈Tµν〉 = 〈Tµν(r)〉, 〈TUU〉 = 〈TVV〉. (44)

Then, Equations (38) and (39) reduce to:

∂r(r2〈TUV〉)−
(

∂r ϕ− 2
r

)
(r2〈TUV〉) = ∂r(r2〈TUU〉)−

1
2

reϕ〈Tµ
µ〉. (45)

4.3. Evaluation of 〈Tµν〉 inside the Black Hole

Now, we can evaluate 〈Tµν〉 in the metric (30) assuming (32) and (44). Here, we rewrite the
metric (30) as (33) with (42) and:

A(r) = B(r) =
r2

2σ
. (46)

4.3.1. Boundary Conditions for 〈Tµν〉

We start with the boundary conditions. See Figure 5.
We first note that the region around r = 0 is kept to be a flat space. This is because the initial

collapsing matter came from infinity with a dilute distribution. Then, the region inside the innermost
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shell in Figure 4 is flat due to the spherical symmetry, and it is almost frozen in time by the large
redshift as in (27)13. Thus, the boundary conditions for 〈Tµν〉 are given by:

〈Tµν〉|r∼0 = 0. (47)

Note that this should be applied to both the evaporating and stationary black holes, because at
any rate, black holes have been formed by collapse of matters.

Figure 5. The boundary conditions. Left: The evaporating black hole in the vacuum. Right: The stationary
black hole in the heat bath.

4.3.2. Employing ∇µ〈Tµν〉 = 0

Now, we combine the energy-momentum conservation with the assumption (32).
Under (32), (45) becomes:

∂r(r2〈TUU〉) =
1
2

reϕ〈Tµ
µ〉. (48)

Integrating this from zero to r for
√

σ� r ≤ R(a), we have:

r2〈TUU〉 − (r2〈TUU〉)|r=0 =
1
2

∫ r

0
dr′r′eϕ(r′)〈Tµ

µ(r′)〉 = σ
∫ r

0
dr′

e
r′2
2σ

r′
〈Tµ

µ(r′)〉

= σe
r2
2σ

∫ r

0
dr′

e−
r2−r′2

2σ

r′
〈Tµ

µ(r′)〉

≈ σ

r
e

r2
2σ 〈Tµ

µ(r)〉
∫ r

0
dr′e−

r
σ (r−r′)

≈ σ2

r2 e
r2
2σ 〈Tµ

µ(r)〉. (49)

Here, at the first line, we have used (42) and (46); at the third line, we have assumed that 〈Tµ
µ(r)〉

does not change as rapidly as e
r2
2σ , which will be checked soon, and used e−

1
2σ (r+r′)(r−r′) ≈ e−

r
σ (r−r′),

since the largest contribution comes from r′ ∼ r; at the final line, we have omitted the term proportional

to e−
r2
σ for r �

√
σ. Finally, using the boundary condition (47), we have:

〈TUU〉 = 〈TVV〉 =
σ2

r4 e
r2
2σ 〈Tµ

µ〉. (50)

13 We will check the validity of (30) later. Indeed, (30) becomes almost flat at r ∼
√

σ, and can be connected to the flat spacetime.



Universe 2017, 3, 51 12 of 24

On the other hand, under the assumption (32), (37) leads to:

〈Tθ
θ〉 =

1
2
〈Tµ

µ〉. (51)

Thus, all of the components of 〈Tµν〉 are determined by 〈Tµ
µ〉.

4.3.3. 〈Tµ
µ〉 from the 4D Weyl Anomaly

In the case of conformal matters, 〈Tµ
µ〉 is provided by the 4D Weyl anomaly once the metric

is given [23–26]:
〈Tµ

µ〉 = h̄cwF − h̄awG, (52)

where F ≡ CµναβCµναβ and G ≡ RµναβRµναβ − 4RµνRµν + R214. For the metric (30), F and G are
calculated as:

F =
A′4

12B2 + · · · = 1
3σ2 + O

(
1

σr2

)
G = −2A′2

r2B
+ · · · = O

(
1

σr2

)
. (53)

Therefore, only the c-coefficient remains for r �
√

σ, and we obtain:

〈Tµ
µ〉 =

h̄cw

3σ2 , (54)

which is constant and consistent with the assumption made in (49).
Thus, (50) and (51) are fixed as, respectively,

〈TUU〉 = 〈TVV〉 =
h̄cw

3r4 e
r2
2σ , (55)

and:
〈Tθ

θ〉 =
h̄cw

6σ2 , (56)

which means that the 4D Weyl anomaly provides the angular pressure [4,5]15.

