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Abstract: This review discusses confinement, as well as the topological and critical phenomena,
in the gauge theories which provide the condensation of magnetic monopoles. These theories
include the 3D SU(N ) Georgi-Glashow model, the 4D [U(1)]N−1-invariant compact QED , and the
[U(1)]N−1-invariant dual Abelian Higgs model. After a general introduction to the string models of
confinement, an analytic description of this penomenon is provided at the example of the 3D SU(N )
Georgi-Glashow model, with a special emphasis placed on the so-called Casimir scaling of k-string
tensions in that model. We further discuss the string representation of the 3D [U(1)]N−1-invariant
compact QED, as well as of its 4D generalization with the inclusion of the Θ-term. We compare
topological effects, which appear in the latter case, with those that take place in the 3D QED extended
by the Chern-Simons term. We further discuss the string representation of the ’t Hooft-loop average in
the [U(1)]N−1-invariant dual Abelian Higgs model extended by the Θ-term, along with the topological
effects caused by this term. These topological effects are compared with those occurring in the 3D
dual Abelian Higgs model (i.e., the dual Landau-Ginzburg theory) extended by the Chern-Simons
term. In the second part of the review, we discuss critical properties of the weakly-coupled 3D
confining theories. These theories include the 3D compact QED, along with its fermionic extension,
and the 3D Georgi-Glashow model.

Keywords: magnetic monopoles; Abelian-type models of confinement; string representation of the
Wilson- and the ’t Hooft-loop averages; Aharonov-Bohm and other topological effects; Casimir scaling
of k-string tensions; critical properties of the 3D weakly coupled confining theories

1. Topological Effects in the Abelian-Type Confining Theories

1.1. Introduction

In this review, we discuss various non-perturbative phenomena that take place in the Abelian-type
confining gauge theories. We start this discussion with recalling some basic facts about confinement,
the large-distance static quark-antiquark potential associated with it, and the related models of
the confining string. As is well known, because of confinement in QCD, quarks and gluons do
not exist as individual particles, but appear only in the form of bound states (for recent reviews,
see [1–3]). The latter include mesons, baryons, glueballs, and the so-called hybrids consisting of
a quark, an antiquark, and one or several gluons. Confining interactions that take place between
the constituents of the bound states, can occur through string-like Euclidean configurations of the
Yang-Mills field. Such effective strings can be viewed as the microscopic tubes that carry fluxes of
the gauge field from one constituent to another, which is the reason for calling them “the QCD flux
tubes” [4–7]. Similar flux tubes, called Abrikosov vortices [8,9] (for a relativistic generalization, see [10]),
exist in type-II superconductors, in which case they represent stable cylindrically-symmetric solutions
to the classical equations of motion. This observation inspired ’t Hooft and Mandelstam [11–13] to
put forward their famous scenario of confinement as a dual superconductor. To describe this scenario,
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we recall that the vacuum of the usual superconductor contains electron-electron Cooper pairs, whose
condensation is modeled by an electrically charged Abelian Higgs field. Once two external monopoles
of the opposite magnetic charge are immersed into the superconductor, they get confined through an
Abrikosov vortex extending between them. Close to the center of the vortex, namely inside its so-called
core, the magnetic field created by the monopole-antimonopole pair, partially destroys the condensate
of Cooper pairs. Accordingly, the confinement scenario of Refs. [11–13] suggests the QCD vacuum
to be of the type of a dual superconductor, which can be characterized by a magnetically-charged
dual-Higgs condensate 1. The insertion into such a magnetically charged medium of a static pair of the
mutually opposite electric charges leads to the formation between them of a dual Abrikosov vortex,
which represents a tube of the electric flux. In the case of the group SU(N ), the corresponding dual
Abelian Higgs model allows one to describe confinement of particles which are charged with respect to
the maximal Abelian [U(1)]N−1-subgroup of SU(N ) 2. The dedicated lattice simulations [2,3,6,7,16–18]
indicate that the transverse-distance dependence of the chromo-electric field in the QCD flux tube is
indeed very similar to that of the magnetic field in Abrikosov vortices, which is known from the theory
of type-II superconductors [8–10].

In reality, however, static sources of the (chromo-)electric field do not exist, and even heavy quarks
are always dynamical. The dynamics of the quark-antiquark bound states can be described in terms
of the gauge-invariant amplitudes of the vacuum-to-vacuum transition. For illustrative purposes,
let us disregard quark spin degrees of freedom, and take into account only quark electromagnetic
interactions. The corresponding Euclidean Lagrangian is that of a complex-valued scalar field coupled
to an Abelian gauge field, namely L = 1

4F
2
µν + |Dµφ |

2. Here, Fµν = ∂µAν − ∂νAµ is the strength tensor
of the gauge field, and Dµ = ∂µ − ieAµ is the covariant derivative, with e being the electric charge.
We consider further the simplest amplitude, which describes the propagation of the corresponding
Coulomb bound state from the point x to the point y. Such an amplitude, given by the Green function
of this bound state, has the form

G (x ,y) ≡
∫
DAµ e−

1
4

∫
d4x F 2

µν 〈x |
1
D2
µ

��y
〉 〈
y��

1
D2
µ
|x〉 . (1)

With the use of the world-line representation for 〈x | 1
D2
µ

��y
〉

(see e.g., [19]), Equation (1) can further

be explicitly written as the following integral over trajectories zµ (τ ) and z̄µ (τ ) of the quark and the
antiquark [20,21]:

G (x ,y) =
∞∫
0
ds
∞∫
0
ds̄

z (s )=y∫
z (0)=x

Dzµ

z̄ (s̄ )=x∫
z̄ (0)=y

Dz̄µ e−
1
4

∫ s
0 dτ ż2

µ−
1
4

∫ s̄
0 dτ ˙̄z2

µ

〈
exp


ie *

,

y∫
x
dzµ Aµ (z) +

x∫
y
dz̄µ Aµ (z̄)+

-



〉
. (2)

Here the average over the gauge field is defined as

〈· · · 〉 ≡

∫
DAµ e−

1
4

∫
d4x F 2

µν (· · · ), (3)

and the dot denotes the derivative with respect to the proper time τ . As we see, the gauge field
enters Equation (2) only through the exponential exp[· · · ]. This exponential, representing the phase
factor taken along a closed contour C, which is formed by the trajectories zµ (τ ) and z̄µ (τ ), is called
the Wilson loop [22]. One can parameterize the entire contour C by some vector-function xµ (τ ), and
consider the corresponding Wilson-loop average 〈W (C )〉 =

〈
exp

[
ie

∮
C dxµ Aµ (x )

]〉
. In the case of only

1 Note that the dedicated lattice simulations [14,15] have confirmed this scenario of confinement with a very high accuracy.
2 Note, however, that, unlike the Abelian Higgs model, the Yang-Mills theory does not possess any string-like solutions to the

classical equations of motion. That is, no indications exist that, in the absence of external static sources of the gauge field,
the Yang-Mills vacuum can contain stable classical string-like field configurations.
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electromagnetic interactions at issue, the average (3) is Gaussian, and the Wilson-loop average can be
readily calculated. The corresponding leading result has the form [23,24]

〈W (C )〉 ' e−
e2
8π ·

L (C )
a , (4)

where L(C ) is the length of the contour C, and a is the inverse ultraviolet cut-off. The latter appears
due to the fact that the leading contribution to the Wilson-loop average in electrodynamics stems from
the two-point interactions mediated by the photon propagator, being therefore ultraviolet-divergent.
The exponential fall-off of 〈W (C )〉with L(C ), given by Equation (4), is called the perimeter law.

Let us further mention another important example of a gauge-invariant vacuum-to-vacuum
transition amplitude. To this end, we integrate over the fields φ and φ∗ in the partition function

Z =

∫
DAµ DφDφ

∗ e−
∫
d4x L .

This integration yields Z = 〈exp[−tr ln(−D2
µ )]〉, where “tr” in the Abelian case at issue stands only

for the functional trace over the space-time coordinates. Retaining in the cumulant expansion of this
mean value only the first term, one calculates the partition function in the one-loop approximation.
This approximation accounts for an infinite set of diagrams containing one loop of the φ-field and a
certain number of external lines of the Aµ -field. The corresponding expression for the partition function
readsZ ' exp(−〈Γ[Aµ ]〉), where Γ[Aµ ] is the one-loop effective action, which can be written as

Γ[Aµ ] = −

∫ ∞

0

ds

s
〈x | esD

2
µ |x〉 = −Ω

∫ ∞

0

ds

s

∮
xµ (0)=xµ (s )

Dxµ e−
1
4

∫ s
0 dτ ẋ 2

µ W (C ). (5)

Here Ω is the four-dimensional volume occupied by the system, and we have disregarded an
inessential additive Aµ -independent constant. Thus, the free-energy density of the φ-field, given
in the one-loop approximation by 〈Γ[Aµ ]〉, is completely expressed in this approximation through the
Wilson-loop average.

Instead of the perimeter law (4) for the Wilson-loop average, which holds for both small and
large contours in non-confining gauge theories, in confining theories the so-called area law holds
for sufficiently large contours [22]. As follows from its name, the area law corresponds to an
exponential fall-off of the Wilson-loop average with the area Σmin of the minimal surface bounded by
the contour C, namely 〈W (C )〉 → e−σΣmin for Σmin &

1
σ , where the coefficient σ has the dimensionality

of (mass)2. This coefficient is called the string tension, since it represents the energy-per-unit-length
of the above-discussed confining string, which is formed between a quark and an antiquark at their
separations & 1√

σ . In general, the string tension depends on the representation of the gauge group
under which the confined particles transform. This dependence will be discussed in Section 1.3
below. In QCD, for quarks transforming under the fundamental representation of the SU(3) group, the
numerical value of the string tension, σ ' (440 MeV)2, can be obtained from the Regge phenomenology.
Notice also that in QCD, as well as in other non-Abelian gauge theories, the vector-potential is
matrix-valued, so that the exponential in the definition of the Wilson loop should be path-ordered and
traced. That is,

W (C ) =
1
N

trP exp
[
iд

∮
C
dxµ Aµ (x )

]
, (6)

where “tr” stands for the trace over color indices, P denotes the path ordering, д is the gauge coupling,
Aµ ≡ T aAa

µ with T a being a generator of a given representation of SU(N ) under which the quark
transforms, and a = 1, . . . ,N 2 − 1.
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For a flat contourC, whose extensionT in the 4-th direction is much larger than its spatial extension
R, the Wilson-loop average can be used for a derivation of the static quark-antiquark potential V (R)

through the formula

V (R) = −
1
T

ln〈W (C )〉���T→∞. (7)

Since Σmin = RT for such contours, one has V (R) = σR. That is, in the Yang-Mills and other gauge
theories where the Wilson-loop average exhibits the area law, the static potential at large distances
is the linear confining one 3. Regardless of the shape of the contour C, this contour unambiguously
defines the corresponding minimal surface Smin. This surface, being the world sheet of the maximally
stretched string, should appear as a saddle point in the representation of the Wilson-loop average
in the form of a functional-integral sum over all surfaces bounded by the contour C. For the case of
Σmin &

1
σ at issue, such a sum can be formally written as

〈W (C )〉 ' e−σΣmin =
∑
S

e−A[S ]. (8)

Here Σmin is the area of Smin, and A is some action associated with the surface S . Thus, the problem of
string representation of a certain confining gauge theory implies the derivation from that theory of
both the action A and the measure in the functional-integral sum

∑
S

.

Clearly, Equation (8) resembles the known representation of the partition function of a point
particle in terms of the integral over all possible trajectories of that particle [cf. Equation (5)]. Within this
analogy, Smin corresponds to the classical trajectory of a particle, while all other surfaces S correspond
to quantum trajectories. However, while the measure in the sum over paths of a particle is known 4, the
measure in the functional-integral sum

∑
S

is unknown. Fortunately, at least the string action A[Smin]

can be explicitly derived in the certain limits of Abelian gauge theories with confinement, such as the
3D Georgi-Glashow model (26) or the 4D dual Abelian Higgs model (75) 5. These models, along with
the corresponding string representations, will be discussed in full detail in Sections 1.3 and 1.6 below.
The resulting action A[Smin] turns out to have a non-local form of the interaction of two infinitesimal
world-sheet elements dσµν , which is mediated by the propagator Dm of a dual vector boson of mass
m, namely

A[Smin] ∝m
2
∫
Smin

dσµν (x )

∫
Smin

dσµν (x
′) Dm (x − x ′). (9)

The way in which this mass is generated depends on a particular confining gauge theory. For instance,
in the case of the 3D Georgi-Glashow model, a non-vanishing value of the massm is provided by the
Debye screening of the dual vector boson in the monopole-antimonopole plasma, while in the dual
Abelian Higgs model a non-vanishing mass appears owing to the Higgs mechanism.

In the physically interesting case of the Yang-Mills theory, a non-local action of the form (9) appears
within the Gaussian approximation to the so-called Stochastic Vacuum Model [26–28] (for reviews,
see [29–31]). There, m2Dm (x − x ′) becomes replaced by a certain function D (x − x ′), which is regular at
x = x ′. This function turns out to be proportional to the Green function of a thought bound state, called
a 2-gluon gluelump, which is formed by two gluons together with a static source of the gauge field

3 In full QCD, the quark-antiquark string breaks at a certain distance by converting its energy into a production of a meson
constituting of a light quark and the corresponding antiquark. These light quark and antiquark further recombine with
the initial static quark-antiquark pair to form two heavy-light mesons. This leads to the screening of the color charge of
the static quarks and to the flattening of the linearly rising static potential at large distances. Accordingly, the Wilson-loop
average associated with a static quark-antiquark pair, ceases to be an order parameter for confinement in full QCD.

4 Namely [25], Dxµ = lim
n→∞

1
(4π ε )D (n+1)/2

n∏
k=1

∫
dDx (k ) , where ε ≡ s

n , and D is the dimensionality of the Euclidean space-time.
5 In this review, we do not discuss string representation of supersymmetric gauge theories, which is based on the so-called

AdS/CFT-correspondence. For a recent review of this topic see Ref. [1].
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transforming under the adjoint representation of the group SU(N ). The distance at which this Green
function exponentially falls off, defines the correlation length λ of confining stochastic background
Yang-Mills fields (cf. Refs. [32–35]). Such fields, whose typical momenta are smaller than 1/λ, lead
to the formation of the confining string which sweeps out the surface Smin. Accordingly, one can
expect that gluons with momenta larger than 1/λ can lead to the formation of the so-called gluon
chain [4,36,37], in which several such gluons are interconnected by strings. Since these high-momentum
gluons possess their own degrees of freedom, they can produce various types of excitations of the
gluon chain, which would quantify the functional-integral sum

∑
S

in Equation (8). Nevertheless, the

dynamics of such a many-body bound state of massless relativistic particles, with linear interactions
between the nearest neighbours, appears quite complicated (cf. Ref. [38]), hindering the construction
of an explicit analytic formula for the functional-integral sum

∑
S

. Still, the approximate result which

can be considered reliable in the Yang-Mills theory, is the above-mentioned phenomenological action
of the form (9), which describes the string that sweeps out the minimal surface Smin. Thus, given
the exponential fall-off of both Dm (x ) and D (x ) at large |x |, one can say that, when proceeding from
confining Abelian gauge theories to the Yang-Mills theory, the mass of a dual vector boson in the string
action essentially becomes substituted by the mass of a 2-gluon gluelump.

1.2. The Large-Distance Static Quark-Antiquark Potential and the Models of the Confining String

As discussed above, the static potential V (R) resulting from the area law for the Wilson-loop
average 〈W (C )〉 rises linearly at large distances. Indeed, applying Equation (7) to the case where the
contour C has the form of a rectangle, C = R ×T , one obtains V (R) = σR. Thus, for quark-antiquark
separations R & 1√

σ , the leading term in the static potential is the linear one. This term represents
the free energy of a straight-line confining string of length R. In reality, however, the string is a
dynamical object, so that the straight-line string can only appear in the semi-classical approximation
to the functional-integral sum (8) over string world sheets. Depending on the dynamics of the
confining string, which is defined primarily by the action A[S ], one can obtain various corrections to
the linear potential.

In general, the length of the confining string significantly exceeds its thickness. Therefore, in the
leading approximation, the effects produced by the string thickness can be disregarded altogether.
This leads to the so-called Nambu-Goto string action [39–41], A[S ] = σΣ, where Σ is the area of the
surface S . Explicitly, this action has the form

A[S ] = σ

∫
d2ξ

√
detдab . (10)

Here дab = ∂axµ · ∂bxµ is the tensor of the induced metric corresponding to the vector-function
xµ = xµ (~ξ ) which parameterizes the string world sheet S . Henceforth, the indices a and b take
the values 1 and 2, while µ = 1, . . . ,D, where D is the dimensionality of the embedding Euclidean
space-time, and ~ξ = (ξ1, ξ2).

In order to obtain the leading correction to the linear potential, which is produced by
small fluctuations of the Nambu-Goto string about the flat surface lying in the (1, 4)-plane, one
parameterizes the string world sheet by the vector-function xµ = (x1,xi ,x4), where x1 = Rξ1,
x4 = T ξ2, with ξ1 ∈ [0, 1], ξ2 ∈ [0, 1]. Since fluctuations of the string occur in the directions
perpendicular to the (1, 4)-plane, they are described by the components xi = (x2,x3) of the
vector-function xµ . Using the explicit form of the components of the induced-metric tensor,

д11 = R2 + (∂1xi )
2, д22 = T

2 + (∂2xi )
2, д12 = д21 = ∂1xi · ∂2xi , one has detдab = (TR)2

[
1 +

(
∂xi
∂x1

)2
+

(
∂xi
∂x4

)2
]
,

where the O ( |xi |4)-terms have been disregarded. This yields for the Nambu-Goto action,

A[S] = σ
∫ 1

0 dξ1
∫ 1

0 dξ2
√

detдab , the following expression: A[S] ' σRT + σ
2

∫ R
0 dx1

∫ T
0 dx4

[(
∂xi
∂x1

)2
+

(
∂xi
∂x4

)2
]
.
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Accordingly, in the D-dimensional Euclidean space, where the index i acquires D − 2 values, the
Wilson-loop average (8) has the form

〈W (C)〉 =

∫
Dxi e−A[S ] ' e−σRT−

D−2
2 ·tr ln[−(∂/∂x1)

2−(∂/∂x4)
2].