4.4. The Self-Consistent Equation

Now, we can obtain the condition that the self-consistent Equation (5) holds, as follows.
From (32), (55) and (56), we have:

− 〈TT
T〉 = 〈Tr

r〉 =
h̄cw

3σ

1
r2 , 〈Tθ

θ〉 =
h̄cw

6σ2 , (57)

where we have used (43). On the other hand, the Einstein tensor for the metric (30) is calculated as:

− GT
T = Gr

r =
1
r2 , Gθ

θ =
1

2σ
. (58)

14 We assume that the coefficients of the higher-curvature terms in the effective action are renormalized to order one.
However,cw and aw are proportional to the degrees of freedom N because they are not canceled by counterterms [25].
Therefore, we can ignore the contributions from the higher curvature terms if N � 1.

15 See, e.g., [27] for another application of the 4D Weyl anomaly to black holes.
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Comparing (57) and (58), we conclude that (5) is satisfied if we identify:

σ =
8πl2

pcw

3
. (59)

We note that the dominant energy condition [21] is violated, −〈TT
T〉 � 〈Tθ

θ〉, and that the
interior is not a fluid in the sense 〈Tr

r〉 � 〈Tθ
θ〉 [3–5].

We can check the validity of the classical gravity in (5). Indeed, in the macroscopic region (r > lp),
all of the invariants for (30) are of order ∼ 1

σ :

R,
√

RµνRµν,
√

RµναβRµναβ ∼ 1
σ
∼ 1

l2
pcw

. (60)

They are smaller than the Planck scale if:

cw � 1 (61)

is satisfied. Therefore, macroscopic black holes (a� lp) can be described by the ordinary field theory.
We do not need to consider quantum gravity except for the very small region (r ∼ lp) or the last
moment of the evaporation. (30) can be trusted for r &

√
σ.

4.5. Evaluation of 〈Tµν〉 outside the Black Hole

In this subsection, we investigate 〈Tµν〉 in the outside region, r > R(a), for both the evaporating
and the stationary black holes.

4.5.1. The Evaporating Black Hole

First, we consider the evaporating back hole (27). Although we do not assume the static
condition (44), we use a similar argument to the previous subsection. We first identify the boundary
conditions. In the left of Figure 5, no ingoing matter comes after the collapsing matter at U = −∞.
Therefore, the boundary condition for the ingoing energy 〈TVV〉 is given by:

〈TVV〉|U=−∞ = 0 for V > Vout, (62)

where Vout labels the outermost shell. On the other hand, as we have shown in (55), the outgoing
energy at the surface r = R(a(U)) is given by:

〈TUU〉|V=Vout =
h̄cw

3R(a(U))4 for U ≥ U0. (63)

Here, we have identified U in (33) with u in (1) so that A = r2−R(a)2

2σ as in (27). U0 characterizes
the time at which the outermost shell gets sufficiently close to R(a(U)) and starts to emit the radiation.