Using further the representation of the logarithm in the form lnx = − ∂x−β
∂β

���β→0
, and sendingT to infinity,

one has

tr ln
[
−(∂/∂x1)

2 − (∂/∂x4)
2

]
= −T

∂

∂β

∞∑
n=1

∫ +∞

−∞

dω

2π
1

[ω2 +
(
πn
R

)2
]β

�������β→0

.

The ω-integration in this formula can further be carried out by exponentiating the denominator, which
yields [42]

tr ln
[
−(∂/∂x1)

2 − (∂/∂x4)
2

]
=
πT

R
ζ (−1) = −

πT

12R
.

Here, the value ζ (−1) = − 1
12 of the Riemann ζ -function, ζ (z) =

∞∑
n=1

1
nz , obtained via the analytic

continuation, has been used. Thus, integrating over string fluctuations xi ’s, and regularizing the
so-emerging functional determinant via the ζ -function, one obtains the following static potential:

V (R) ' σR −
π (D − 2)

24R
. (11)

The obtained correction to the linear potential, −π (D−2)
24R , is called the Lüscher term [43]. Being produced

by the fluctuating confining string, this term is developed at the distances R & 1√
σ . This feature of the

Lüscher term distinguishes it from the Coulomb term in the static quark-antiquark potential,

VCoul(R) = −
д2Cr

4πR
, (12)

which is also ∝ 1
R . In fact, the Coulomb term dominates the full quark-antiquark potential at the

distances R . 1√
σ , whereas the Lüscher term is only a correction to the linear potential at the distances

R & 1√
σ . In Equation (12), д stands for the Yang-Mills coupling, andCr is the quadratic Casimir operator

of the representation r of the group SU(N ) under which the quark and the antiquark are transformed.
The proportionality of the Coulomb potential to the quadratic Casimir operator, V (R) ∝ Cr , means
that the Coulomb quark-antiquark potential respects the so-called Casimir scaling [44]. Clearly,
the Lüscher term does not respect this scaling, which is one more feature distinguishing it from
the Coulomb potential in QCD. Furthermore, unlike the Coulomb potential, the Lüscher term is
coupling-independent altogether, i.e., “universal”. Yet another distinguishing feature of the Lüscher
term is that it depends on the space-time dimensionality only via the factor (D − 2), being otherwise
∝ 1

R in any number of dimensions. On the contrary, the R-dependence of the Coulomb potential
changes with the Euclidean space-time dimensionality D in a non-trivial way, namely asVCoul(R) ∝

1
RD−2

for D > 2.
Furthermore, owing to the same fluctuations of the confining string that yield the Lüscher term,

the thickness of the string increases (albeit only logarithmically) with its length R. Specifically, at
R � 1√

σ , the following expression holds for the mean squared transverse size of the string [43]:

〈x2
⊥〉 ∝ α

′ · ln R2

α ′ , where α ′ ≡ 1
2πσ is the slope of linear hadronic Regge trajectories. This slope appears

in the asymptotic Regge behavior of the high-energy scattering amplitudes, A→ eα
′t ln(s/t ) , at s � t ,

where s and t are the Mandelstam variables. The Regge behavior with a linear trajectory α (t ) = α ′t of
zero intercept, α (0) = 0, is associated with the classical string. Once fluctuations of the string are taken
into account, a non-vanishing Reggeon intercept appears. Since these fluctuations are the same ones
as those which yield the Lüscher term, the intercept turns out to be related to the coefficient of the
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Lüscher term as [45–47] α (0) = D−2
24 . Although this result has been rigorously obtained in the large-D

limit, there exist convincing arguments [47] that it can be valid for D ∼ 1 as well. Note also that the
bosonic string can be consistently quantized only in D = 26 dimensions [48] 6, in which case α (0) = 1,
while the above-quoted result can be written as α (0) = 1 + D−26

24 .
Owing to the negative sign of the Lüscher term, the potential (11) respects the inequalities [49]

dV

dR
> 0 and

d2V

dR2 ≤ 0,

which should be respected by any confining potential 7. The same is true for the full static potential
produced by the Nambu-Goto string, which can be obtained in the limit of D � 1 [42] 8. Such a full
potential has the form

V (R) = σ

√
R2 − R2

c , (13)

where Rc =
√

π (D−2)
12σ is the minimum quark-antiquark separation for which it is still legitimate

to consider small fluctuations of the string. Clearly, the large-R limit of the above-quoted
potential (13) recovers both the linear quark-antiquark potential and the Lüscher term, namely

V (R) = σR − π (D−2)
24R + O

(
1

σR3

)
.

Equation (13) can be represented in the equivalent form V (R) = σ (R)R, with the effective
R-dependent string tension

σ (R) ≡ σ

√
1 − (Rc/R)2. (14)

By virtue of this formula, one can obtain the critical behavior of the string tension at temperatures
close to the deconfinement one [50]. Indeed, the static potential at finite temperature T is related to the
connected two-point correlation function of the so-called Polyakov loops as

〈P† (~R)P (~0)〉conn = e−βV (R ) . (15)

Here β is the inverse temperature, and P (~R) ≡ 1
N trT exp

[
iд

∫ β
0 dx4 A4 (~R,x4)

]
is the Polyakov

loop [51] 9. In this formula, T stands for time ordering, and we have assumed for concreteness
that quarks are transformed under the fundamental representation of the group SU(N ), so that
A4 ≡ Aa

4T
a , where T a is a generator of that representation. Considering the correlation function (15)

in the limit of R � β , and comparing it with the zero-temperature formula (7), we observe that
the Euclidean time T at zero temperature corresponds to the quark-antiquark separation R at finite
temperatures, while R at zero temperature corresponds to β . Accordingly, the Wilson-loop average
〈W (C )〉 ' e−σ (R )R ·T at zero temperature corresponds to the two-point correlation function of Polyakov
loops 〈P† (~R)P (~0)〉conn ' e−σ (β )β ·R at finite temperatures, and σ (β ) is given by Equation (14) with
R replaced by β . Thus, the Nambu-Goto model of the confining string yields the following critical
behavior of the string tension:

σ (T) → σ
√

1 − (T/Tc ) at T→ Tc , (16)

6 Cf. also the discussion around Equation (21) below.
7 These inequalities are, however, not respected by the potential V (R ) ∝ R1+α with α > 0. In particular, they are not respected

by the harmonic-oscillator potential, which means that this potential cannot describe confinement.
8 Note, however, that strings can unlikely provide confinement of point particles in the spaces of dimensionality D > 4.

This issue is discussed in more detail at the end of Section 1.5 below.
9 This operator is also called the Polyakov or the Wilson line.
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where

Tc =

√
3σ

π (D − 2)
(17)

is the critical temperature of the deconfinement phase transition. As we see, the model at issue leads to
the deconfinement phase transition owing to the negative sign of the Lüscher term, i.e., owing to the
fact that the force exerted by this term on the quark and the antiquark, is attractive.

Notice also the factor of
√

3 in Tc , instead of
√

12, where the latter would correspond to
the naive use of the above expression for 1/Rc . The value of this coefficient is determined by
the fact that the confining string is in general described by a two-dimensional conformal field
theory, which is characterized by the so-called conformal-anomaly number c (also called the central
charge). In particular, for the bosonic string at issue, one has c = 1. In terms of such a conformal
field theory, the Lüscher term, − c (D−2)π

24R , represents the zero-point energy of the corresponding
two-dimensional system of the spatial extension R, which is subject to the Dirichlet boundary
conditions. Rather, the correlation function (15) yields the zero-point energy of the system which
is confined in a long cylinder of circumference β . This zero-point energy reads [52,53] − c (D−2)π

6 T.
Accordingly, while the Lüscher term stems from the large-R expansion of the effective string
tension (14), σ (R) = σ − c (D−2)π

24 R−2 + O (R−4), an analogous large-β expansion of the finite-temperature
string tension has the form σ (T) = σ − c (D−2)π

6 T2 + O (T4).
Notice further that, on the purely theoretical grounds, one cannot exclude the possibility for the

confining string to be described by some fermionic extension of the bosonic Nambu-Goto string theory.
In such a case, massless fermionic modes propagating over the string world sheet, change the central
charge, so that its value becomes 1/4 for the fermionic string and 3/2 for the so-called Neveu-Schwarz
string [54–58]. Since in both cases the central charge remains positive-definite, the Lüscher term in
these string theories has the same negative sign as in the Nambu-Goto case, i.e., the presence of
fermionic string modes does not affect the existence of the deconfinement phase transition. This is,
however, no longer the case for the so-called supersymmetric string, for which the central charge is
equal to zero (cf. Ref. [54–58]). Anyway, regardless of these theoretical possibilities, the coefficient of
the Lüscher term obtained in the lattice measurements [59] corresponds to the purely bosonic case. We
notice that the accuracy of these lattice measurements is high enough as to safely exclude all possible
fermionic extensions of the Nambu-Goto string from the list of potential candidates of the confining
string in QCD.

The square-root fall-off (16) of σ (T) at T → Tc means that the critical index ν characterizing
the corresponding deconfinement phase transition, is equal to 1/2, i.e., the phase transition in the
Nambu-Goto model of the confining string is second-order and of the mean-field universality class.
Clearly, this result does not depend on the number of colors N , which contradicts the so-called
Svetitsky-Yaffe conjecture [60]. According to that conjecture, the deconfinement phase transition in the
D-dimensional SU(N ) Yang-Mills theory should be of the same universality class as the deconfinement
phase transition in the (D − 1)-dimensional N -state Potts model. The conjecture is based on the
observation [51] that the deconfinement phase transition in the SU(N ) Yang-Mills theory corresponds
to the spontaneous breaking of the center-subgroup symmetry of SU(N ). The center subgroup, which
consists of those elements of the group SU(N ) that commute with all the elements, is the same discrete
ZN group as the one that characterizes the N -state Potts model. Hence, according to the Svetitsky-Yaffe
conjecture, the deconfinement phase transition in the four-dimensional SU(2) Yang-Mills theory should
be second order, with the universality class of the three-dimensional Ising model, which corresponds to
ν ' 0.63 (cf. Ref. [61]). For N = 3, one has the so-called weak first-order phase transition, in which case
it is still possible to formally attribute to the critical exponent ν the value of 1

D−1 =
1
3 (cf. Refs. [62,63]).

For N > 3, the phase transition is first order, so that it can no longer be characterized by the critical
exponents. Thus, only for N = 2 is the deconfinement phase transition in the SU(N ) Yang-Mills theory
second order. Even in that case, the value of ν ' 0.63 corresponding to the universality class of the
three-dimensional Ising model, exceeds the above-obtained value of ν = 1/2, which follows from the
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Nambu-Goto string model and corresponds to the mean-field universality class. One can also compare
these values of ν with the value of ν = 1, which can be obtained within the deconfinement scenario
based on the condensation of long closed strings [51]. In this scenario, the linear fall-off of σ (T) at
T→ Tc comes out as a mere consequence of the formula σ (T) = σ − TS

L , since the entropy S of a closed
string is proportional to its length L. Indeed, the entropy S in this case is given by the logarithm of
the number of possibilities to realize on the lattice a closed trajectory of length L. In particular, for
a hypercubic lattice of spacing h, it reads S = L

h · ln(2D − 1). Thus, the free energy of a closed string,
F = σL − TS , vanishes linearly at T → Tc , where Tc is given by the formula Tc =

σh
ln(2D−1) . Since the

value of ν = 1 implies the universality class of the two-dimensional Ising model, the corresponding
phase transition cannot take place in the 4D Yang-Mills theory.

The static potential (13) can be identified with the ground-state energy E0 in the representation
of the Wilson-loop average as a partition function of the Nambu-Goto string. That is, one represents

〈W (C )〉 as the following sum over the string states of definite energies: 〈W (C )〉 =
∞∑
n=0

wn e−EnT .

The contour C here has a rectangular shape, with the temporal extension T being much larger than
the spatial extension R. Furthermore, the “eigenenergies” En ’s are R-dependent functions, while the
coefficients wn ’s are just integers. The canonical quantization of the Nambu-Goto string with fixed
ends yields then the following energy spectrum [64]:

En (R) = σR

√
1 +

2π
σR2

(
n −

D − 2
24

)
= σR +

π

R

(
n −

D − 2
24

)
+ O

(
1
σR3

)
. (18)

The coefficients wn ’s, which account for level multiplicities, read [65–69]: w0 = 1, w1 = D − 2,
w2 =

1
2 (D − 2) (D + 1), etc. In the particular case of D = 3, wn is just the number of partitions of n,

so that [70]

wn '
1

4
√

3n
eπ
√

2n/3 (19)

for n � 1. Together with Equation (18), this formula yields the following lower bound for the temporal

extension of the contour C: Tmin =
√

π
3σ . We note that, at finite temperatures, where the Euclidean

time becomes periodic with the period β , this expression leads to an upper bound for the temperature:

Tmax =
1

βmin
=

√
3σ
π . Remarkably, this expression coincides with Equation (17) at D = 3, which was

obtained without recourse to the asymptotic formula (19).
The Nambu-Goto string action (10) is semiclassically equivalent to the so-called Polyakov string

action [48]

AP =
σ

2

∫
d2ξ
√
γγ abдab ,

where γab is an auxiliary metric, and γ ≡ detγab 10. Owing to this equivalence, one can perform
the string quantization by integrating over xµ , which yields the string partition function in the form
of a functional integral over γab . Furthermore, since the Polyakov action is invariant under the
reparametrizations of the surface, a certain gauge in the group of reparametrizations should be fixed,
which yields an additional integration over the ghost fields. It is convenient to use the so-called
conformal gauge, in which the metric γab is diagonal, namely γab =

√
γδab . In this gauge, one has

AP =
σ

2

∫
d2ξ (∂axµ )

2, (20)

10 This equivalence can be proved by using the formula δγ = −γ · γab · δγ ab , which yields δAP =
σ
2

∫
d2ξ
√
γ · δγ ab ·Tab ,

where Tab = дab − 1
2дcdγ

cdγab is the energy-momentum tensor. The corresponding classical equation of motion, Tab = 0,
defines the stationary point in the functional integral over auxiliary metrics. This equation has a solution γab = дab , for
which AP is indeed equal to the Nambu-Goto action (10).
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which represents the theory of a free massless bosonic field xµ . Integrating over xµ , one arrives at the
so-called Liouville theory: ∫

Dxµ e−AP = e
D

48π

∫
d2ξ [ 1

2 (∂aφ )
2+µ2eφ ],

whereφ = 1
2 lnγ and µ2 = 48πσ

26−D . The subsequent integration over the ghosts yields for the corresponding

Faddeev-Popov determinant a parametrically similar result, namely e−
26

48π

∫
d2ξ [ 1

2 (∂aφ )
2+µ2eφ ]. Combining

these two expressions together, one obtains the sought string partition function in the form [48]

Z =

∫
Dφ e−

26−D
48π

∫
d2ξ [ 1

2 (∂aφ )
2+µ2eφ ]. (21)

This result clearly indicates that the conformal anomaly cancels only for D = 26, which means that the
bosonic string can be selfconsistently quantized only in 26 dimensions. The existence of such a unique
critical value for the space-time dimensionality makes the Nambu-Goto model of the bosonic string
radically different from the field-theoretical models of point particles, which can be quantized in the
space-time of any dimensionality where their renormalizability is provided. Accordingly, when used
as a model of the hadronic string, the Nambu-Goto string can at most be treated semiclassically, as it
was done above in the present Section, but not at the fully quantum level.

An attempt to make the Nambu-Goto string quantizable in the physically important case of D = 4
can be based on the observation that the partition function (21) can be equivalently rewritten as

Z =

∫
Dφ e

−σ
∫
d2ξ
√
γ− 26−D

96π

∫
d2ξd2ξ ′

√
γR

(
− 1

∆

)
ξ ,ξ ′

√
γ ′R′

.

Here,
(

1
∆

)
ξ ,ξ ′

is the Green function of the Laplacian ∆ = 1√
γ ∂a
√
γγ ab∂b , R = −e−φ∂2φ is the

conformal-gauge expression for the scalar curvature of the world sheet, and γ ′ = γ (~ξ ′), R′ = R (~ξ ′).
Given the semiclassical equality γab = дab (cf. Footnote 10), one can say that, starting from an extension
of the Nambu-Goto model by the non-local term 11 κ

∫
d2ξd2ξ ′

√
γR

(
− 1

∆

)
ξ ,ξ ′
√
γ ′R′, one can hope to

have the situation with κ = 4−26
96π , which would make such a string model quantizable at D = 4. Clearly,

the mentioned non-local term can naturally emerge from the integration over some scalar field Φ(~ξ )

coupled to the world sheet of the Nambu-Goto string as
∫
d2ξ Φ

√
дR[дab ]. However, in the Yang-Mills

theory of interest, a possible origin of such a scalar field “living” on the string world sheet, is unknown.
The Polyakov string action suggests a yet another model of the deconfinement phase

transition [72]. It is based on the idea that, due to the compactification of the Euclidean time at finite
temperature, the confining string should also be compactified on the corresponding cylinder of the
radius R = (2πT)−1. Upon such a compactification, the action (20) takes the formAP =

σR2

2

∫
d2ξ (∂aϕ)

2,
where ϕ ∈ [0, 2π ). Thus, one arrives at the 2D XY model, which contains vortices that exist in the
molecular phase at low temperatures and in the plasma phase at high temperatures. The two phases
are separated from each other by the Kosterlitz-Thouless phase transition, which takes place at the

temperature Tc =
1
2

√
σ

2π . One can compare this critical temperature with the critical temperature (17)
of the Hagedorn phase transition, which occurs due to the exponentially growing number of string
states of a given mass. As has been noticed in [72], the two critical temperatures become equal to
each other precisely at D = 26. In spite of this remarkable coincidence, such a model based on the
compactified bosonic string, is unlikely to be a realistic model of the deconfinement phase transition in
the 4D Yang-Mills theory. Indeed, the Kosterlitz-Thouless phase transition predicted by this model is
of infinite order (i.e., an arbitrary-order temperature derivative of the free energy is continuous across

11 This term can be viewed as a non-trivial 2D theory of gravity (cf. Footnote 26 below). Once written in the quasi-local form
−κ

∫
d2ξ (∂a ln √γ )2, it is sometimes called the Polchinski-Strominger term [71].
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the critical temperature), while the deconfinement phase transition in the Yang-Mills theory is either
first or second order, as discussed above.