Using these boundary conditions and the conservation laws (38) and (39) with the assumption (32),
we obtain (see Appendix A for the derivation):

r2〈TUU〉 =
h̄cw

3R(a(U))2 +
1
2

∫ r(U,V)

R(a(U)),U=const.
dr(r− a(U))〈Tµ

µ〉, (64)

r2〈TVV〉 = −
∫ U

−∞
dU′r(∂Vr)2〈Tµ

µ〉. (65)

Next, we evaluate 〈Tµ
µ〉 from (52). For the metric (27) for r > R(a(u)), we have F = G = 12a(U)2

r6

and obtain:

〈Tµ
µ〉 = 12h̄(cw − aw)

a(U)2

r6 , (66)
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which gives 〈Tθ
θ〉 through (51). From (64) and (66), we obtain:

r2〈TUU〉 ≈ h̄
(

cw

3
+

3(cw − aw)

10

)
1

a(u)2 + 6h̄(cw − aw)a(u)2
(
− 1

4r4 +
a(u)
5r5

)
, (67)

where R(a) ≈ a has been used. On the other hand, (65) cannot be evaluated explicitly due to the
time dependence of a(U). Here, in order to estimate its order, we assume that a(U) is approximately
constant. Then, we can have (see Appendix A):

r2〈TVV〉 ∼ h̄(cw − aw)a2
(
− 1

4r4 +
a

5r5

)
. (68)

Note here that the anomaly leads to particle creation even outside the black hole. The sign of
cw − aw depends on the kind of field [25]. For example, it is positive for a massless scalar field, and it
is negative for a massless vector field16. When cw − aw > 0, (67) indicates that the outgoing radiation
increases by the amount 3h̄(cw−aw)

10
1

a(U)2 as it goes to infinity from the surface. On the other hand,
from (68), we can see that the negative ingoing energy is created [23,25,28].

Now, we check the self-consistent Equation (5). First, from (66)–(68), we can see that 〈Tµν〉 ∼ 1
a4

at r ∼ a, which represents the energy-momentum of the radiation around the black hole as in the
Stefan–Boltzmann law ∼ T4

H . The amount of energy in the region around the black hole with the
volume V ∼ a3 is estimated as 〈Tµν〉V ∼ 1

a , which is much smaller than the mass of the black hole
itself, M = a

2G . In this sense, 〈Tµν〉 is negligible:

〈Tµν〉 ≈ 0, (69)

and the region outside the black hole is described by vacuum-like solutions, such as the Vaidya metric
or the Schwarzschild metric.

We have seen so far that the metric (27) is the self-consistent solution describing the whole
spacetime of the evaporating black hole. There is no horizon or singularity, but this object is the black
hole in quantum mechanics (see Figure 6).

Figure 6. The Penrose diagram of the evaporating black hole described by the self-consistent solution (27).

4.5.2. The Stationary Black Hole

Next, we consider the stationary black hole in the heat bath (31). This time, we assume (44)
in addition to (32) and use (48). We start with examining the boundary condition. See the right of

16 However, cw
3 + 3(cw−aw)

10 > 0 holds for any kind of massless fields [25], and 〈TUU〉 is always positive at infinity. Here, the
boundary condition (63) plays an important role. Later, we will discuss the origin of the radiation more closely.
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Figure 5. Because the system is stationary, the surface is fixed at r = R(a) =const., and there, the
ingoing and outgoing energy flows are balanced as:

〈TUU〉|r=R(a) = 〈TVV〉|r=R(a) =
h̄cw

3R(a)4 . (70)

Here, we have used (55) and chosen the overall time scale as in (31), A(r) = r2−R(a)2

2σ .
Then, we calculate 〈Tµ

µ〉 from (51) and obtain the same value as (66) except for a = const. We can
evaluate 〈TUU〉 from (48) with (70) and find that 〈TUU〉 = 〈TVV〉 is given by (67) with a = const.

Now, we study the self-consistent equation. Because we have the same order of 〈Tµν〉 as in
the case of the evaporating black hole, we can follow the same reasoning for (69). That is, 〈Tµν〉 is
negligible, and the metric outside the black hole is close to the Schwarzschild metric.

5. Generalization

We have assumed so far that the radiation emitted from each shell flows to infinity without
reflection, which is expressed by (32). For a more realistic description, however, this assumption
should be removed.