Accounting for the thickness of the string, one obtains corrections to the Nambu-Goto action. Of
those, the leading one is the so-called rigidity term, which corresponds to the bending energy of a rigid
stick [73]. Its action has the form

Arid =
1

2α

∫
d2ξ
√
д (∆xµ )

2, (22)

where д ≡ det дab is the determinant of the induced-metric tensor, ∆ = 1√
д ∂a
√
ддab∂b is the Laplacian

associated with the induced metric, and α is a dimensionless coupling constant. The static potential
stemming from the full string action,

A = AP +Arid, (23)

recovers Equation (13) in the limit of α → ∞, while going over to the strictly linear potential
V (R) = σ · (R − Rc ) in the opposite limit of α → 0, where the rigidity of the string fully suppresses
its fluctuations [74–76].

Furthermore, the action (23) can be used to determine the scale dependence of the coupling α .
To this end, following the usual renormalization-group procedure, one splits xµ (~ξ ) into a low-energy
part and a high-energy fluctuation, and integrates over such fluctuations in the Gaussian approximation.
This yields for α the following one-loop expression [48]:

α (p) =
α0

1 − α0D
4π ln Λ

p

, (24)

where α0 = α (Λ), and p ≡ |~p|. Thus, the running coupling α (p) in the theory (23) is asymptotically
free, which makes this theory similar to the two-dimensional O(N ) sigma-model. The dimensional
transmutation, which takes place because of the asymptotic freedom, leads to the appearance of a
mass parameterm = Λ e−c/α , where Λ is an ultra-violet cut-off, and c is some positive dimensionless
constant. Accordingly, it is natural to expect that two unit vectors orthogonal to the string world sheet
get correlated at the distances ∼ 1

m , i.e., the correlation length in the theory (23) is as small as 1
Λ . This is

the essence of the so-called problem of crumpling of the string world sheet. Had the running coupling
α (p) possessed an infra-red stable fixed point α∗ such that α∗ < c, the problem of crumpling at α ’s close
to α∗ would be solved, since the correlation length, estimated as 1

m =
1
Λ ec/α∗ , could be exponentially

larger than 1
Λ . However, no indications of possible existence of an infra-red stable fixed point for the

rigid-string running coupling have been found [77,78], which forces one to seek alternative solutions
to the problem of crumpling 12.

One such possibility can be based on the so-called string θ -term [48], which can be introduced in
the physically relevant case of D = 4, and reads θn, where

n =
1

2π

∫
d2ξ
√
ддab (∂atµν ) (∂b t̃µν ) (25)

is the number of self-intersections of the string world sheet. In Equation (25), tµν = εab (∂axµ ) (∂bxν )/
√
д

is the so-called extrinsic-curvature tensor of the world sheet, and a tilde denotes the dual tensor. Thus,
for the case of θ = π , the contribution of the θ -term to the string partition function, given by the factor
eiθn , becomes equal to (−1)n . Accordingly, the sum of contributions to the partition function which
are produced by some two world sheets with nearly the same string actions, but with n’s differing

12 Such a non-trivial infra-red fixed point exists though in the extension of the rigid-string theory by a Wess-Zumino term
∝ tr (Ω−1dΩ)3, where the elements of matrix Ω are pairwise products of tangent and/or normal vectors to the world
sheet [79].
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from each other by 1, vanishes. Thus, the string θ -term at θ = π can provide a mechanism of mutual
cancellations among contributions to the string partition function which are produced by highly
crumpled world sheets.

Of course, it looks desirable not just to add the rigidity- and the θ -term to the Nambu-Goto action,
but to derive them from an underlying confining gauge theory. It turns out that, for a variety of
confining theories, the resulting string action has a non-local form of Equation (9). Furthermore, the
subsequent derivative expansion of this non-local action leads to the appearance of the rigidity term
with a negative coupling α 13. An advantageous feature of the negative sign of the rigidity coupling is
that it allows one to consistently define the correlation length between the unit vectors orthogonal to the
string world sheet. To illustrate this, one represents xµ (~ξ ) as a sum of a low-energy part, which yields a
surface with a constant induced metric дab , and a fluctuation yµ (~ξ ) about this surface. The correlation
length between the unit vectors orthogonal to the world sheet with the constant induced metric, is
defined then by the infra-red behavior of the correlation function 〈yµ (~ξ )yν (~0)〉. To obtain this correlation
function, one can use the conformal gauge, дab =

√
дδab , in which the action (22) yields the following

O (y2
µ )-term: 1

2α

∫
d2ξ 1√

д (∂
2yµ )

2. Then, owing to the fact that д = const, one obtains from the action (23)
in the case of α < 0 the following correlation function:

〈yµ (~ξ )yν (~0)〉 = δµν
∫

d2p

(2π )2
ei~p~ξ

1
α
√
дp

4 − σp2
=

δµν

2πσ


K0 (m |~ξ |) − ln

L

|~ξ |


.

Here m2 = |α |
√
дσ , and ~ξ has been attributed the dimensionality of [length], so that L = |~ξ |max is the

inverse infra-red cut-off. Using the known behavior of the Macdonald function K0 (x ) at x � 1 and
x � 1, one can readily see that the correlation function 〈yµ (~ξ )yν (~0)〉 stays finite at |~ξ | → 0, while the
corresponding correlation length, equal to 1/m, is indeed well defined for α < 0 14. An analogy with
the rigid-string running coupling (24) suggests further that |α (p) | in confining gauge theories can also
grow in the infra-red limit. Accordingly, the problem of crumpling of large world sheets in these
theories is likely to persist, necessitating for its solution the above-discussed string θ -term, which
should be derived within the same theories. This issue will be addressed in detail in Section 1.5 below.

1.3. SU(N ) Georgi-Glashow Model: Area Law and k-String Tensions in 3D

The Yang-Mills theory extended by the Higgs field Φa , which transforms under the adjoint
representation of the gauge group SU(N ), is called the Georgi-Glashow model. In the (2+1)-dimensional
Euclidean space-time, classical equations of motion in such a model possess a non-perturbative solution,
called the ’t Hooft-Polyakov monopole [83,84]. In the limit of a sufficiently small electric coupling,
monopoles together with antimonopoles form a dilute quantum plasma, which provides the Debye
screening of a test magnetically charged particle immersed into it, along with the generation of
the Debye mass MD of the dual-photon field [84]. Accordingly, the appearance of a finite vacuum
correlation length 1/MD leads to confinement. We discuss first the generation of the Debye mass
in the simplest case of the SU(2) 3D Georgi-Glashow model, proceeding further to the quantitative
description of confinement in the general SU(N ) case.

The Euclidean action of the SU(2) 3D Georgi-Glashow model has the form

S =

∫
d3x

[
1

4д2

(
Faµν

)2
+

1
2

(
DµΦ

a
)2
+
λ

4

(
(Φa )2 − η2

)2
]

, (26)

13 Cf. Refs. [30,80,81].
14 At the same time, one can show [82] that the one-loop contribution to the zero-point energy of the static quark-antiquark pair

is negative for any sign of α . For this reason, the negative sign of α is not associated with the formation of any metastable
quark-antiquark state.
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where the covariant derivative acts on the Higgs field according to the formula DµΦ
a = ∂µΦ

a + εabcAb
µΦ

c .
The actual reason for which confinement in the model (26) allows for an analytic description is the
fact that it holds in the so-called weak-coupling regime of д � η, which will be assumed henceforth.
Clearly, this limit parallels the requirement of having sufficiently large η’s in order to ensure the
spontaneous SU(2)→U(1) symmetry breaking. Expanding then the action (26) around its minimum,
which is provided by the Higgs configuration Φa = δa3η, one obtains the perturbative spectrum of
the resulting U(1)-invariant model. This spectrum consists of a massless photon A3

µ , as well as the
vector bosonsW ±

µ = (A1
µ ∓A

2
µ )/
√

2 with the masses m = дη, and a scalar particle σ = Φ3 − η with the
mass M = η

√
2λ. While the photon and the σ -particle and neutral with respect to the U(1)-group, the

W-bosons are charged with respect to that group, with the corresponding electric charges equal to ±1
(in the units of д).

To obtain the ’t Hooft-Polyakov monopole solution to the classical equations of motion, one
assumes that the Higgs part of this solution is directed along the 3-rd axis, i.e., Φa = δa3u (r ), where
r ≡ |~x|. The equations of motion then yield u (0) = 0 and u (r ) → η − e−Mr

дr at r → ∞. For the off-diagonal
components of the vector-field part of the monopole solution, the equations of motion yield an
exponential fall-off with the distance, namely A1

µ ∼ A2
µ = O (e−mr ). Instead, the diagonal component

A3
µ of the monopole solution falls off as O (1/r ), yielding the long-range Coulomb interactions in the

monopole-antimonopole plasma. Furthermore, the action of a single monopole has the form

S0 = 4π ·
m

д2 · ε (M/m). (27)

Here 4π · mд2 is the classical monopole action, while the correcting function ε is produced by quantum
fluctuations in the monopole background. This function turns out to be monotonic and very slowly
varying, so that [85,86] ε (0) = 1, while at M �m one gets numerically a very close value [87] ε (∞) ' 1.8.

In general, interactions in the monopole-antimonopole ensemble are mediated not only by the
vector-field part A3

µ of the monopole solution but also by the Higgs-field part u (r ). In what follows,
however, we will be interested in the limit of M � m, where the interaction mediated by u (r ) is
exponentially suppressed with respect to the interaction mediated by A3

µ , so that the action of a
configuration consisting of n monopoles and antimonopoles reads

Sn ' nS0 +
д2
m

8π

n∑
a,b=1
a,b

qaqb
|~za −~zb |

. (28)

In Equation (28), qa ’s are the monopole charges in the units of the magnetic coupling дm . The energy
of a given configuration of monopoles is proportional to the square of the magnetic-field flux they
produce, so that the energy of some k > 1 monopoles of a unit charge is lower than the energy of one
monopole of charge k. For this reason, all monopoles carrying magnetic charges k > 1 dissociate into
monopoles of charge 1. Accordingly, when constructing the grand canonical monopole-antimonopole
partition function, it suffices to perform the summation over monopoles and antimonopoles with
magnetic charges qa = ±1, and to disregard all those with |qa | > 1. Hence, the partition function of
such a grand canonical ensemble reads 15

Zmon = 1 +
∞∑
n=1

1
n!

(
α ·

m7/2

д
e−S0

)n n∏
a=1

∫
d3za

∑
qa=±1

e
−
д2
m

8π

n∑
a,b=1
a,b

qaqb
|~za−~zb |

. (29)

15 Notice also that the superposition of n (anti-)monopoles interacting with each other Coulomb-like in the limit of M �m,
whose action is given by Equation (28), can be shown to be an approximate solution to the classical equations of motion, the
corrections to which are suppressed at least as O (e−M/m ) [84].
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The dimensionless function α = α (M/m) in this formula stems from quantum fluctuations around the
monopole solution.

To calculate the partition function (29), it is convenient to represent Coulomb interactions between
(anti-)monopoles by means of an auxiliary scalar field χ (~x) as follows:

e
−
д2
m

8π

n∑
a,b=1
a,b

qaqb
|~za−~zb |

=

∫
Dχ e−

∫
d3x [ 1

2 (∂µ χ )
2+i χ ρ],

where ρ (~x) = дm
n∑

a=1
qaδ (~x − ~za ) is the density of magnetic charge. This representation readily

yields an expression for the grand canonical monopole-antimonopole ensemble in the form of a
three-dimensional sine-Gordon model 16

Zmon =

∫
Dχ e−

∫
d3x [ 1

2 (∂µ χ )
2−2ζ cos(дm χ )]. (30)

Here, we have introduced the monopole fugacity ζ = α · m
7/2

д e−S0 , which has the dimensionality
of (mass)3. Clearly, in the weak-coupling regime of д � η, this quantity possesses an exponential
smallness. Notice that this smallness takes place regardless of whether M � m or not. Namely, as
was shown in Ref. [88], although the function α (M/m) increases for M . m, this increase is slower
than O (eS0 ).

Expanding the cosine in Equation (30), we obtain from the leading term of this expansion (equal
to unity) the mean density of the monopole-antimonopole plasma. It follows from the standard
formula ρmean =

1
Ω

∂ lnZmon
∂ ln ζ , where Ω is the 3-dimensional volume occupied by the system, and has

the form ρmean ' 2ζ . The approximate equality in this expression corresponds to the neglection
of Coulomb-exchange corrections, and the factor of 2 stems from the fact that the mean density of
either monopoles or antimonopoles is equal to ζ . The second term in the expansion of the cosine
in Equation (30) yields the magnetic Debye mass MD of the field χ , which reads MD = дm

√
2ζ .

The corresponding Debye radius, 1/MD , defines the distance at which the Coulomb field of a test
magnetic charge immersed into the monopole-antimonopole plasma, becomes Debye screened by
the random fields produced by monopoles and antimonopoles. Accordingly, the correlation length
in the monopole-antimonopole plasma is also equal to 1/MD , being therefore exponentially larger
than the mean distance between the constituents of the monopole-antimonopole plasma. Indeed,
the correlation length is of the order of O (ζ −1/2), while the mean distance between the constituents
of the plasma is ∼ ρ−1/3

mean, i.e., it has the order of O (ζ −1/3). Notice also that the Debye volume 4π
3M3

D

contains 4π
3M3

D
· ρmean ∝

1
д3
m
√
ζ

monopoles and antimonopoles. Owing to the exponential largeness of

this number, fluctuations of individual (anti-)monopoles can be safely disregarded. This fact fully
justifies the adopted mean-field description of the plasma in terms of the field χ .

We proceed now to the general case of the SU(N ) Georgi-Glashow model. Similarly to the
SU(2)→U(1) symmetry-breaking pattern considered above, the SU(N ) symmetry in that model
is spontaneously broken down to the maximal Abelian subgroup [U(1)]N−1 of the group SU(N ).
The generators of this so-called Cartan group [U(1)]N−1 are given by the mutually commuting
diagonal generators of the group SU(N ), which form an (N − 1)-dimensional (matrix) vector
~H. The remaining off-diagonal generators of SU(N ) can be grouped pairwise into certain linear
combinations which, in analogy with the SU(2)-case, are called step (rising and lowering) generators
E±i , where i = 1, . . . , N

2−N
2 . The algebra of SU(N )-generators resulting from such a decomposition

reads
[
~H,E±i

]
= ~q

±iE±i , [Ei ,E−i ] = ~qi ~H, where the vectors ~qi and ~q
−i are called respectively positive

16 The path-integral measure Dχ in Equation (30) is normalized by the condition
∫
Dχ e−

1
2

∫
d3x (∂µ χ )2 = 1.
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and negative root vectors of the group SU(N ). Accordingly, one can represent the entire matrix-valued
vector potential Aa

µT
a (where a = 1, . . . ,N 2 − 1) as a sum of the off-diagonal and the diagonal parts,

Aa
µT

a =
(
W +
µ

) i
E−i +

(
W −
µ

) i
Ei + ~Aµ ~H. That is, W-bosons in this decomposition are charged with

respect to the unbroken [U(1)]N−1 symmetry group, whereas “photon” fields ~Aµ are neutral with
respect to this group. Similarly to the case of the SU(2) Georgi-Glashow model, the SU(N )→[U(1)]N−1

symmetry breaking keeps photon fields massless, while giving masses to W-bosons. Due to the
latter fact, W-bosons are unable to mediate long-range interactions in the monopole-antimonopole
plasma. Noticing also that the magnetic charges of monopoles are дm~qi , while the magnetic charges of
antimonopoles are дm~q−i , and using the fact that ~q

−i = −~qi , one obtains the following generalization of
the partition function (30) (cf. Ref. [89]):

ZN
mon =

∫
D~χ exp



−

∫
d3x



1
2

(
∂µ ~χ

)2
− 2ζ

(N 2−N )/2∑
i=1

cos
(
дm~qi ~χ

)




. (31)

The Debye mass of the (N − 1)-component “dual-photon” field ~χ can be obtained by using the

formula [90]
(N 2−N )/2∑

i=1
qmi q

n
i =

N
2 δ

mn (where the indices m and n run from 1 to N − 1), which complies

with the normalization of the root vectors |~qi | = 1 ∀i. This Debye mass reads

MD = дm
√
Nζ . (32)

Furthermore, similarly to the SU(2)-case, one can use the formula ρmean =
1
Ω

∂ lnZN
mon

∂ ln ζ to calculate the
mean density of the monopole-antimonopole plasma. This mean density reads

ρmean ' (N 2 −N )ζ , (33)

in agreement with the number of species of monopoles and antimonopoles, equal to N 2 − N .
The corresponding number of monopoles and antimonopoles contained in the Debye volume 4π

3M3
D

appears proportional to N−1
д3
m
√
N ζ

. The exponential largeness of this quantity, which is provided by the

factor of 1√
ζ

, ensures the validity of the mean-field approximation.

We proceed now to the quantitative description of confinement of the static quark-antiquark
pair in the SU(N ) Georgi-Glashow model. To this end, we notice that the charges which the quarks
possess with respect to the maximal Abelian [U(1)]N−1 subgroup of SU(N ), have the form д~µα , where
the (N − 1)-component vectors ~µα ’s are called the weight vectors of the group SU(N ), and α = 1, . . . ,N .

By virtue of the relation tr ei~Q~H =
N∑
α=1

ei~Q~µα , which holds for an arbitrary (N − 1)-dimensional vector ~Q,

one can calculate the contribution produced to the Wilson-loop average by a configuration consisting
of some n > 0 monopoles and/or antimonopoles. To do so, we consider the magnetic-charge density
corresponding to this configuration. It has the form дm~ρn (~x), where

~ρn (~x) =
n∑

k=1

~qikδ (~x −~zk ), (34)

and ~zk ’s are the positions of (anti-)monopoles 17. One can further introduce a strength tensor ~F
(n)
µν

which violates the Bianchi identities in a way yielding the magnetic-charge density дm~ρn (~x), namely as
1
2εµνλ∂µ

~F
(n)
νλ = дm~ρn (~x). Noticing that the strength tensor ~F

(n)
µν is produced entirely by monopoles, so

17 Clearly, monopoles correspond to those k ’s for which ik > 0, while antimonopoles correspond to k ’s with ik < 0.
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that it does not contain any contribution of free “photons”, one can readily write down a solution to the

latter equation: ~F
(n)
µν (~x) = −дmεµνλ∂xλ

∫
d3y D0 (~x − ~y)~ρn (~y), where D0 (~x) = 1/(4π |~x|) is the 3D Coulomb

propagator. In analogy with the Stokes’ theorem for the electromagnetic field, one can further write
down the corresponding contribution to the Wilson-loop average:

W (n) (C ) =
1
N

tr exp
(
iд

2
~H

∫
S
dσµν~F

(n)
µν

)
=

1
N

N∑
α=1

W (n)
α (C ), (35)

whereW (n)
α (C ) ≡ exp

(
iд
2 ~µα

∫
S dσµν

~F
(n)
µν

)
, and S is some surface bounded by the contourC. Using further

the above expression for ~F
(n)
µν , along with the quantization condition ддm = 4π 18, we can represent

W (n)
α (C ) in the form

W (n)
α (C ) = exp

(
i~µα

∫
d3x ~ρnη

)
,

where η(~x,C ) =
∫
S dσµ (~y) ∂

x
µ

1
|~x−~y | is the solid angle under which the contour C is seen from the point

~x, and dσµ =
1
2εµνλdσνλ

19. We can now prove that W (n)
α (C ) does not depend on a particular choice

of the surface S . To this end, one can consider the ratio of twoW (n)
α (C )’s which are defined at some

two different surfaces, S1 and S2, bounded by the same contour C. Using the explicit form of ~ρn ,
Equation (34), one obtains for this ratio the following expression:

n∏
k=1

exp *
,
− i~µα~qik

∫
S1∪S2

dσµ (~x)∂xµ
1

���~zk −~x
���
+
-
. (36)

According to the Gauss’ theorem, the integral in this expression can only be non-vanishing (and equal
to −4π ) for those points ~zk ’s that lie inside the volume bounded by the surface S1 ∪ S2. In order to find
the scalar product ~µα~qik , it suffices to notice that

~µα ~µβ =
1
2

(
δα β −

1
N

)
, (37)

and that every root vector is a difference of two weight vectors (cf. e.g., Ref. [91]). Therefore, instead of
labelling a root vector ~qi with the index i, one can label it with a pair of indices α and β as

~qα β = ~µα − ~µβ . (38)

Consequently, as can be seen from Equation (37), the only non-vanishing values of the scalar product
~µα~qik are equal to ± 1

2 . Therefore, those exponentials in Equation (36) which are not equal to unity for
the trivial reason of having vanishing arguments, are nevertheless still equal to unity as e±2π i . Thus,
we conclude thatW (n)

α (C ) is indeed independent of a particular choice of the surface S .
The summation over the grand canonical ensemble of monopoles and antimonopoles promotes

Equation (35) to a complete expression for the Wilson-loop average,W (C ) = 1
N

N∑
α=1

Wα (C ), where [92]

18 Here, the factor of 4π stems from the fact that the Georgi-Glashow model allows for the inclusion of fields transforming under
the fundamental representation of the group SU(N ). The electric charge acquired by such fields upon the SU(N )→[U(1)]N−1

symmetry-breaking, would be д/2, so that the Dirac quantization condition for this minimal admissible electric charge
becomes дm ·

д
2 = 2π .

19 In particular, expanding the contour C and then shrinking it so as to form a closed surface surrounding the point~x, one
can readily prove through the Gauss’ theorem that the full solid angle corresponding to the above formula reproduces the
expected value of 4π .
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Wα (C ) =
1
ZN

mon

∫
D~ρD~χ exp



−

д2
m
2

∫
d3xd3y ~ρ (~x)D0 (~x − ~y)~ρ (~y)+

∫
d3x


iдm ~χ ~ρ + 2ζ

(N 2−N )/2∑
i=1

cos
(
дm~qi ~χ

)
+ i~µα ~ρ η






.
(39)

In this formula, ~ρ is a dynamical monopole density, the integration over which in the case of η = 0
recovers the grand canonical partition function (31), so that the normalizationWα (0) = 1 is respected.
Alternatively, one can express the Wilson-loop average in terms of the magnetic field, whose divergence
yields this dynamical monopole density, i.e., ∂µ~Bµ = ~ρ. The corresponding expression reads

Wα (C ) =
1
ZN

mon

∫
D~Bµ δ

(
εµνλ∂ν~Bλ

) ∫
D~χ exp




∫
d3x

[
−

д2
m
2
~B

2
µ+

iдm ~χ∂µ~Bµ + 2ζ
(N 2−N )/2∑

i=1
cos

(
дm~qi ~χ

) ]
+ 4πi~µα

∫
S dσµ

~Bµ




,
(40)

where we have taken into account that the field ~Bµ obeys the Maxwell equation εµνλ∂ν~Bλ = 0, since
monopoles do not produce any electric fields.

Let us further choose C to be a circular contour located in the (1,2)-plane. Since the monopole
contribution to the Wilson-loop average has been proven independent of a particular choice of the
surface S , we take for S a planar surface bounded by the contour C. We can now proceed to the
saddle-point integrations over the fields ~χ and ~Bµ . Clearly, a non-trivial solution to the saddle-point

equations exists only for those points ~x for which
√
x2

1 + x
2
2 is smaller than the radius of the circular

contour C. For such points ~x, the solution to the saddle-point equations is expected to depend only on
the distance to the (1,2)-plane, i.e., it can be sought in the form ~Bµ = δµ3~B(z), ~χ = ~χ (z), where z ≡ x3.
This ansatz leads to the following saddle-point equations:

iдm ~χ ′ +д2
m
~B = 4πi~µαδ (z), i~B

′
− 2ζ

(N 2−N )/2∑
i=1

~qi sin
(
дm~qi ~χ

)
= 0, (41)

where ′ ≡ d/dz. Noticing further the distinguished role played in these equations by the vector
~µα , we seek ~B and ~χ in the form ~B(z) = ~µαB (z) and ~χ = ~µα χ (z). Multiplying then the second of the
two saddle-point Equations (41) by ~µα , and using Equations (37) and (38), we cast the saddle-point
equations to the form

2iϕ ′ +д2
mB = 4πiδ (z), B′ + 2iζN sinϕ = 0, (42)

where ϕ ≡ дm χ/2. A solution to this system of equations has the form

B (z) = i
8MD

д2
m

e−MD |z |

1 + e−2MD |z |
, ϕ (z) = 4 sgn z · arctan

(
e−MD |z |

)
, (43)

where the Debye mass MD is given by Equation (32). In particular, we see that the function ϕ (z) jumps
from the value of π to the value of −π when z changes from +0 to −0, while the magnetic field B (z)

exponentially falls off above and below the (1,2)-plane at the distance 1/MD , which is equal to the
vacuum correlation length. Thus, we explicitly see that the radius of the confining string in the 3D
SU(N ) Georgi-Glashow model is equal to the vacuum correlation length in that model.

The value of the string tension σ in the fundamental representation can be determined up to an
overall numerical factor, which depends on whether one defines σ through B (0) or through the mean
value of the magnetic field that can be obtained by averaging B (z) over the interval − 1

MD
< z < 1

MD
.
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Apart from this factor, the string tension reads σ ∝ ~µ2
α |B (0) |, so that its dependence on the parameters

of the model has the form

σ ∝
N − 1
√
N
·

√
ζ

дm
. (44)

Notice that this result depends on д as σ ∝ д · e−const·η/д , where the exponential cannot be expanded in a
Taylor series, since we work in the weak-coupling regime of д � η. For this reason, the dependence of
σ on д appears non-analytic, i.e., the obtained string tension is manifestly non-perturbative. This result
resembles the one for the string tension in the 4D Yang-Mills theory. There, the string tension is
proportional to the square of the only dimensionful parameter of the theory, called the QCD scale
parameter, i.e., σ ∝ Λ2

QCD. Since ΛQCD appears as a consequence of the dimensional transmutation,

it depends on the Yang-Mills coupling constant д as e−const/д2
. Thus, although the string tension

in both the 3D SU(N ) Georgi-Glashow model and the 4D Yang-Mills theory has a non-analytic
coupling-dependence, the origin of this non-analyticity in these two theories is different. Namely, in
the first case the non-analyticity stems from the monopole fugacity ζ , while in the second case it stems
from the dimensional transmutation, which itself is a consequence of the asymptotic freedom that
holds in the Yang-Mills theory.

We proceed now to the calculation of the so-called k-string tensions in the 3D SU(N )
Georgi-Glashow model with N ≥ 3. Here, k = 1, . . . ,N − 1 denotes the so-called N -ality of a given
representation of SU(N ). It is defined as the modulo-N difference between the number of quark and
antiquark fields which constitute an object transforming under a certain higher representation of
the group SU(N ). Accordingly, representations with N -alities k ≤ N/2 and N − k are related to each
other via the complex conjugation, which corresponds to the replacement of quarks by antiquarks
and vice versa, so that confining strings associated with these representations have equal tensions.
The representations relevant for confinement are given by rank-k antisymmetric tensors, while all
other representations are contained in a tensor product of some number of adjoint representations, and
have zero N -ality. These representations are irrelevant for confinement since an N -ality-zero static
object gets screened by gluons, so that its Wilson-loop average exhibits only the perimeter law for
sufficiently large contours. In general, any representation of a non-zero N -ality is contained in a direct
product of a certain rank-k antisymmetric representation and some number of adjoint representations.
Accordingly, for all possible representations of the color source, there exist only N string tensions σk ’s
which characterize confinement. Of those, σ1 is the string tension corresponding to the fundamental
representation, while σN = 0. The quantity σk can be interpreted as a tension of a k-string, i.e., a
confining string which interconnects k quarks with k antiquarks. As mentioned, the equality σk = σN−k
takes place, owing to which only [N/2] of all string tensions σk ’s are mutually independent. Thus,
the full information about confinement is encoded in these [N/2] numbers.

Clearly, a k-string can only be stable provided the inequality σk < kσ1 holds. In the large-N limit,
interactions between strings composing a k-string are suppressed, so that σk → kσ1 at N → ∞ and
a fixed k. In the 2D Yang-Mills theory, where confinement stems just from the one-gluon exchange
between the sources of the gauge field, one has σk ∝ C

(k )
2 , where C (k )

2 =
k (N−k ) (N+1)

2N is the eigenvalue of
the quadratic Casimir operator of a rank-k antisymmetric representation. For this reason, the ratio σk

σ1

in the 2D Yang-Mills theory obeys exactly the so-called Casimir-scaling formula [93], σkσ1
=

k (N−k )
N−1 , i.e.,

indeed σk
σ1
< k . We demonstrate now that the Casimir scaling of k-string tensions holds also in the 3D

SU(N ) Georgi-Glashow model. To this end, we consider a generalization of Equation (40) to the case of
a k-string. Such a generalization is given by the k-th power of Equation (40), and reads

Wk (C ) =
N∑

α1=1

· · ·

N∑
αk=1

Wα1,...,αk (C ). (45)
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HereWα1,...,αk (C ) is given by Equation (40) with ~µα replaced by the sum ~Mk =
k∑
i=1

~µαi , in which some

of the vectors ~µαi can be the same. Accordingly, the vector ~Mk substitutes the vector ~µα in the first
of the two saddle-point equations (41), so that ~B ∝ ~Mk . For this reason, one gets the area law of the
formWα1,...,αk (C ) ' e−(~Mk )

2σ ′Σ with some k-independent string tension σ ′. Clearly, this law holds for
sufficiently large areas Σ of the planar surface bounded by the contour C. Hence, the nested sum (45)
consists of exponentials of the form 20

e
−

(
n1~µa1+· · ·+np~µap +

n∑
j=1

~µaj

)2
σ ′Σ

, where n1 + · · · +np +n = k. (46)

That is, every group of mutually coinciding weight vectors is characterized by some integer ni , where
i = 1, . . . ,p. Instead, all the vectors ~µaj ’s with j = 1, . . . ,n are mutually different. In Appendix A, we
calculate the square of the sum entering the exponential (46),

S ≡

( p∑
i=1

ni~µai +
n∑
j=1

~µaj

)2

, (47)

which yields

S =
1
2

p∑
i=1

n2
i +

n

2
−
(k −n)2 + kn

2N
. (48)

In order to identify the exponential that yields the dominant contribution to the sum, we should find

the value of n and the set {n1, . . . ,np } that minimize S . We notice first of all that the sum
p∑
i=1

ni is a

fixed number for a given n. Therefore, ni ’s which minimize the sum
p∑
i=1

n2
i , should all be equal to each

other, i.e. ni = k−n
p ∀i = 1, . . . ,p. Indeed, let us assume the opposite, namely that for a certain index j,

nj =
k−n
p + a with some a , 0. This means that some other index l exists, such that nl = k−n

p − a. Then
p∑
i=1

n2
i =

(k−n)2
p + 2a2, which is larger than the value (k−n)2

p of this sum in the case where all ni ’s are equal

to each other.
Furthermore, the number of possibilities to represent the integer (k − n) as a sum of p equal

integers varies from 2 to (k − n), i.e., 2 ≤ p ≤ (k − n). Therefore, the value of the sum
p∑
i=1

n2
i =

(k−n)2
p

varies from (k −n) to (k−n)2
2 , so that

Smin =
k −n

2
+
n

2
−
(k −n)2 + kn

2N
=

1
2

(
k −

n2 − kn + k2

N

)
.

The maximum of the function Smin (n) is achieved at n = k
2 , while its minimum is achieved at n = k , and

reads 21

Smin (k ) =
k (N − k )

2N
.

Hence, the minimum of Smin, and therefore of S , is achieved in the case where all k weight vectors in
Equation (46) are mutually different [94,95]. For this value of n, the exponential reads e−

k (N−k )
2N ·σ ′Σ.

We can further calculate the number of occurrences of the term (46) in the nested sum (45). To this
end, we notice that Cn1

k ≡
k !

n1!(k−n1 )!
possibilities exist to choose out of k weight vectors n1 coinciding

20 The corresponding pre-exponentials are also calculated below.
21 The value of Smin (1) is larger than that of Smin (k ), namely Smin (1) = Smin (k ) + k−1

2N .
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ones, whose index can acquire any value from 1 to N . Once these vectors are chosen and their index
is fixed, Cn2

k−n1
possibilities exist to choose out of the remaining (k − n1) vectors n2 coinciding ones,

whose index can acquire any of the remaining (N − 1) values, and so on. At the last step, Cnp
k−n1−···−np−1

possibilities exist to choose np vectors, and their index can acquire any of the remaining (N − (p − 1))
values. After that, k − n1 − · · · − np = n mutually different weight vectors remain. The number of
possibilities to choose one of them is equal to n, and the index of that vector can acquire any of the
remaining (N − p) values. Once this vector is chosen and its index is fixed, (n − 1) possibilities exist
to choose the next vector, whose index can acquire one of (N −p − 1) possible values. Finally, the last
vector out of this group of n mutually different vectors can acquire (N −p − (n − 1)) values. Altogether,
we obtain for the sought number of occurrences the following expression:

Cn1
k N ∗Cn2

k−n1
(N − 1) ∗ · · · ∗Cnp

k−n1−···−np−1
(N −p + 1)∗

n(N −p) ∗ (n − 1) (N −p − 1) ∗ · · · ∗ 1(N −p −n + 1).

Explicitly, this product reads

k !
n1!(k −n1)!

·
(k −n1)!

n2!(k −n1 −n2)!
· · ·

(k −n1 − · · · −np−1)!
np !(k −n1 − · · · −np )!

·
N !

(N −p −n)!
· n!

=
k !N !

n1! · · ·np ! (N −p −n)!
.

In the above-discussed case of n = k, this expression takes the form k !N !
(N−k )! . In the particular case of

k ∼ N , this “entropy factor” grows as strongly as O (k !), so that the Stirling’s formula yields for the full
exponential: ek lnk− k (N−k )2N ·σ ′Σ. Consequently, for a given N � 1, the area Σ should be at least as large as
Σ > O ( lnN

σ ′ ) in order to ensure the stability of k strings even for k ∼ N .
Hence, we restrict ourselves to ~Mk ’s consisting of mutually different vectors ~µαi ’s, and replace ~µα

by ~Mk in the saddle-point equations (41). Setting further ~B = ~MkB (z) and ~χ = ~Mk χ (z), we see that the
first of equations (41) takes the same form as in the case of the fundamental representation. To simplify
the second saddle-point equation, we represent positive root vectors entering that equation by using
the relation (38). This yields∑

β<α

~Mk (~µα − ~µβ ) · sin[дm ~Mk (~µα − ~µβ )χ ] =
i

2ζ
CkB

′, (49)

where the square of the vector ~Mk consisting of mutually different weight vectors ~µαi ’s reads

Ck ≡ ~M
2
k =

k (N − k )

2N
. (50)

Using further the α ↔ β symmetry of the expression standing under the sum in Equation (49), we can
rewrite the left-hand side of Equation (49) as

N∑
α=1

N∑
β=1

~Mk~µα
[
sin(дm ~Mk~µα χ ) cos(дm ~Mk~µβ χ ) − cos(дm ~Mk~µα χ ) sin(дm ~Mk~µβ χ )

]
.

We should now calculate the four sums in this expression. Starting with the first one,
N∑
α=1

~Mk~µα sin(дm ~Mk~µα χ ), we notice that this sum contains k terms for which ~µα coincides with some

of the k weight vectors entering ~Mk . Using Equation (37), we have in the case of every such term:
~Mk~µα =

N−1
2N − (k − 1) 1

2N =
N−k
2N . For the remaining N − k terms in the sum, the vector ~µα does not
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coincide with any of the weight vectors entering ~Mk , so that in the case of every such term we have:
~Mk~µα = −

k
2N . Altogether, the sum reads

N∑
α=1

~Mk~µα sin(дm ~Mk~µα χ ) = k ·
N−k
2N sin

(
дm

N−k
2N χ

)
+

(N − k ) · k
2N sin

(
дm

k
2N χ

)
= Ck ·

[
sin

(
дm

k
2N χ

)
+ sin

(
дm

N−k
2N χ

)]
.