First, we discuss what 〈TUV〉 6= 0 means. In the (U, V) coordinates (33), this is equivalent to the
nonzero trace in the two-dimensional part (U, V):

〈Ta
a〉 ≡ 〈TU

U〉+ 〈TV
V〉 = 2gUV〈TUV〉. (71)

In a (t, r) coordinate system, in which the metric is diagonal, this is expressed as:

〈Ta
a〉 = 〈Tt

t〉+ 〈Tr
r〉. (72)

In other words, 〈TUV〉 = 0 is equivalent to −〈Tt
t〉 = 〈Tr

r〉, which is indeed satisfied by the
previous self-consistent solution as in (57). Therefore, we characterize 〈TUV〉 6= 0 by introducing
a function f (t, r) such that:

〈Tr
r〉

−〈Ttt〉
≡ 1− f

1 + f
. (73)

f = 0 corresponds to −〈Tt
t〉 = 〈Tr

r〉. Here, if we require 〈Tr
r〉 ≥ 0 and −〈Tt

t〉 > 0, f must satisfy
| f | ≤ 1. In the following arguments, we assume that the matters are conformal.

5.1. Determination of the Interior Metric

For simplicity, we consider a stationary black hole in the heat bath. More precisely, we describe
the exterior by the Schwarzschild metric (28), and parametrize the interior metric by (41) [4]. Then,
we assume that 〈Tµν〉 is static and satisfies (44). Our program is to fix two functions A(r) and B(r) by
two equations.

The first equation comes from (73). Once f (r) is given, we rewrite the relation (73), by using the
self-consistent Equation (5) for the ansatz (41), as:

2
1 + f

=
Gr

r

−Gtt
+ 1 =

r∂r A
B− 1 + r∂r log B

. (74)

In order to build the second equation, we apply the Weyl anomaly Equation (52) to the trace of (5):

Gµ
µ = 8πG〈Tµ

µ〉 = γF − αG, (75)

where we have introduced the notations γ ≡ 8πGh̄cw and α ≡ 8πGh̄aw.
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Here, we assume that for r � lp, A(r) and B(r) are large quantities of the same order as expected
from (46):

A(r) ∼ B(r)� 1 . (76)

Then, the first Equation (74) becomes approximately:

A′ =
2B

(1 + f )r
, (77)

where A′ = ∂r A, and we have used B� 1, r∂r log B. Next, in order to examine what terms dominate
in (75) for r � lp, we replace A, B and r with µA, µB and

√
µr, respectively, and pick up the terms

with the highest powers of µ. Then, we have:

A′2

2B
+ · · · = γ

(
A′4

12B2 + · · ·
)
− α

(
−µ−1 2A′2

r2B
+ · · ·

)
. (78)

Therefore, in the leading order of r, (75) becomes A′2
2B = γ A′4

12B2 , that is,

B =
γ

6
A′2 . (79)

It is natural to expect that the dimensionless function f (r) is a constant for conformal fields [4]:

f (r) = const. (80)

Then, from (77)–(80), we obtain:

A =
r2

2(1 + f )σf
, B =

r2

2σf
, (81)

where we have defined:

σf ≡
8πl2

pcw

3(1 + f )2 . (82)

Thus, the interior metric is determined as:

ds2 = −
2σf

r2 e
r2

2(1+ f )σf dT2 +
r2

2σf
dr2 + r2dΩ2. (83)

Indeed, this is a generalization of (30) because (82) and (83) become (59) and (30), respectively,
if we set f = 0. Redefining the overall scale of time and connecting the metric with the Schwarzschild
metric, we reach the generalized metric for the stationary black hole:

ds2 =

−
2σf
r2 e
− R(a)2−r2

2(1+ f )σf dt2 + r2

2σf
dr2 + r2dΩ2, for r ≤ R(a) ,

− r−a
r dt2 + r

r−a dr2 + r2dΩ2, for r ≥ R(a) ,
(84)

where R(a) = a +
2σf

a . The metric for the evaporating one is obtained with the outside metric replaced
by the Vaidya metric (1).

5.2. Check of the Self-Consistent Equation

As in Section 4, we now evaluate 〈Tµν〉 in the metric (84) and check the self-consistent equation.
Because we assume that 〈Tµν〉 is static, we have to determine three functions of r: 〈TUU〉 = 〈TVV〉,
〈TUV〉 and 〈Tθ

θ〉.
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5.2.1. Evaluation of 〈Tµν〉 inside the Black Hole

First we determine 〈Tµν〉 in the interior metric (83), which can be expressed by (33) with (81).
We assume (80) and express the relation (73) as:

〈TUV〉 = f 〈TUU〉, (85)

where we have used (43). Thus, only 〈TUU〉 and 〈Tθ
θ〉 are left as unknown functions.

We then substitute (85) into (45) and obtain:

∂r(( f − 1)r2〈TUU〉)− f
(

∂r ϕ− 2
r

)
(r2〈TUU〉) = −

1
2

reϕ〈Tµ
µ〉. (86)

Using (80), (81) and ∂r ϕ ≈ ∂r A = r
(1+ f )σf

� 2
r for r � lp, we reach:

∂r(r2〈TUU〉) +
f

(1− f 2)σf
r(r2〈TUU〉) =

σf

(1− f )r
e

r2
2(1+ f )σf 〈Tµ

µ〉. (87)

The solution can be expressed as:

r2〈TUU(r)〉 = C(r)e
− f

2(1− f 2)σf
r2

, (88)

where C(r) satisfies

∂rC =
σf

(1− f )r
e

r2

2(1− f 2)σf 〈Tµ
µ〉. (89)

This equation can be solved easily as:

C(r)− C(0) =
σf

(1− f )

∫ r

0
dr′

1
r′

e
r′2

2(1− f 2)σf 〈Tµ
µ(r′)〉

≈
(1 + f )σ2

f

r2 e
r2

2(1− f 2)σf 〈Tµ
µ(r)〉, (90)

where we have employed almost the same technique as in (49). Here, the boundary condition (47)
means C(0) = 0. Then, we reach:

r2〈TUU(r)〉 =
(1 + f )σ2

f

r2 e
r2

2(1+ f )σf 〈Tµ
µ(r)〉. (91)

Applying the Weyl anomaly formula (52) to the metric (83) and using the same estimation as (53),
we have:

〈Tµ
µ〉 =

h̄cw

3(1 + f )4σ2
f
=

3
(8π)2Gl2

pcw
, (92)

where at the second equality, we have used (82)17. Substituting this into (91), we obtain:

r2〈TUU(r)〉 =
h̄cw

3(1 + f )3r2 e
r2

2(1+ f )σf , (93)

17 We note that 〈Tµ
µ〉 is independent of f .
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which reduces to (55) if f = 0. Then, from (37), (85) and (93), we obtain:

〈Tθ
θ〉 =

3
2(8π)2Gl2

pcw
+

f
8πG(1 + f )r2 ≈

3
2(8π)2Gl2

pcw
. (94)

Now, we can check the self-consistent Equation (5) explicitly. Using (85), (93) and (43), we have:

−〈Tt
t〉 =

h̄cw

3σf (1 + f )2r2 =
1

8πGr2 (95)

〈Tr
r〉 =

h̄cw(1− f )
3σf (1 + f )3r2 =

1
8πGr2

1− f
1 + f

(96)

where at the second equality, we have used (82). On the other hand, we have for the metric (83):

− Gt
t =

1
r2 , Gr

r =
1
r2

1− f
1 + f

, Gθ
θ =

1
2(1 + f )2σf

=
3

16πl2
pcw

. (97)

Comparing (94), (95) and (96) with (97), we find that (5) is indeed satisfied.
Finally, we see that the quantum fluctuation of gravity is small also in the general case. In fact,

the invariants of (83) are given by:

R,
√

RµνRµν,
√

RµναβRµναβ ∼ 1
(1 + f )2σf

∼ 1
l2
pcw

, (98)

where (82) has been used. They are small compared with the Planck scale, and therefore, the fluctuation
is small if (61) is satisfied.