(51)

In the same way, we obtain for the three other sums the following expressions:

N∑
β=1

cos(дm ~Mk~µβ χ ) = k · cos
(
дm

N − k

2N
χ

)
+ (N − k ) · cos

(
дm

k

2N
χ

)
, (52)

N∑
α=1

~Mk~µα cos(дm ~Mk~µα χ ) = Ck ·

[
cos

(
дm

N − k

2N
χ

)
− cos

(
дm

k

2N
χ

)]
, (53)

N∑
β=1

sin(дm ~Mk~µβ χ ) = k · sin
(
дm

N − k

2N
χ

)
− (N − k ) · sin

(
дm

k

2N
χ

)
. (54)

We notice that each of the sums (51)–(54) is invariant under the interchange of quarks and antiquarks
that are confined by the k-string, which corresponds to the replacement k ↔ (N − k ). Bringing these
sums together, we find that the left-hand side of Equation (49) is equal to CkN sin дm χ

2 , so that
Equation (49) coincides with the second of Equations (42). Accordingly, the saddle-point fields
B (z) and ϕ (z) are given by Equation (43), so that the resulting string tension σ̃ ∝ |B (0) | is manifestly
k-independent. This yields Wk (C ) ' e−

k (N−k )
2N σ̃Σ, and therefore σk

σ1
=

k (N−k )
N−1 , i.e., the Casimir-scaling

ratio. Thus, for the case of a flat contour C, we have demonstrated Casimir scaling in the 3D SU(N )
Georgi-Glashow model.

Nevertheless, in the 4D SU(N ) Yang-Mills theory with N = 4 and N = 6, lattice data [59,96,97] on
the σk

σ1
-ratio show that corrections to the Casimir scaling are of the order of 10%, while corrections to

the so-called Sine scaling [98–101], σkσ1
=

sin πk
N

sin π
N

, amount to only a few percent. The Sine-scaling ratio has
been found analytically in supersymmetric gauge theories [98], as well as through a possible duality
between such gauge theories and string theories [99–102], but not in the 4D Yang-Mills theory itself.
The principal difference of the Sine scaling from the Casimir scaling is reflected in the N -dependence
of the leading correction to the large-N limit σk

σ1
→ k. Namely, for the Sine scaling, this correction

reads π 2

6
k (1−k2 )

N 2 , being therefore O ( 1
N 2 ), while in the case of the Casimir scaling it reads k (1−k )

N , thereby
behaving with N as O ( 1

N ). Physicswise, this correction yields the strength of pairwise attractive
interactions between the k strings that constitute a k-string. This is the reason as to why the parametric
N -dependence of such a leading correction to the large-N limit of the k-string tension is important.
However, the current level of accuracy of lattice simulations does not allow one to unambiguously
decide in favor of either the O ( 1

N 2 )- or the O ( 1
N )-behavior of this correction. On the theory side

too, there is no reason to expect either the Sine or the Casimir scaling to be an exact result in the
4D non-supersymmetric Yang-Mills theory. Yet, as has been shown in Ref. [95], the Casimir scaling
takes place as the leading result in the realistic 4D [U(1)]N−1-invariant dual Abelian Higgs model
of confinement.

1.4. Confining Strings in the 3D [U(1)]N−1-Invariant Compact QED

As we have seen at the example of the 3D SU(N ) Georgi-Glashow model, if the SU(N ) gauge
symmetry is spontaneously broken down to the [U(1)]N−1 symmetry, the resulting group [U(1)]N−1

appears compact, thereby allowing for the existence of magnetic monopoles. The corresponding
gauge theory with the compact group [U(1)]N−1 can be naturally called a [U(1)]N−1-invariant compact
QED. In addition to magnetic monopoles, it also contains an (N − 1)-component free-photon field ~Aµ .
Similarly to the U(1)-invariant compact QED [84,103], the monopole and the photon contributions
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to the vacuum expectation value of any gauge-invariant operator in the [U(1)]N−1-invariant compact
QED get factorized. This fact makes compact QED for any N ≥ 1 similar to the 2D XY model, since
disorder in both these theories is produced by topological defects, which are monopoles in the first
case and vortices in the second case. On the contrary, free photons in compact QED cannot produce the
degree of disorder sufficient for confinement of external electrically charged particles, yielding for the
corresponding Wilson-loop average only the perimeter, rather than the area, law. The counterpart of
free photons in the 2D XY model is the spin waves, which can only produce disorder in the spin-spin
correlation functions at short distances.

One should, however, mention the following difference between the 2D XY model and the
3D compact QED. In the 2D XY model, free vortices and antivortices exist only at temperatures
higher than a certain critical one, whereas below that temperature vortices form bound states with
antivortices [104–106]. In other words, vortices and antivortices in the 2D XY model exist in a
plasma phase (i.e., the system is disordered) only at sufficiently high temperatures, whereas at low
temperatures they exist in a molecular phase. Instead, in the zero-temperature 3D compact QED, where
the strength of the monopole-antimonopole Coulomb interaction is defined by the coupling constant
дm , monopoles and antimonopoles exist in the plasma phase for all values of дm . This is, however, no
longer the case in the 4D compact QED [103], where monopoles are not point-like objects as in 3D, but
are closed loops. The action of such a monopole loop of length L is proportional to L

д2 , while its entropy
also increases linearly with L. Consequently, monopole loops can only condense provided д is larger
than a certain critical value, whereas for small д’s only small-length monopole loops survive, so that the
degree of disorder produced by such loops is not sufficient to provide confinement of external electric
charges. Thus, in the 4D compact QED, confinement takes place only in the strong-coupling regime.

Let us now consider the Wilson-loop average (40) defined at some contour C, which is not
necessarily flat, and whose mean size, which can be estimated as

√
Σmin, is much larger than the

vacuum correlation length 1/MD . It turns out that monopoles and free photons can be described in a
unified way, namely through one and the same antisymmetric tensor field ~hµν related to the magnetic
field ~Bµ as ~Bµ =

1
2дm

εµνλ~hνλ . The coefficient on the right-hand side of this relation has been chosen
in such a way as to reproduce the Coulomb interaction of monopole densities from Equation (39).
Namely, the following equalities hold:

1
4

∫
d3x ~h

2
µν =

д2
m

2

∫
d3x ~B

2
µ =

д2
m

2

∫
d3xd3y ~ρ (~x)D0 (~x − ~y)~ρ (~y).

Furthermore, free photons can be taken into account in the functional integral (40) by relaxing the
constraint imposed through the functional δ -function δ

(
εµνλ∂ν~Bλ

)
. Indeed, in terms of the field ~hµν ,

this constraint reads ∂µ~hµν = 0, which corresponds to the absence of the free photons ~Aµ in the
following general formula for an antisymmetric rank-2 tensor:

~hµν = ∂µ ~Aν − ∂ν ~Aµ + εµνλ∂λ~φ. (55)

Relaxing the said constraint, we arrive at the following expression for the Wilson-loop average (40) in
terms of the antisymmetric tensor field ~hµν :

Wα =
1
ZN

mon

∫
D~hµν

∫
D~χ exp




∫
d3x


− 1

4
~h

2
µν+

i
2 ~χεµνλ∂µ

~hνλ + 2ζ
(N 2−N )/2∑

i=1
cos

(
дm~qi ~χ

) 
+

iд
2 ~µα

∫
S dσµν

~hµν



.
(56)

Since the exponential in Equation (56) does not contain a kinetic term of the field ~χ , it is legitimate to
perform the functional integration over this field in the saddle-point approximation. The corresponding
saddle-point equation can be readily solved by using the ansatz ~hµν = ~µαhµν . Solving the saddle-point
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equation, we arrive at the replacement of
∫
d3x [ i2 ~χεµνλ∂µ

~hνλ + 2ζ
(N 2−N )/2∑

i=1
cos

(
дm~qi ~χ

)
] in Equation (56)

by −V [~hµν ], where V [~hµν ] is the following multi-valued potential of the antisymmetric tensor field ~hµν :

V [~hµν ] ≡ 2(N − 1)ζ
∫

d3x

[
Hα arcsinhHα −

√
1 +H 2

α

]
, (57)

and

Hα ≡
~µα

2дm (N − 1)ζ
εµνλ∂µ~hνλ . (58)

As was first noticed in Ref. [107] for the case of 3D compact QED, corresponding to N = 2,
the summation over branches of the potential V can provide the sought mechanism of the summation
over string world sheets in Equation (8). Furthermore, owing to the relation εµνλ∂µ~hνλ = 2дm~ρ,
the potentialV can be viewed as a potential of monopole densities ~ρ’s. By means of the Cauchy-Schwarz
inequality, we obtain from Equation (58):

|Hα | ≤
|~µα | |~ρ |

(N − 1)ζ
=

|~ρ |√
2N (N − 1) ζ

.

Noticing then that the mean density ρmean of the monopole-antimonopole plasma is given by
Equation (33), we see that the weak-field limit, |Hα | � 1, corresponds to monopole densities whose
absolute values |~ρ |’s are smaller than ρmean by a factor of O (N ) in the large-N limit. Thus, the weak-field
limit corresponds to low monopole densities (cf. Ref. [108]). In this limit, the integrand in Equation (57)
becomes a quadratic function of Hα , and the summation over branches of the potential (57) gets lost.
For this reason, the Wilson-loop average in the weak-field limit acquires an explicit S-dependence, and
takes the form

Wα '
1
ZN

mon

∫
D~hµν exp


−

∫
d3x *

,

1
12M2

D

~H
2
µνλ +

1
4
~h

2
µν

+
-
+
iд

2
~µα

∫
S
dσµν~hµν


. (59)

Here ~Hµνλ = ∂µ~hνλ + ∂λ~hµν + ∂ν~hλµ is the strength tensor of the antisymmetric-tensor field ~hµν , and
the Debye mass MD of the dual photon is given by Equation (32). The Gaussian integration over
the field ~hµν , whose details are presented in Appendix B, yields for the Wilson-loop average the
following expression:

Wα ' exp


−
(д~µα )

2

2



M2
D

2

∫
S
dσµν (~x)

∫
S
dσµν (~y) +

∮
C
dxµ

∮
C
dyµ


DMD (~x − ~y)




, (60)

where DM (~x) = e−M |~x |/(4π |~x|) is the Yukawa propagator. Note that, in the formal limit of MD → 0,
where monopoles are suppressed, Equation (60) recovers the standard expression for the Wilson-loop
average in the non-compact [U(1)]N−1-invariant QED, which is provided just by the free photons,

and reads 22 W
phot
α = exp

[
−

(д~µα )2

2

∮
C dxµ

∮
C dyµD0 (~x − ~y)

]
. In the general case of a non-vanishing MD ,

where monopoles are present in addition to the free photons, the ~hµν -field can be represented in
the form (55), which leads to the factorization of the photon and the monopole contributions to
the Wilson-loop average. Namely, one hasWα =W

phot
α W mon

α , which can serve as a definition of the
monopole contributionW mon

α . The obtained factorization of the Wilson-loop average illustrates the

22 This result can be seen directly from Equation (59), where, in the limit of MD → 0, the dominant contribution to the
~hµν -integral is produced by the fields for which ~Hµνλ = 0. Such fields can be represented as ~hµν = ∂µ ~Aν − ∂ν ~Aµ , which is
nothing but the strength tensor of the free-photon field.
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general principle mentioned at the beginning of this Section, which states that the photon and the
monopole contributions to the vacuum expectation value of any gauge-invariant operator in compact
QED get factorized. It is remarkable that the photon contribution gets eventually cancelled by the
massless part of the monopole contribution. As a consequence, both the surface-surface and the
contour-contour interactions in the resulting Equation (60) are mediated entirely by the massive
dual photon.

Equation (60) yields a non-local string action

A =
(д~µαMD )

2

4

∫
S
dσµν (~x)

∫
S
dσµν (~y)DMD (~x − ~y), (61)

which has the form of Equation (9). As has been mentioned at the end of Section 1.2, the two leading
terms in the derivative expansion of this action are the Nambu-Goto term and the rigidity term with a
negative coupling. If the surface S in Equation (60) is the minimal surface for a given contour C, e.g.,
a flat surface in the case of a flat contour, then only the Nambu-Goto term survives in the derivative
expansion of the non-local action, while the rigidity and all the higher-derivative terms vanish. In
particular, for the rigidity term, this can be seen directly from the corresponding expression (22) by
noticing that the minimal surface is defined through the 2D Laplace equation 23 ∆xµ = 0.

Let us first consider the Nambu-Goto term, which yields the string tension. As follows from
Equation (60), in the weak-field limit at issue, one readily obtains Casimir scaling of k-string tensions
even for a non-flat surface S [94]. Indeed, the corresponding Wilson-loop average is given by
Equation (45), where the expression forWα1,...,αk (C ) follows from Equation (60) upon the replacement

of ~µα by the sum ~Mk =
k∑
i=1

~µαi . As has been shown in Section 1.3, the dominant contribution to the

sum (45) stems from those terms where ~Mk consists of mutually different vectors ~µαi ’s. Then, owing to
Equation (50) for the square of such vectors ~Mk ’s, we obtain Casimir scaling of k-string tensions.

One can further perform the derivative expansion of the non-local string action (61) defined
at some non-minimal surface S . As a result, one obtains the values of the string tension and of the
rigidity-term coupling. Instead of the action (61), one can consider a general action of this type, namely

Astr[S ] =

∫
S
dσµν (x )

∫
S
dσµν (x

′)D


(
x − x ′

λ

)2
, (62)

where the vector xµ (~ξ ) parameterizing the surface S , can correspond to the Euclidean space-time of
any dimension. The function D (x ), which has the dimensionality of [mass]4, falls off as O (e−|x |/λ )
at |x | & λ, where λ is the vacuum correlation length in a given confining gauge theory. Since the
derivatives with respect to the world-sheet coordinates have the order of O (1/

√
Σmin), the derivative

expansion converges provided
λ <

√
Σmin. (63)

Physicswise, this inequality means that confinement in a certain gauge theory takes place and allows
for an effective string description provided confined particles are separated from each other by the
distances which are larger than the vacuum correlation length in that theory. More specifically, it turns
out that the terms of the derivative expansion are proportional to the even-order integral moments∫
d2z |~z|2n D (z2) of the function D, so that the actual parameter of the expansion is λ2/Σmin.

The details of the derivative expansion can be found in Ref. [30]. An important relation used in the
course of this derivation is the so-called Gauss-Weingarten formula DaDbxµ = K i

abn
i
µ for the covariant

23 Note that this equation is actually highly non-linear, since the metric дab entering the Laplacian ∆ = 1√
д ∂a

√
ддab ∂b , is

induced by the same vector-function xµ (~ξ ), i.e., дab = ∂axµ · ∂bxµ .
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derivative DaDbxµ ≡ Da∂bxµ = ∂a∂bxµ − Γ
c
ab∂cxµ . This formula allows one to replace the products of

ordinary derivatives ∂a∂bxµ by the products of covariant derivatives DaDbxµ . In the above relations,
Γcab is a Christoffel symbol defined with respect to the induced metric дab , niµ ’s are the unit normals to
the world sheet, which are labeled by the index i = 1, . . . ,D − 2, and K i

ab is the second fundamental
form of the world sheet. The normals niµ ’s obey the condition niµ · ∂axµ = 0, which yields the following
orthogonality relation: DaDbxµ · ∂cxµ = 0. In particular, by virtue of this relation, one can prove a
complete mutual cancellation of the O (λ4)-terms proportional to

∫
d2ξ (∂a ln √д)2, in Astr[S ] 24. At the

final step of the calculation, one converts the so-emerging products of the covariant derivatives 25,
DaDbxµ , into the products of the second fundamental form, by using, e.g., the formula

(дabдcd +дadдbc +дacдbd )DaDbxµ ·DcDdxµ = 3(∂a∂axµ )2 + 2(K i
abK

i ,ab −K i a
a K i b

b ),

which can be proved through the orthonormality relation niµn
j
µ = δ

i j . One can further make use of the
relation K i

abK
i ,ab −K i a

a K i b
b = −R, where R is the scalar curvature of the world sheet. In the conformal

gauge, it has the form R = −
∂2 ln √д
√
д , so that √д(K i

abK
i ,ab −K i a

a K i b
b ) yields a full derivative, which does

not contribute to the string action 26. Altogether, up to the irrelevant full derivatives, one obtains the
following result for the two leading terms of the derivative expansion of the non-local string action:

Astr[S ] ' σ

∫
d2ξ
√
д +

1
2α

∫
d2ξ
√
д (∆xµ )

2, (64)

where

σ = 2λ2
∫

d2zD (~z2) and
1
α
= −

λ4

4

∫
d2z ~z2

D (~z2) (65)

are the string tension and the rigidity-term coupling, respectively. In particular, we see that α comes
out negative, as was mentioned at the end of Section 1.2. Among the terms that have been omitted
in Equation (64), the leading ones have the coefficients proportional to the next even-order integral
moment of the function D, i.e., these coefficients have the order of λ8

∫
d2z |~z|4D (~z2).

As follows from Equations (61) and (62), one has D = (д~µαMD )2

4 DMD for the case of the 3D
[U(1)]N−1-invariant compact QED under discussion. Equations (65) with this function D yield [92]

σ = 2π 2 ·
N − 1
√
N
·

√
ζ

дm
and

1
α
= −

π 2

4
·
N − 1
N 3/2

·
1

д3
m

√
ζ

.

The obtained expression for σ provides a particular value of the overall numerical coefficient in
Equation (44), which applies to the limiting case where the monopole density |~ρ | is much smaller than
the mean density (33). On the other hand, the above-obtained expression for σ has an advantage over
Equation (44) of being applicable to an arbitrarily shaped, and not only flat, surface S .

24 This means that the non-local term
∫
d2ξd2ξ ′

√
дR

(
− 1

∆

)
ξ ,ξ ′

√
д′R′ discussed in Section 1.2, does not appear in the course of

the curvature expansion, i.e., this expansion does not provide the possibility to cancel the conformal anomaly for some
value of D other than 26.