5.2.2. Evaluation of 〈Tµν〉 outside the Black Hole

Next, we consider the outside region, r > R(a), of the metric (84). As we have seen in the previous
section, 〈Tµν〉 outside the black hole is so small that the modification from the Schwarzschild or Vaidya
metric is negligible, although the precise condition to fix 〈Tµν〉 is not known. In this subsection, as a
simple example, we fix 〈TUU〉 by hand and determine 〈TUV〉. Then, we show that the region outside
the black hole can be described approximately by the Schwarzschild metric.

We assume:
〈TUU(r)〉 =

h̄cw

3(1 + f )3R(a)2
1
r2 , (99)

where f is a constant given by (80). This means that the total flux emitted from the surface at r = R(a)

is kept outside (see (93) for A = r2−R(a)2

2(1+ f )σf
), while the other effects (such as particle creation outside

the black hole by the anomaly in Subsection 4.5) do not contribute to 〈TUU〉. Furthermore, we take
for simplicity:

〈TUV〉|r=R(a) = 0, (100)

as the boundary condition. We note that (99) and (100) are not given by some principle, but chosen by
hand as an example.

Then, the first term in the right-hand side of (45) vanishes, while the second term is given through
the Weyl anomaly by (66) with a =const. Solving (45) with the method of variation of constants under
(100), we obtain18:

18 For given 〈TUU〉 and 〈Tµ
µ〉, we solve (45) with respect to r2〈TUV〉 and have r2〈TUV(r)〉 = D(r)eϕ−2 log r = D(r) r−a

r3 , where

eϕ = r−a
r has been used. Then, D(r) satisfies ∂r D = r3

r−a ∂r(r2〈TUU(r)〉)− 1
2 r3〈Tµ

µ〉. Applying (99) and (66) to this and
integrating it from R(a) to r, we obtain (101) if (100) is considered.
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〈TUV(r)〉 = 3h̄(cw − aw)a2
(

1
r2 −

1
R(a)2

)
r− a

r5 . (101)

This behaves ∼ a2

r4 for r � a, which decreases faster than (99) and does not contribute to the flux
at infinity. Using (66) and (101), we can evaluate 〈Tθ

θ〉 through (37) as:

〈Tθ
θ〉 = 6h̄(cw − aw)

a2

r4

(
2
r2 −

1
R(a)2

)
. (102)

Thus, 〈Tµν〉 ∼ 1
a4 around r ∼ a, and we can regard 〈Tµν〉 ≈ 0 by the same reasoning for (69).

Therefore, (5) is satisfied by (84).

6. Hawking Radiation

In this section, we discuss how close the object that we are considering is to the black hole in the
conventional picture.

6.1. Amount of the Radiation

First we show that the object emits the same amount of radiation as the conventional black hole.
We prove that the energy flux at r is given by:

J(r) =
4πh̄cw

3(1 + f )2r2 =
σf

2Gr2 , (103)

where J is the energy passing through the ingoing spherical null surface at r per unit time. Here, the
time is “the local time at r” such as ui in (13) for the multi-shell model (then, (103) agrees with the
right-hand side of (14)). More precisely, we define J by19:

J(r) ≡ 4πr2e−A(〈TUU〉+ 〈TUV〉). (104)

We can easily show that (104) becomes (103) by using (81), (85) and (93). Note that (103) means that the
c-coefficient determines the intensity of the Hawking radiation, and the effect of f is to decrease the
flux [4,5].

Now, we apply (103) to the surface r = R(a) and obtain the energy flux emitted by the object:

J(R(a)) =
σf

2GR(a)2 , (105)

which agrees with the amount of the radiation emitted by the black hole in the conventional picture.
Here, we point out that we can obtain the energy spectrum of the radiation by solving the wave

equation in the metric (27) under the Eikonal approximation. Indeed, it turns out to be the Planck-like
distribution with the Hawking temperature [3,5].