25 These products are only non-trivial for a , b , since Γbaa = 0.
26 Note that this is precisely the reason why the Einstein equations (in vacuum) are identically satisfied in the 2D case, i.e.,

General Relativity is trivial in 2D. In particular, according to the so-called Gauss-Bonnet theorem, the Einstein-Hilbert action
in 2D reads

∫
d2ξ
√
д R = 4π χ , where χ is the Euler characteristic of the world sheet. And the other way around, one can

say that General Relativity in vacuum, as described by the 4D Einstein-Hilbert action, is nothing but a generalization of the
Euler characteristic to the 4D case, with the replacement of the induced metric дab = ∂axµ · ∂bxµ by a certain 4D metric
дµν (x ).
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1.5. Self-Intersections of the Confining-String World Sheet Due to the Θ-term

In this Section, we will consider an example of a confining gauge theory, where the derivative
expansion of the resulting non-local string action yields a string θ -term proportional to the number of
string self-intersections (25). Namely, the string θ -term turns out to appear in the 4D [U(1)]N−1-invariant
compact QED extended by the field-theoretical Θ-term. The derivative expansion of the non-local
string action yields then the string coupling θ expressed through the vacuum angle Θ. As a result,
Θ’s corresponding to the critical value of θ = π , which was discussed beneath Equation (25), will be
expressed in terms of the gauge coupling д and the number of colors N .

Prior to the start of this analysis, let us discuss similar topological phenomena which take place
in the lower-dimensional spaces. In 2D, the world-line representation for the propagator of a free
fermion yields the number of self-intersections of fermionic trajectories. It stems from the fermion’s
spin factor, which is proportional to the commutator of γ -matrices. In 2D, this commutator yields the
totally antisymmetric tensor εµν . If one parameterizes the trajectory through a vector-function xµ (τ ),
where the parameter τ has the dimensionality of length, then the number of self-intersections of the
trajectory is given by the formula 1

2π

∫ L
0 dτ εµν ẍµ ẋν , where L is the length of the trajectory and the

dot stands for d
dτ . This number increases by 1 every time the trajectory winds counterclockwise,

and decreases by 1 every time the trajectory winds clockwise. Furthermore, one can show that the
number of self-intersections enters the world-line representation of the fermionic propagator with
the coefficient equal to π (cf. Refs. [48,109]). Consequently, contributions to the world-line integral
representing the fermionic propagator, which are produced by some two trajectories whose lengths
are nearly the same but the numbers of self-intersections differ from each other by 1, cancel each other.
For this reason, fermionic trajectories in 2D are much smoother than bosonic trajectories. Quantitatively,
their Hausdorff dimension is equal to 1, i.e., the length of a fermionic trajectory grows linearly with
the distance between its end-points, whereas the Hausdorff dimension of bosonic trajectories is equal
to 2, i.e., the length of a bosonic trajectory grows as a square of the distance between the end-points.
Note that, for a bosonic trajectory to lower its Hausdorff dimension to 1, the world-line action of the
corresponding random walk should contain an additional term proportional to the absolute value of
the curvature of the trajectory. In the presence of such a term, bending of a trajectory costs additional
energy, whose amount is precisely such as to make the bosonic trajectories as smooth as the fermionic
ones [109].

Coming closer to the 4D gauge theories with the Θ-term, let us consider next the 3D Maxwell
theory extended by the Chern-Simons term [110] iΘεµνλAµ∂νAλ . In this theory, the Wilson-loop average
has the form

〈W (C )〉 =

∫
DAµ e

−
∫
x [

1
4д2 F

2
µν+iΘεµνλAµ ∂νAλ−iAµ jµ ]. (66)

here, the electric couplingд has the dimensionality of (mass)1/2, while the parameter Θ is dimensionless,
and we use the notation

∫
x for

∫
d3x . Furthermore, jµ (~x) ≡ jµ (~x,C ) =

∮
C dxµ (τ ) δ (~x − ~x(τ )) is a

conserved current, and Fµν = ∂µAν − ∂νAµ is the electromagnetic field-strength tensor. Performing the
Aµ -integration in Equation (66), one arrives at the following expression (for details, see Appendix C):

〈W (C )〉 = exp
{

1
2

∫
x ,y

[
−д2jµ (~x)Dm (~x − ~y)jµ (~y) + i

2Θεµνλ jµ (~x)jλ (~y)∂
x
ν [D0 (~x − ~y) −Dm (~x − ~y)]

]}
. (67)

Equation (67) yields a self-linkage of the contour C, as well as a short-range self-interaction of this
contour through the Yukawa propagator Dm (~x − ~y). By virtue of the expression for the Gauss’ linking
number of two contours, C and C ′, which has the form

L̂(C,C ′) = εµνλ
∫
x ,y

jµ (~x,C ) jν (~y,C ′) ∂xλD0 (~x − ~y),
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we can represent the self-linkage term in Equation (67) as

i

4Θ
εµνλ

∫
x ,y

jµ (~x)jλ (~y)∂xν D0 (~x − ~y) = −
i

4Θ
L̂(C,C ).

Thus, if the contour C of the Wilson loop is knotted k times, one gets a non-trivial phase factor of the
Wilson-loop average provided Θ , k

8πn , where n is some other integer 27. Indeed, if this condition
is not fulfilled, we have − i

4Θ L̂(C,C ) = −2πni, and the resulting phase factor becomes trivial, namely
e−2πni = 1. In general, it is a remarkable feature of the Chern-Simons term in the 3D Maxwell theory
that it yields for the Wilson-loop average a phase factor which contains the number of self-linkings of
the contour.

Let us now proceed to the 4D [U(1)]N−1-invariant compact QED. As has been discussed at the
beginning of Section 1.4, the 4D compact QED provides confinement of external electrically charged
particles only if the values of the electric coupling д are larger than a certain critical value. The reason
for this fact is that only in such a strong-coupling regime can monopole loops become long enough as to
create in the system the degree of disorder sufficient for confinement. Because of the Dirac quantization
condition, the magnetic coupling дm is small in this regime, so that the Coulomb interaction between
monopole loops is weak. Thus, one has an ensemble of long monopole loops, which nevertheless
interact with each other only weakly. Furthermore, unlike the 3D case, the dual photon in 4D is no
longer a Lorentz scalar, but a Lorentz vector ~χµ . Similar to Equation (34), one can consider a collective
current corresponding to n > 0 monopole and/or antimonopole loops, which has the form

~j
(n)
µ (x ) = дm

n∑
k=1

~qik

∮
dzkµ (τ )δ (x − x

k (τ )).

In this expression, we have parameterized k-th monopole loop by the vector xkµ (τ ) = ykµ + zkµ (τ ), with

ykµ =
∫ 1

0 dτ xkµ (τ ) describing the position of the loop, and zkµ (τ ) describing its shape. In the presence of

the Θ-term, the action describing the n-monopole configuration and the free photons ~Aµ , reads

S [~j
(n)
µ , ~Aµ ] =

1
2

∫
d4xd4y~j

(n)
µ (x )D0 (x −y)~j

(n)
µ (y)+

1
4

∫
d4x ~F

2
µν −

iΘд2

32π 2

∫
d4x

(
~Fµν + ~F

(n)
µν

) (
~̃Fµν + ~̃F

(n)
µν

)
.

Here the field-strength tensor ~F
(n)
µν , which describes the n-monopole configuration, violates the Bianchi

identities in such a way as to yield the current ~j
(n)
µ , namely ∂µ ~̃F

(n)
µν =

~j
(n)
ν . Owing to this relation,

the Θ-term can be rewritten up to a full derivative as

−
iΘд2

32π 2

∫
d4x

(
~Fµν + ~F

(n)
µν

) (
~̃Fµν + ~̃F

(n)
µν

)
=
iΘд2

8π 2

∫
d4x ~Aµ~j

(n)
µ .

The partition function of the system can be obtained through the summation over the grand canonical
ensemble of monopoles and antimonopoles, along with the integration over the free photons. The result
can be represented in the form [111]

Z =

∫
D~AµD~jµ e−S [

~jµ ,~Aµ ]
∫
D~χµ e

∫
d4x [2ζ

(N 2−N )/2∑
i=1

cos
(
~qi |~χµ |

Λ

)
+i ~χµ~jµ ]. (68)

27 Clearly, the same result holds also for the correlation function of two Wilson loops, whose contours are linked with each
other k times.



Universe 2017, 3, 50 28 of 52

Here |~χµ | denotes the absolute value only with respect to the space-time (but not color) indices, i.e.

|~χµ | ≡

( √
~χ1
µ ~χ

1
µ , · · · ,

√
~χN−1
µ ~χN−1

µ

)
. Furthermore, the dynamical monopole currents~jµ ’s represent a 4D

generalization of the 3D dynamical monopole densities ~ρ’s, which were introduced in Equation (39).
Next, Λ is an ultra-violet cut-off, which unavoidably appears in the course of the summation over the
grand canonical ensemble of monopole loops in 4D, and ζ is the monopole fugacity of dimensionality
(mass)4. Clearly, in the absence of the Θ-term, the integration over~jµ ’s in Equation (68) recovers
the standard kinetic term of the dual-photon field ~χµ . In the presence of the Θ-term, due to the
emerging coupling of~jµ to ~Aµ , this is no longer the case. In general, instead of integrating over~jµ ’s,

one can perform in Equation (68) a saddle-point integration over ~χµ , which yields for the currents~jµ ’s
a potential of the type (57).

We consider further the Wilson-loop average corresponding to a test particle which transforms
under the fundamental representation of the group SU(N ). Introducing, instead of ~jµ , an

antisymmetric-tensor field ~hµν according to the relation ∂µ ~̃hµν =~jν , we have

Wα =
1
Z

∫
D~hµν e−S [

~hµν ]+
iд
2 ~µα

∫
S dσµν

~hµν . (69)

In this expression, the action of the antisymmetric-tensor field has the form

S [~hµν ] =
∫

d4x

(
1
4
~h

2
µν −

iΘд2

32π 2
~hµν ~̃hµν

)
+V [~hµν ], (70)

where the potential V [~hµν ] is given by Equation (57) with 28 Hα =
дΛ

(N−1)ζ ~µα
���∂µ

~̃hµν
��� and

∫
d3x replaced

by
∫
d4x . The mass acquired by the dual-photon field is equal to the mass of the antisymmetric-tensor

field following from Equation (70), and reads

M =
η

4π

√
д2
m +

(
Θд

2π

)2

,

where η ≡
√
ζ N
Λ . As one can see from this expression, the dual-photon field acquires in addition to the

magnetic charge дm also the electric charge Θд
2π , i.e., due to the Θ-term, it becomes a dyon.

In the weak-field limit of |Hα | � 1, where the absolute value is now defined with respect to the
color index, Equation (69) takes the form

Wα '
1
Z

∫
D~hµν exp

[
−

∫
d4x

(
1

12η2
~H

2
µνλ +

1
4д2

~h
2
µν −

iΘ

32π 2
~hµν ~̃hµν

)
+

i

2
~µα

∫
S
dσµν~hµν

]
,

which generalizes Equation (59) to the 4D case with the Θ-term. The ~hµν -integration in this expression
is similar to the one in the absence of the Θ-term. Referring the reader for the details of this integration
to Ref. [111], we present here the resulting formula for the Wilson-loop average. It reads

Wα ' exp
{
−

~µ2
α
2

[
η2

2

∫
S dσµν (x )

∫
S dσµν (y) +

iΘд2

8π 2

∫
S dσµν (x )

∫
S dσ̃µν (y) +д

2
∮
C dxµ

∮
C dyµ

]
DM (x −y)

}
,

(71)

where DM (x ) = MK1 (M |x |)/(4π 2 |x |) is the 4D Yukawa propagator with K1 standing for the Macdonald
function. Clearly, Equation (71) represents a generalization of Equation (60) to the 4D case with

28 In the following formula, the absolute value is again defined only with respect to the space-time indices, not the color ones.
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the Θ-term. Furthermore, the interaction of two world-sheet elements corresponding to the term
∝ iΘ

∫
S dσµν (x )

∫
S dσ̃µν (y)DM (x −y) in Equation (71), allows for a derivative expansion in a way similar

to the one described in Section 1.4. Since dσµν (x )dσ̃µν (x ) = 0, the first term of this expansion, which
could be analogous to the Nambu-Goto action, vanishes. The second term of the expansion has
the same order in the derivatives as the rigidity term. It can be written as θn, where n is given by
Equation (25) and represents the number of self-intersections of the string world sheet, while θ can be
calculated through the first even-order integral moment of the Yukawa propagator, similarly to the
coupling 1/α from Equation (65). The so-obtained θ , much as the coupling α , comes out dimensionless
and therefore independent of the cut-off Λ. It has the form

θ =
Θ(д~µα )

2

4
[
д2
m +

(
Θд
2π

)2] .

Solving the equation θ = π with respect to Θ, we obtain the following critical values of the latter:

Θ± =
π

2


~µ2
α ±

√
~µ2
α −

(
16π
д2

)2
. (72)

Note that these values of Θ are expressed entirely in terms of д and N . Recalling that ~µ2
α =

N−1
2N , we find

the lower bound дmin = 4
√

2πN
N−1 , starting from which the values Θ± become accessible. The existence

of such a lower bound for the electric coupling parallels the above-discussed strong-coupling regime,
which is a necessary requirement for confinement in the 4D compact QED. In the particular case
of an extreme strong-coupling limit imposed by the inequality д � дmin, only the critical value
Θ+ ' π~µ2

α remains relevant, while Θ− vanishes, becoming thereby an unphysical solution. In the
general case, once Θ is equal either to Θ+ or Θ− given by Equation (72), the statistical weight of
an n-times self-intersecting world sheet in the functional sum (8) acquires an additional factor of
(−1)n . Thus, the possibility of obtaining the string θ -term from the confining gauge theory with a
non-vanishing vacuum angle Θ, demonstrates that the presence of the vacuum angle can serve as a
possible mechanism for the solution of the problem of crumpling of string world sheets.

As we have discussed, the 4D compact QED, as well as its [U(1)]N−1-invariant generalization,
possesses confinement only in the strong-coupling regime. A natural question which therefore can
be posed, is whether an Abelian gauge theory possessing confinement for all values of the coupling,
can be constructed in 4D. By analogy with the 3D compact QED, one can argue [48] that such a theory
should allow for the existence of the plasma of magnetically-charged objects, which are point-like
but nevertheless possess a finite action. In the continuum limit, the grand canonical ensemble of
such objects is described by a 4D sine-Gordon theory of a scalar “dual-photon” field φ. According to
the duality relation, εµνλρ∂ρφ = ∂µhνλ , the field dual to a scalar in 4D is an antisymmetric tensor.
Therefore, such a theory can be viewed as an analogue of compact QED, where the role of the photon
field Aµ is played by an antisymmetric-tensor field hµν . Much as in compact QED, where the full
field-strength tensor is given by the sum of the free-photon and the monopole field strengths, in the
theory at issue the full strength tensor of the antisymmetric-tensor field is a sum of the strength tensor
Hµνλ = ∂µhνλ + ∂λhµν + ∂νhλµ and the strength tensor which violates a 4D analog of the Bianchi identity
for point-like magnetically charged objects. Specifically, for n such objects, the latter strength tensor

obeys the relation εµνλρ∂µH
(n)
νλρ ∝ дm

n∑
a=1

qaδ (~x −~za ), where qa ’s are the charges of objects constituting

the configuration, in the units of the magnetic coupling дm . Furthermore, unlike the vector field,
which couples to a world line, the antisymmetric-tensor field couples to a world sheet. For this reason,
in the theory of an antisymmetric-tensor field, a counterpart of the Wilson loop, exp

(
iд

∮
C dxµAµ

)
,

has the form exp
(
iд

∮
S dσµνhµν

)
, where S is some closed surface. Therefore, owing to the Gauss’

theorem, the contribution of n magnetically charged objects to such a “Wilson loop” is equal to
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exp
( iд

2

∫
Σ
dΣµνλH

(n)
µνλ

)
, where Σ is some hypersurface bounded by S . Upon the summation over the

grand canonical ensemble of magnetically charged objects, one gets for the corresponding “Wilson-loop
average” an analog of the area law for the Wilson-loop average in compact QED, which can be called a
volume law [112]. Clearly, this law means an exponential fall-off of the “Wilson-loop average” with
the volume of the minimal hypersurface Σmin bounded by a given closed surface S . Since the physical
meaning of S can be the world sheet of a closed string, the volume law quantifies confinement of
closed strings which carry electric fluxes. Thus, the 4D theory possessing confinement for all values
of the coupling, describes actually confinement of closed strings rather than of electrically charged
particles, and it can be referred to as a theory of confining membranes (for details, see [112]). In the
general case of a higher-dimensional Euclidean space, the duality relation leads to a certain connection
between the dimensionalities of magnetically charged objects, whose condensation can be described in
terms of a grand canonical ensemble, and of the electrically charged objects confined owing to this
condensation [113].

In particular, an important observation is that confinement of point particles most naturally
occurs in 3D and 4D. Indeed, for any space-time dimensionality, the confinement criterion for a point
particle is provided by the Wilson area law. As we have seen above, this law can be achieved through
the coupling of an antisymmetric-tensor field to the world sheet of the confining string,

∫
S dσµνhµν .

Therefore, since the string world sheet is two-dimensional, confinement of point particles is described in
terms of an antisymmetric-tensor field in the space-time of any dimensionality. The Bianchi identities
violated by the antisymmetric-tensor field in 3D and 4D, read εµνλ∂µhνλ ∝ ρ and εµνλρ∂νhλρ ∝ jµ ,
where ρ and jµ are the dynamical monopole density and the dynamical monopole current, respectively.
Accordingly, in the space-time of some dimensionality D > 4, the Bianchi identities violated by the
antisymmetric-tensor field, correspond to magnetically charged objects whose dynamical density
is given by a totally antisymmetric tensor with D − 3 indices. Clearly, such higher-dimensional
magnetically charged objects can hardly be called monopoles, since the latter are normally assumed
to be particle-like. This is the reason why the confinement scenario based on the grand canonical
ensemble of magnetic monopoles is unlikely to hold for D > 4. Naturally, since the experimental and
the lattice data provide evidence for confinement of quarks and gluons in the physically relevant case
of D = 4, the above-presented argumentation suggests a reason for the four-dimensionality of the
real world.