6.2. Insensitivity to the Detail of the Initial Wave Function

Next, we argue that the expectation value of the energy momentum tensor is determined by the
overall geometry and does not depend on the detail of the initial wave function. To see this, we start

19 We can see that this definition is consistent with the concept of J, as follows. To do that, we first note that (14) suggests ui as
the natural time for description of the evaporation of each shell, and that in the continuum limit the redshift factor between

U and ui is e
A
2 , as (25) shows. Then, we introduce the energy-momentum vector observed by u as Pµ ≡ −〈Tµ

ν〉uν. Here, u

is the four-vector with time ui , which is defined by u ≡ e−
A
2

(
∂

∂U

)
r
= e−

A
2

[(
∂

∂U

)
V
+
(

∂
∂V

)
U

]
. Here, we have used (29)

and (43). Thus, we can identify J with J = 4πr2(−Pµkµ), where k ≡ e−
A
2

(
∂

∂U

)
V

is the ingoing null vector along the shell.
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with reexamining the analysis (49) of ∇µ〈TµU〉 = 0. If we integrate it from r = r0 instead of r = 0,
we have:

r2〈TUU〉 = (r2〈TUU〉)|r0 +
σ2

r2 〈T
µ

µ(r)〉e
r2
2σ (1− e−

r
σ (r−r0)). (106)

Here, the last term vanishes for such r0 that r
σ (r− r0)� 1, and the first term is negligible, unless

it is as large as O(r−2e
r2
2σ ). Thus, even if we do not use the boundary condition (47), we obtain the

same result (50).
This indicates that the amount of the radiation is determined universally by the geometry.

Indeed, as is shown in (50), 〈TUU〉 is produced at each point in the interior through the 4D Weyl
anomaly (52), which is independent of the state, but is determined by the metric (30). Furthermore,
while we have assumed the configuration (20) to obtain the metric (30), it has been shown by [8]
that (30) is asymptotically reached from any initial distribution of mass and velocity of the matter. In
this sense, the radiation occurs universally in collapsing processes, whose amount is given by (105).

Here, we emphasize that the 4D Weyl anomaly plays a crucial role in our picture of black holes.
As (51) shows, the anomaly induces the strong angular pressure (56) [28–32]. It is so strong in the
metric (30) that the object can be stable against the strong gravitational force20 21.

6.3. Fate of the Incoming Matter

Finally, we discuss the information problem. In our picture, the matter fields simply propagate
in the background metric as in the ordinary quantum field theory on curved spacetime, and nothing
special happens during the time evolution. Therefore, it is natural to expect that the collapsing matter
itself eventually comes back as the radiation22.

Indeed, we can get a clue to this by a simple analysis [5]. Suppose that a particle with energy ∼ h̄
a

comes close to the black hole and becomes a part of it. Then, it starts to emit radiation. As the particle
loses energy, its wavelength increases. If the wavelength gets larger than the size of the black hole,
then the particle can no longer stay in it. We can estimate the time scale of this process as ∼ a log a√

σ
,

which is much shorter than that of the evaporation ∼ a3

σ .
Therefore, one of the important future works is to solve the wave equation in the self-consistent

metric (27) more precisely23. If we succeed in it, we should be able to understand how the
information of the collapsing matter comes back and especially what happens to the baryon number
conservation [5] 24.

7. Summary and Discussion

Our solution tells what the black hole is. The collapsing matter becomes a dense object and
evaporates eventually without forming a horizon or singularity. It has a surface instead of the horizon,
but looks like an ordinary black hole from the outside. In the interior, the non-trivial structure is
formed, where the matter and the Hawking radiation can interact. This can provide a possible solution
to the information problem.

20 We can see explicitly this by constructing the Tolman–Oppenheimer–Volkoff equation with 〈Tr
r〉 6= 〈Tθ

θ〉 and using
−〈Tt

t〉, 〈Tr
r〉 � 〈Tθ

θ〉.
21 See also [33].
22 The entropy can also be understood by the matter in the interior. The area law is reproduced by evaluating the entropy

density and integrating it over the proper volume of the interior region. See Section 4-F and Appendix H in [5]. There are
other approaches using the interior volume. See, e.g., [34].

23 See, e.g., [35,36] for the analysis of matter fields around the black hole.
24 There are many interesting approaches for the information problem. In [37–39], analyses are made based on an infalling

observer, and in [40–42], the black hole is identified with a gravitational Bohr’s hydrogen atom.
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There remain problems to be clarified in the future. First, as we have mentioned, the important
problem is to understand how the information comes back in this picture. To do it, we need to solve
the wave equation in the self-consistent metric (27).

Second, although we have assumed a constant f to construct the metric (84), we do not understand
its meaning yet. In principle, f should be determined by the dynamics of matters in the metric (84).
Therefore, it is interesting to evaluate f concretely by considering a specific theory.

Third, the spherical symmetry has played an important role in our analysis. In the real world,
however, we need to consider a rotating black hole, the outside of which is described by the Kerr metric.
Although there is a conjecture on the interior metric for a slowly-rotating black hole [5], the general
form is not known. It would be valuable if we can determine the interior metric by the 4D Weyl
anomaly for the general case.

Fourth, we do not know yet how stable the metric (30) is for non-spherically symmetric
perturbations. When investigating this problem, we need to be careful with the fact that the interior is
not a fluid, as we have mentioned below (59).

Finally, astrophysics has entered into a new stage by the launch of gravitational wave detectors.
For a new physics of black holes, it should be exciting to study an observable signal that exhibits some
difference between the black holes in our picture and the conventional picture [43–45].
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Appendix A. Derivation of (64) and (65)

We derive (64) and (65). We first express the Vaidya metric (1) in the form of (33). We put u = U.
Then, we introduce V as a label of an ingoing null line following (3): once an initial position for r(U)

in (3) is given, the solution is determined uniquely, which we denote by r̄(U, V). This plays roles of
r(U, V) in (33). Indeed, we have:

dr̄ =
(

∂r̄
∂U

)
V

dU +

(
∂r̄
∂V

)
U

dV

= − r̄− a
2r̄

dU +

(
∂r̄
∂V

)
U

dV, (A1)

replace dr in (1) with this, and obtain:

ds2 = −2
(

∂r̄
∂V

)
U

dUdV + r̄(U, V)dΩ2, (A2)

which means that eϕ(U,V) = 2
(

∂r̄
∂V

)
U

.
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Under (32), we integrate (38) from Vout to V(> Vout) along a fixed U(≥ U0):

(r2〈TUU〉)− (r2〈TUU〉)|Vout = −
1
2

∫ V

Vout
dV′r∂Ureϕ〈Tµ

µ〉

= −
∫ V

Vout
dV′

(
∂r̄
∂V

)
U

r∂Ur〈Tµ
µ〉

= −
∫ r(U,V)

r(U,Vout),U=const.
drr∂Ur〈Tµ

µ〉

=
1
2

∫ r(U,V)

r(U,Vout),U=const.
dr(r− a(U))〈Tµ

µ〉. (A3)

Here, at the second line, (A2) has been used; at the third line, we have used the fact
that dr = dV

(
∂r̄
∂V

)
U

holds along a fixed U (see (A1)); at the last line, we employ (A1) again.
Then, employing the boundary condition (63), we obtain (64).

Next, we derive (65). We integrate (39) with the assumption (32) and the boundary condition (62):

r2〈TVV〉 = (r2〈TVV〉)|U=−∞ −
1
2

∫ U

−∞
dU′r∂Vreϕ〈Tµ

µ〉

= −
∫ U

−∞
dU′r(∂Vr)2〈Tµ

µ〉,

where we have used eϕ(U,V) = 2
(

∂r̄
∂V

)
U

in (A2).

Then, we estimate its order assuming that a(U) varies slowly, a(U) ∼ const. In this case, we can
use (42) to have:

r2〈TVV〉 = −
∫ r

∞,V=const.
dr′

1
∂Ur

r′(∂Vr)2〈Tµ
µ〉

=
∫ r

∞,V=const.
dr′r′∂Vr〈Tµ

µ〉

=
1
2

∫ r

∞,V=const.
dr′(r′ − a)〈Tµ

µ〉.

Using (66), this becomes (68).
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