1.6. String Representation of the ’t Hooft-Loop Average in the [U(1)]N−1-Invariant Dual Abelian Higgs Model
Extended by the Θ-term

In the previous Section, we have considered the grand canonical ensemble of monopole loops,
which form a quantum plasma. It turns out that, performing the summation over this grand
canonical ensemble by imposing the property of a short-range repulsion of monopole loops, one
obtains an effective description of the monopole condensate in terms of a magnetically charged Higgs
field [114,115]. Accordingly, the resulting mean field theory is a dual Abelian Higgs model, in which the
dual Higgs field minimally interacts with the dual gauge field. The derivation of such a dual Abelian
Higgs model from the Yang-Mills theory starts with fixing the so-called maximal Abelian gauge 29.
In the 4D Yang-Mills theory, this gauge fixing leads to the same SU(N )→[U(1)]N−1 symmetry-breaking
pattern as in the above-considered case of the 3D SU(N ) Georgi-Glashow model. Upon this symmetry
breaking, the N 2 − N off-diagonal gluons of the Yang-Mills theory become massive, and therefore
infra-red irrelevant, similarly to the W-bosons of the 3D Georgi-Glashow model. The resulting theory,
emerging prior to the summation over the grand canonical ensemble of monopole loops, is therefore a
[U(1)]N−1-invariant compact QED. For simplicity, let us start with considering the case of N = 2.

29 Cf. Ref. [13].
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As we have seen in the previous Section, monopoles in compact QED can be accounted for by
adding to the Maxwell strength tensor Fµν [A] = ∂µAν − ∂νAµ the monopole one, Fµν , which violates
the Bianchi identities to yield the monopole current jµ as ∂ν F̃ν µ = jµ . Accordingly, for the current jµ
corresponding to a certain contour C, along which a single monopole evolves in the Euclidean space,
one can define the so-called ’t Hooft-loop average

〈H (C )〉 =

∫
DAµ e−

1
4

∫
d4x (Fµν [A]+Fµν )2 . (73)

One can further apply to this expression a duality transformation. The purpose of this transformation
is to represent 〈H (C )〉 in the form of a functional integral over the dual gauge field Bµ , which couples
directly to the monopole current jµ . To perform the transformation, one first represents the exponential
in Equation (73) in terms of the functional integral over an auxiliary antisymmetric-tensor field λµν as

e−
1
4

∫
d4x (Fµν [A]+Fµν )2 =

∫
Dλµν e−

∫
d4x [ 1

4 λ
2
µν+

i
2 λµν (F̃µν [A]+F̃µν )].

Performing in the term ∝
∫
d4x λµν F̃µν [A] integration by parts, we can further carry out the functional

integration over the Aµ -field as over a Lagrange multiplier. This yields the equation ∂µ λ̃µν = 0, whose
solution has the form λµν = Fµν [B]. Accordingly, for the term describing the interaction of the λµν -field
with monopoles, we have − i

2

∫
d4x λµν F̃µν = i

∫
d4x Bµ jµ . Altogether, in terms of the dual gauge field

Bµ , the ’t Hooft-loop average reads

〈H (C )〉 =

∫
DBµ e−

1
4

∫
d4x F 2

µν [B]+i
∫
d4x Bµ jµ . (74)

Thus, the duality transformation casts the ’t Hooft-loop average to the form of a Wilson-loop average
defined in terms of the dual gauge field, i.e., the ’t Hooft- and the Wilson-loop averages are dual to
each other.

The obtained dual representation of the ’t Hooft-loop average can further be used for the
summation over the grand canonical ensemble of monopole loops. To perform such a summation,
we specify the current jµ to the form of a collective current of n monopole loops, namely

j (n)µ = дm
n∑

k=1

∮
dxµ (sk )δ (x − x (sk )), where дm is the magnetic coupling. One further imposes the

summation over the grand canonical ensemble of monopole loops in the form of the average of
the phase factor in Equation (74) with the following path-integral measure [114,115]:

〈ei
∫
d4x Bµ j

(n )
µ 〉j (n )µ

= 1 +
∞∑
n=1

1
n!



n∏
k=1

∫ ∞

0

dsk
sk

e2λη2sk
∮
Dxµ (s

′
k )


exp




n∑
k=1

∫ sk

0
ds ′k×

[
−

1
4
ẋ2
µ (s
′
k ) + iдmẋµ (s

′
k )Bµ (x (s

′
k ))

]
− λ

n∑
k ,l=1

∫ sk

0
ds ′k

∫ sl

0
ds ′l δ (x (s

′
k ) − x (s

′
l ))




,

where λ > 0. Comparing this expression with Equation (5), we observe that it additionally
contains a term which leads to the short-range repulsion of monopole loops. While the effective
action (5) corresponds to the partition function of a complex-valued field with the Lagrangian
L = |Dµφ |

2, the above average represents a generalization of that partition function to the case
of a Langrangian which additionally contains the Higgs potential. This Lagrangian has the form
L = |Dµφ |

2 + λ( |φ |2 − η2)2, where the magnetically charged Higgs field φ describes the monopole
condensation, and the covariant derivative reads Dµ = ∂µ − iдmBµ . Thus, imposing the short-range
repulsion property of monopole trajectories in the 4D compact QED, one arrives at a mean-field
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description of the grand canonical ensemble of these trajectories in terms of the dual Abelian Higgs
model with the partition function

Z =

∫
DφDφ∗DBµ e−

∫
d4x [ 1

4 F
2
µν [B]+ |Dµφ |

2+λ ( |φ |2−η2 )2]. (75)

This model can therefore be viewed as an effective model of confinement, which stems from the 4D
SU(2) Yang-Mills theory in the maximal Abelian gauge.

Within the dual description at issue, where the gauge field Aµ is replaced by the dual field Bµ ,
an electrically charged particle, which propagates along a closed contour C, is described through
the ’t Hooft-loop (and not the Wilson-loop) average. Furthermore, for the sake of generality, we will
consider now the case of a [U(1)]N−1-invariant dual Abelian Higgs model, extended in addition by
the Θ-term [116]. Therefore, the SU(N )-symmetry-breaking pattern in the case at issue is the same as
in the above-considered SU(N )-invariant 3D Georgi-Glashow model. For this reason, in the present
case too, the charges of quarks with respect to the maximal Abelian [U(1)]N−1 subgroup of the group
SU(N ) are distributed along N weight vectors ~µα of the group SU(N ). Hence, the ’t Hooft-loop average
describing in the model at issue a quark of color α , is given by the formula

〈Hα (C )〉 =
∫ (∏

i
|Φi | D |Φi | Dθi

)
D~Bµ δ

(∑
i
θi

)
×

exp


−

∫
d4x


1
4

(
~Fµν + ~F

(α )
µν

)2
−

iΘд2
m

16π 2

(
~Fµν + ~F

(α )
µν

) (
~̃Fµν + ~̃F

(α )
µν

)
+

∑
i

[���
(
∂µ − iдm~qi~Bµ

)
Φi

���
2
+ λ

(
|Φi |

2 − η2
)2

]




,

(76)

where the index i in both the product and the sums runs from 1 to (N 2 − N )/2. Clearly, the root
vectors ~qi ’s appear in Equation (76) due to the fact that monopole charges are distributed along them.
Furthermore, the dual Higgs fields, which describe monopole condensates, have been represented in
the form Φi = |Φi | eiθi . Since the SU(N )-group is special, the phases θi ’s of the dual Higgs fields are
subject to the constraint

∑
i
θi = 0, which is imposed in Equation (76) by means of the corresponding

δ -function [117]. Next, the field-strength tensor ~F
(α )
µν of the quark of color α violates the Bianchi

identities, which are otherwise respected by the strength tensor ~Fµν = ∂µ~Bν − ∂ν~Bµ of the dual gauge

field ~Bµ . Such violated Bianchi identities have the form ∂µ ~̃F
(α )
µν = д~µα jν , where the electric coupling

д is again related to the magnetic coupling дm via the quantization condition ддm = 4π , and 30

jν (x ) =
∮
C dxν (s )δ (x − x (s )), so that д~µα jν is the quark current. As can be readily checked with the

use of the Stokes’ theorem, these violated Bianchi identities are satisfied, e.g., by the strength tensor
~F
(α )
µν = −д~µα Σ̃µν , where the tensor Σµν (x , S ) =

∫
S dσµν (y)δ (x − y) is defined at an arbitrary surface S

bounded by the contour C. Last but not least, we impose the normalization condition 〈Hα (0)〉 = 1.
We note further that the Θ-term in Equation (76) can be represented in the form

iΘд2
m

16π 2

∫
d4x

(
~Fµν + ~F

(α )
µν

) (
~̃Fµν + ~̃F

(α )
µν

)
= −

iΘдm
π

~µα

∫
d4x ~Bµ jµ . (77)

Thus, owing to the Θ-term, quarks acquire in addition to their electric charge also the magnetic charge
Θдm/π . Such particles, which possess both the electric and the magnetic charges, are called dyons.
Consequently, the total charge of a dyon in our case reads

G ≡

√
~µ2
α [д2 + (Θдm/π )2] ,

30 For brevity, we omit the argument C of the current jν .
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where again ~µ2
α =

N−1
2N . As also follows from Equation (77), the acquired magnetic charge enables

quarks to interact with the dual gauge field ~Bµ (cf. Ref. [118]).
Expanding the field Φi around the minimum of the Higgs potential, one obtains the masses

of the dual Higgs field and of the dual vector boson, mH = 2η
√
λ and m = дmη

√
N , respectively.

In what follows, we will consider the ’t Hooft-loop average (76) in the so-called London limit, which is
characterized by the condition lnκ � 1. Here κ ≡ mH

m is the Ginzburg-Landau parameter, which defines
the type of dual superconductivity of the vacuum [8–10]. Thus, the London limit represents an extreme
type-II dual superconductor. In this limit, not only the thickness of a dual Abrikosov-Nielsen-Olesen
string, given by 1/m, is much larger than the thickness of the string core, given by 1/mH , but even the
logarithm of the ratio of these thicknesses is large 31. It turns out (cf. Refs. [95,116]) that the London
limit allows for a construction of an exact string representation of the ’t Hooft-loop average (76).
Furthermore, the consistency of the corresponding [U(1)]N−1-invariant dual Abelian Higgs model
with the Yang-Mills theory in the large-N limit requires the coupling д to behave with the number of
colors as

д =

√
λ̄/N . (78)

Here λ̄ is the so-called ’t Hooft coupling constant, which remains finite in the large-N limit [119].
The above definition of the London limit leads then to the following condition, which should be
respected by the Higgs coupling λ in order for this limit to persist at large N : λ � (2πeN )2/λ̄.
Following Refs. [95,116], we consider here the scaling behavior λ = O (N 2), in which case κ stays
N -independent in the large-N limit, i.e., the increase of N does not make the London limit deeper.

Integration over the radial parts |Φi | of the Higgs fields yields for Equation (76) in the London
limit the following expression:

〈Hα (C )〉 =
∫ (∏

i
Dθ st

i Dθ
sm
i

)
D~Bµ Dk δ

(∑
i
θ st
i

)
×

exp


−

∫
d4x


1
4

(
~Fµν + ~F

(α )
µν

)2
−

iΘд2
m

16π 2

(
~Fµν + ~F

(α )
µν

) (
~̃Fµν + ~̃F

(α )
µν

)
−

ik
∑
i
θ sm
i + η

2 ∑
i

(
∂µθi −дm~qi~Bµ

)2





.

(79)

Here we have decomposed the phases of the dual Higgs fields into a multi-valued part θ st
i and

a single-valued part θ sm
i as θi = θ st

i + θ
sm
i , where “st” and “sm” stand for “string” and “smooth”,

respectively. The fields θ st
i ’s describe closed dual strings, being related to the world sheets Σi ’s of those

strings through the equation

εµνλρ∂λ∂ρθ
st
i (x ) = 2πΣiµν (x ) ≡ 2π

∮
Σi

dσµν
(
x (i ) (~ξ )

)
δ
(
x − x (i ) (~ξ )

)
. (80)

This equation represents a local formulation of the Stokes’ theorem for the vector field ∂µθi .
In Equation (80), the vector x (i ) (~ξ ) ≡ x (i )

µ (~ξ ) parameterizes the world sheet Σi of a closed string,
and ~ξ denotes the 2D coordinate. Owing to the one-to-one correspondence between θ st

i ’s and Σi ’s
established by Equation (80), the integration over θ st

i ’s is implied in the sense of a certain prescription
of the summation over string world sheets. A natural prescription of this kind corresponds to the dilute

31 We recall that the radius of the usual Abrikosov vortex, i.e., the distance to the center of the vortex, at which the vortex
magnetic field experiences an exponential fall-off, coincides with the penetration depth of a magnetic field into the
superconductor. Rather, the thickness of the vortex core, also called the coherence length, is a distance to the center of the
vortex, at which the Higgs field acquires its vacuum expectation value, while at the smaller distances the Higgs condensate
is, to a certain extent, destroyed by the magnetic field of the vortex. In particular, the Higgs condensate vanishes altogether
at the center of the vortex. Accordingly, type-II superconductors are those in which the thickness of a vortex is larger than
the thickness of its core.
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plasma of closed strings with winding numbers equal to ±1 (cf. Refs. [120,121]). Indeed, two parallel
strings, with fluxes circulating in the same direction, experience an attractive interaction through the
Higgs-boson exchanges, and a repulsive interaction through the vector-boson exchanges [8–10]. Since
these interactions exponentially fall off at the distances equal, respectively, to 1/mH and 1/m, in the
London limit at issue the interaction provided by the vector-boson exchanges is long-ranged compared
to the interaction provided by the Higgs-boson exchanges. This leads to a strong repulsion of the likely
oriented strings and to a decomposition of strings with winding numbers larger than the unit one into
those with the unit winding number.

As for the single-valued parts of the phases, θ sm
i ’s, they describe fluctuations of the fields

θi ’s around a string configuration described by the multi-valued fields θ st
i ’s. By virtue of

Equation (80), one can readily see that the integration measure Dθi gets factorized into the product

Dθ st
i Dθ

sm
i . The functional δ -function δ

(∑
i
θi

)
in Equation (76) also gets factorized into the product

δ
(∑
i
θ st
i

)
δ
(∑
i
θ sm
i

)
. The first of these two δ -functions can further be written as δ

(∑
i
Σiµν

)
, where the

Jacobian [122] emerging from the change of integration variables θ st
i → x (i ) (~ξ ), can be included

into the integration measure Dx (i ) . The other δ -function, namely δ
(∑
i
θ sm
i

)
, has been represented in

Equation (79) through the integral over the Lagrange multiplier k (x ). Owing to the relation
∑
i
~qi = 0,

one can nevertheless see [123] that the integration over k (x ) yields only an inessential constant factor,
which can thus be accounted for by changing the normalization condition of the functional integration
measure. By using the correspondence (80) between θ st

i and Σiµν , we arrive then at the following
intermediate result:∫

*
,

∏
i

Dθ st
i Dθ

sm
i

+
-
Dk δ *

,

∑
i

θ st
i

+
-

exp


−

∫
d4x


η2

∑
i

(
∂µθi −дm~qi~Bµ

)2
− ik

∑
i

θ sm
i





=

∫
*
,

∏
i

Dx (i ) (ξ )Dhiµν
+
-
δ *

,

∑
i

Σiµν
+
-

exp


−

∫
d4x



1
24η2

(
H i
µνλ

)2
− iπhiµνΣ

i
µν + iдm~qi~Bµ∂ν h̃

i
µν






.

Here an antisymmetric-tensor field hiµν appears as a field dual to ∂µθ sm
i , and H i

µνλ = ∂µh
i
νλ + ∂λh

i
µν +

∂νh
i
λµ is the strength tensor of this field. Referring the reader for the details of the subsequent

integrations over ~Bµ and hiµν to Refs. [116,123], we present here the final result. It has the form

〈Hα (C )〉 = exp
[
−G2

2

∮
C dxµ

∮
C dyµDm (x −y)

] ∫ (∏
i
Dx (i ) (~ξ )

)
δ
(∑
i
Σiµν

)
×

exp
{
−2(πη)2

∫
x ,y Σ

i ,α
µν (x )Dm (x −y)Σi ,αµν (y) − 2iΘsαi L̂ (Σi ,C ) +

2iΘ
∫
x ,y

(
2~µ2

α Σ̃µν (x ) − s
α
i Σ̃iµν (x )

)
jµ (y)∂

x
ν Dm (x −y)

}
,

(81)

where D0 (x ) =
1

4π 2x 2 and Dm (x ) = m
4π 2 |x |K1 (m |x |) are the Coulomb and the Yukawa propagator,

respectively, and we have denoted for brevity
∫
x ≡

∫
d4x . Furthermore,

L̂(Σi ,C ) ≡
∫
x ,y

Σ̃iµν (x )jν (y)∂
x
µD0 (x −y)

in Equation (81) is the Gauss’ linking number of the closed-string world sheet Σi and the contour
C. Yet another notation used in Equation (81) is Σi ,αµν ≡ Σiµν − Nsαi Σµν , where the coefficients sαi are
defined through the relation ~µα =

∑
i
sαi ~qi . As follows from this relation, for a given α , there exist (N − 1)

non-vanishing coefficients sαi , which are equal to ± 1
N (for details, see Ref. [116]). Therefore, given the

value of the coefficient in front of L̂(Σi ,C ), one concludes that for Θ , Nπ × integer, dyons experience a
long-range topological interaction with closed dual strings, in accordance with the general arguments
presented in Ref. [124,125]. Physicswise, this interaction represents the dual Aharonov-Bohm effect



Universe 2017, 3, 50 35 of 52

in 4D. That is, owing to the magnetic charge acquired by dyons through the Θ-term, they interact with
electric fluxes carried by the dual Abrikosov-Nielsen-Olesen strings.

Furthermore, in Equation (81), the term quadratic in Σi ,αµν describes (self-)interactions of closed
strings, as well as of the string that confines the dyon-antidyon pair, which are mediated by the
dual-vector-boson exchanges. In particular, from the Σµν × Σµν -interaction, we obtain through the
general formulae (65) the following string tension and the inverse coupling constant of the rigidity
term, which correspond to the confining-string world sheet Σ:

σ = 2π (N − 1)η2 lnκ,
1
α
= −

π (N − 1)
4д2

mN
. (82)

As we see, the string tension in the London limit receives an ultra-violet diverging contribution. For
this reason, expression (82) for σ has been obtained within the logarithmic approximation of lnκ � 1,
which characterizes the London limit. One can prove that the so-obtained σ coincides with the energy
density per the unit of length of an Abrikosov vortex. This energy density can be obtained by solving
the Ginzburg-Landau equations, which describe the Higgs and the gauge fields of a vortex [8–10]. In
the London limit, the corresponding solution can be found analytically. Another limit where the string
tension can also be obtained analytically, is the so-called Bogomolny limit [86] of κ = 1, which thus
borders between the type-II and the type-I superconductivity 32. The result for the string tension in the
Bogomolny limit follows from Equation (82) upon the replacement of lnκ by 1.

In the large-N limit, Equations (78) and (82) yield 1
α = O (1/N ), making the anti-rigidity

correction to the Nambu-Goto action additionally suppressed. As for the string tension, it is known
to be N -independent in the large-N Yang-Mills theory, to the leading order of the strong-coupling
expansion [22]. In our model, this condition can be fulfilled by imposing for η an N -dependence of
the form η ∼ 1/

√
N lnκ. In particular, for the above-discussed large-N scaling of the Higgs coupling,

λ = O (N 2), the N -dependence of η becomes simply η = O (N −1/2). Furthermore, since closed dual
strings represent excitations of the vacuum, the mean sizes of their world sheets Σi ’s are much
smaller than the mean size of the confining-string world sheet S . For this reason, closed strings
and their interactions with the confining string can to the leading approximation be disregarded
altogether. Within this approximation, one readily obtains Casimir scaling for the k-string tensions [95].
Corrections to this scaling, produced by closed dual strings, as well as by the deviation from the
London limit, can also be obtained analytically (cf. Ref. [95]).

In conclusion of this Section, let us briefly discuss topological effects caused by the 3D counterpart
of the Θ-term, i.e., the Chern-Simons term [110], in the 3D dual Abelian Higgs model. This model
is nothing but the dual Landau-Ginzburg theory, whose partition function in the London limit has
the form

Z =

∫
DθvorDθ smDBµ e

−
∫
d3x

[
1

4д2
m
F 2
µν+η

2 (∂µθ+mBµ )2+iΘεµνλBµ ∂ν Bλ

]

,

where the dimensionalities of various parameters are

[η] = (mass)1/2, [m] = mass, [Θ] = (mass)2.

Here, θvor is the counterpart of θ st
i in 3D, where “vor” stands for “vortex”. Furthermore, the

parameter m has been introduced for the purpose of providing to the magnetic coupling in 3D
the correct dimensionality, [дm ] = (mass)−1/2, while keeping the dual gauge field Bµ dimensionless.

32 Note that the Ginzburg-Landau equations, while being in general second-order differential equations, get reduced in the
Bogomolny limit to the first-order equations, which allow for a numerical solution [126].
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Accordingly, all dimensionful quantities can be naturally measured in the units ofm. In the limit of
Θ
m2 � дmη, one then finds forZ the following representation [127]:

Z =

∫
D~x(s ) e−(2π )

2
∫
x ,y [η

2 J xµ J
y
µ D

xy
M +i

Θ

m2 εµνλ J
x
µ J

y
λ ∂

x
ν (D

xy
0 −D

xy
M )]. (83)

In this expression, Dxy
0 = 1/(4π |~x − ~y|) and D

xy
M = e−M |~x−~y |/(4π |~x − ~y|) are the Coulomb and the

Yukawa propagators, with the mass M given by the formula M =
(mη)2

Θ , and we have used the
notation

∫
x ≡

∫
d3x . Furthermore, Jxµ =

∮
dxµ (s )δ (~x − ~x(s )) in Equation (83) is the current of a dual

Abrikosov vortex, which is related to θvor through the equation analogous to Equation (80), namely
as (∂µ∂ν − ∂ν ∂µ )θ

vor = 2πεµνλ Jλ . We observe now that the exponential in Equation (83) contains the
term i (2π )2 Θ

m2 L̂, where L̂ = εµνλ
∫
x ,y J

x
µ J

y
ν ∂

x
λD

xy
0 is the Gauss’ linking number of an Abrikosov vortex

with itself. This term does contribute to Equation (83) provided it is not equal to 2πin, where n is
some integer. Thus, the topological effect produced by the Chern-Simons term is that a vortex with

N self-intersections contributes to the partition function a non-trivial phase factor ei (2π )
2 Θ

m2 N , unless
Θ
m2 N ,

n
2π .

2. Critical Properties of the Weakly Coupled 3D Confining Theories

2.1. Deconfinement Phase Transition in the 3D Compact QED

As has been discussed in the previous Section, there exists an analogy between the mechanisms
which create disorder in the 2D XY model and in the 3D compact QED. Namely, disorder in the 2D XY
model is produced (at high temperatures) by the condensation of vortices, while in the 3D compact
QED it is produced (at low temperatures) by the condensation of magnetic monopoles. Since the
finite-temperature behavior of the 2D XY model is known (for a review, see e.g., Ref. [128]), this
analogy should allow one to explore the finite-temperature behavior of the 3D compact QED. Indeed,
with the decrease of temperature in the 2D XY model, a phase transition associated with binding
of monopoles and antimonopoles into molecules takes place [104–106]. Since the short-range fields
of such molecules are unable to produce the sufficient degree of disorder, the spin-spin correlation
functions in the molecular phase fall off with the distance only power-like, contrary to their exponential
fall-off in the high-temperature phase. Therefore, the analogy between the two theories suggests that,
with the increase of temperature in the 3D compact QED, monopoles and antimonopoles can bind into
molecules. Accordingly, since the short-range magnetic fields of such molecules do not produce the
sufficient degree of disorder in the system, the molecular phase for monopoles should correspond to
the deconfinement phase for external electrically charged particles. In this way, as has been shown in
Refs. [129–132], the deconfinement phase transition in the 3D compact QED can be studied analytically.

Furthermore, it turns out that the difference in the space dimensionalities between the 2D
XY model and the 3D compact QED, which might have influenced the above considerations, is
unimportant, since the 3D compact QED undergoes the so-called dimensional reduction to a 2D theory,
and the temperatures at which this reduction occurs are exponentially smaller than the temperature
of the deconfinement phase transition. In general, for every quantity in a certain finite-temperature
(bosonic) field theory, the dimensional-reduction temperature can be defined in such a way that the
total contribution to this quantity produced at higher temperatures by all Matsubara frequencies
ωk = 2πTk with k , 0, becomes negligible in comparison with the contribution produced by ω0.
Still, although contributions of the non-zero modes at higher temperatures amount to at most few
percent of the static-mode contribution, they are nevertheless always present. For this reason, and
also because the choice of a temperature-dependent quantity is not unique, the dimensional reduction
is not a phase transition with a definite critical temperature, which could be determined from the
thermodynamic equations (such as the equality of pressures in the two phases). In the particular case
of the 3D compact QED, an estimate for the temperature of the dimensional reduction can be obtained
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from the following consideration. In the finite-temperature version of the sine-Gordon theory (30), the
dual-photon field χ becomes subject to the periodic boundary conditions in the temporal direction,
with the period β ≡ 1/T . Therefore, the lines of the magnetic field originating from a monopole or
an antimonopole, are confined inside the region of a temporal extension β . Accordingly, at spatial
distances larger than β , these lines go almost parallel to the boundary of the aforementioned region,
asymptotically approaching this boundary with the increase of the spatial distance. For this reason,
for a monopole and an antimonopole separated from each other by a spatial distance & β , the 3D
Coulomb law gets changed to the 2D one. Since, on the other hand, the mean distance between
monopoles and antimonopoles constituting the plasma, is ρ−1/3

mean ∝ ζ
−1/3, one concludes that the 3D

plasma gets effectively reduced to the 2D one at the temperatures T & ζ 1/3. Thus, the temperature of
the dimensional reduction in the 3D compact QED has the order of O (ζ 1/3).

Upon the dimensional reduction in the theory (30), the field χ becomes dependent only on the
spatial coordinates. Accordingly, the action of such a theory acquires an overall factor of β , and takes
the form

β

∫
d2x

[
1
2
(∂µ χ )

2 − 2ζ cos(дm χ )
]
=

∫
d2x

[
1
2
(∂µφ)

2 − 2ξ cos(дm
√
Tφ)

]
. (84)

Here we have restored the conventional form of the kinetic term by introducing a rescaled field
φ =

√
β χ , and also defined in the dimensionally-reduced theory a rescaled monopole fugacity ξ ≡ βζ .

As we see, the dimensionally-reduced theory describes the grand canonical ensemble of monopoles
and antimonopoles, which interact with each other through the 2D Coulomb potential with the
temperature-dependent coupling дm

√
T . We emphasize that it is the temperature dependence of

this coupling, which makes the Kosterlitz-Thouless phase transition in the finite-temperature 3D
compact QED inverse with respect to the conventional Kosterlitz-Thouless phase transition in the
2D XY model, where the coupling is temperature independent. Namely, as was already discussed,
monopoles in the 3D compact QED exist in the plasma phase at low temperatures and in the molecular
phase at high temperatures. In order to obtain the critical temperature Tc , it suffices to consider
the mean squared separation in the monopole-antimonopole molecule, which should diverge at
T < Tc . To this end, we note that the action (84) corresponds to the monopole-antimonopole Coulomb

interaction V (r ) =
д2
mT
2π ln(µr ) in the dimensionally-reduced theory, where r is the 2D distance, and

µ is an infra-red cut-off. Accordingly, the mean squared separation in the monopole-antimonopole

molecule can be estimated as 〈r 2〉 ∼
∫
d2r r 2− д

2
mT
2π . Therefore, this separation is infra-red finite provided

3 − д2
mT
2π < −1, and Tc can be estimated as a temperature at which this relation turns into the equality.

Furthermore, assuming that the 3D compact QED originates from the 3D Georgi-Glashow model,
where the spontaneous SU(2)-symmetry breaking leads to the appearance of a compact U(1) group,
one can use the corresponding quantization condition ддm = 4π . This yields the following critical
temperature [129]:

Tc =
д2

2π
. (85)

Thus, because of the exponential smallness of the parameter ζ 1/3, the deconfinement phase transition
in the 3D compact QED indeed occurs at the temperature which is exponentially larger than
the temperature of the dimensional reduction. This observation fully justifies the use of the
dimensionally-reduced theory for the study of the deconfinement phase transition in the 3D
compact QED.

Furthermore, it looks interesting to explore how the above-discussed deconfinement phase
transition in the 3D compact QED becomes affected by an extension of the underlying 3D
Georgi-Glashow model by dynamical quarks. A particular interest to this problem is attracted by
the observation that such a fermionic extension of the 3D Georgi-Glashow model is quite close to
reality, being nothing but the 3D QCD with an extra Higgs field transforming under the adjoint
representation. Hence, in this way one can address the question of how quarks in such a model affect
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their own deconfinement phase transition. One should however notice that, due to the presence of
W ±-bosons in the 3D Georgi-Glashow model, the deconfinement phase transition in that model differs
from the above-considered phase transition in the 3D compact QED. These bosons play an important
role in the finite-temperature dynamics of the 3D Georgi-Glashow model, while being absent in the
compact-QED action (84). The deconfinement phase transition in the 3D Georgi-Glashow model, as
well as in its extension by the dynamical quarks, will be considered in the next Section. For what
follows in this Section, we do not account for W ±-bosons, thereby addressing the issue of how a
fermionic extension of the 3D Georgi-Glashow model affects the deconfinement phase transition in the
resulting 3D compact QED.

An extension of the model (26) by the dynamical quarks transforming under the fundamental
representation of the group SU(2), contains the following additional term:

∆S = −i

∫
d3x ψ †β

(
~γ ~D +h

τ a

2
Φa

)
ψ .

Here we simplify the notations by omitting the summation over the flavor indices, although
considering the general case of an arbitrary number of flavors. Furthermore, in the above formula,
Dµψ =

(
∂µ − iд

τ a
2 Aa

µ

)
ψ , the Yukawa coupling h has the dimensionality of [mass]1/2, and the Euclidean

Dirac matrices are defined as ~γ = −iβ~α , with β = *
,

1 0
0 −1

+
-

and ~α = *
,

0 ~τ

~τ 0
+
-
, where ~τ are the

Pauli matrices. The mechanism allowing quarks to affect the deconfinement phase transition in the
3D compact QED is based on an additional attractive force they provide to the constituents of a
monopole-antimonopole molecule. This force is induced by the zero modes of the Dirac operator for a
quark in the gauge field of such a molecule. The number of the zero modes is equal to the number
of quark flavors. In particular, for the case of massless quarks, we will estimate below the number of
flavors for which the mean size of a monopole-antimonopole molecule becomes as small as the inverse
mass of a W-boson.

Another factor which determines the size of a monopole-antimonopole molecule, is the
characteristic range of localization of quark zero modes. One can show that the stronger the zero
modes are localized near the monopole center, the smaller becomes the mean size of a molecule. Let
us consider the extreme case where the Yukawa coupling h vanishes, so that the initially massless
quarks do not acquire any mass. In this case, the zero modes become maximally delocalized, and the
strength of the quark-mediated interaction in a molecule becomes minimal. Owing to such a weakness
of the quark-mediated interaction in the monopole-antimonopole molecules, the deconfinement
phase transition in this case still occurs at a temperature of the order of д2, provided the number of
flavors is equal to one [130]. For any larger number of massless flavors, the deconfinement critical
temperature becomes as exponentially small as the dimensional-reduction temperature, i.e., of the
order of ζ 1/3. This means that the monopole-antimonopole interaction mediated by Nf ≥ 2 massless
quark flavors is sufficient to maintain deconfinement in the 3D compact QED throughout the entire
dimensionally-reduced phase.

We proceed now with the derivation of these results. For a while, let us consider the
zero-temperature case at h , 0. There, one can show that the Dirac equation in the field of the
’t Hooft-Polyakov monopole gets split into two equations for the components of the SU(2)-doubletψ .
The masses of these two components stemming from those equations are equal to each other, and
read m = hη/2. Furthermore, the Dirac operator in the gauge field of a monopole has a zero mode,
whose asymptotic behavior at the 3D distances r & 1

m is O (e−mr/r ) (cf. Ref. [133]). To find the effective
action of a quark in the field of a monopole-antimonopole molecule, one can notice that, in the 3D case
at issue, monopoles are actually instantons [84]. Owing to this fact, the sought effective action can
be obtained in the same way as the quark effective action in the field of an instanton–anti-instanton
molecule in QCD [134]. To apply the method of Ref. [134] to our case, we first fix the gauge Φa = ηδa3,
and define a free-quark propagator S0 by the relation S−1

0 = −i
(
~γ ~∂ +mτ 3

)
. Next, we define the quark
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propagator SM in the field ~A
a
M of a monopole M located at the origin. This can be done through the

formula S−1
M = S−1

0 −д~γ
τ a
2
~A
a
M . For an antimonopole M ′ located at a certain point ~R, the gauge field reads

~A
a
M ′ (~x) = −~A

a
M (~x − ~R). Clearly, the quark propagator SM ′ in this field is defined by the above equation

for S−1
M , with the replacement ~A

a
M →

~A
a
M ′ . The gauge field of a monopole-antimonopole molecule is

given by a superposition of the fields of its constituents, i.e., ~A
a
= ~A

a
M +

~A
a
M ′ . Accordingly, the quark

propagator S in this field can be defined through the above equation for S−1
M , by replacing there ~A

a
M

by ~A
a
.

Let us further consider the operator −i~γ ~D with the gauge field ~A
a
, and denote its eigenfunctions

as ��ψn
〉
, where n = 0, 1, 2, . . .. That is, −i~γ ~D ��ψn

〉
= λn ��ψn

〉
, where λ0 = 0. This yields the following formal

expression for the spectral representation of the propagator S :

S (~x,~y) =
∞∑
n=0

���ψn (~x)
〉 〈
ψn (~y)

���
λn − imτ 3 .

The crucial property of zero modes is that they yield the dominant contribution to the quark propagator,
which allows for the following approximation:

S (~x,~y) '
���ψ0 (~x)

〉 〈
ψ0 (~y)

���
−imτ 3 + S0 (~x,~y). (86)

Using further the definitions of the propagators introduced above, one has

S =
(
S−1
M + S

−1
M ′ − S

−1
0

)−1
= SM ′G

−1SM .

In this expression, we have denoted

G = S0 − (SM − S0) S
−1
0 (SM ′ − S0) ' S0 −

���ψ
M
0

〉〈
ψM

0
���

−imτ 3 S−1
0

���ψ
M ′
0

〉〈
ψM ′

0
���

−imτ 3 .

Here ���ψ
M
0

〉
, ���ψ

M ′
0

〉
are the zero modes of the operator −i~γ ~D which is defined in the field of a monopole

and an antimonopole, respectively, and Equation (86) has been used. Denoting further c =
〈
ψM ′

0
���S
−1
0

���ψ
M
0

〉
,

we have G = S0 +
c∗
m2

���ψ
M
0

〉〈
ψM ′

0
���, where the star means complex conjugation. Consequently, one

has: detG = [1 + ( |c |/m)2 ] · det S0. Finally, in the general Nf-flavor case, the sought effective action
Γ = ln det S−1 has the form

Γ = const +Nf ln
(
m2 + |c |2

)
.

The constant in this formula cancels out from the normalized expression for the mean squared
separation in the monopole-antimonopole molecule.

We set now h to zero, so that m = 0 too. By using the definition of the zero mode, one
has in this case: c =

〈
ψM ′

0
���д~γ

τ a
2
~A
a
M

���ψ
M
0

〉
. By virtue of this expression, the dependence of |c | on the

monopole-antimonopole separation R can be readily estimated as |c | ∝
∫
d3r/

(
r 2���~r −

~R���
)
∝ ln(µR),

where µ stands for the infra-red cutoff. We can now proceed to the finite-temperature
dimensionally-reduced theory, and address the question of how the deconfinement critical temperature
gets changed by the monopole-antimonopole interaction mediated by the quark zero modes. To this
end, we need to know how this interaction, which is described by the above-obtained 3D matrix
element c (R), looks like in the dimensionally-reduced theory. After that, similarly to the case without
quarks, the critical temperature can be determined as a temperature below which the mean squared
separation in a molecule becomes infra-red divergent. To find a 2D counterpart of c (R), we recall
that, at finite temperature, the temporal coordinate gets compactified to a circle of circumference
β . Windings around this circle are characterized by the winding modes n, which are dual to the
Matsubara frequencies ωk . Accordingly, in the high-temperature dimensionally-reduced theory, where
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only ω0 is relevant, one should sum up over all the winding modes. For c (R), this means that we

should calculate the expression ln(µR) =
+∞∑

n=−∞
ln

[
µ
(
r 2 + (βn)2

)1/2
]
, where n is the number of a winding

mode, and a 2D vector ~r is the spatial part of a (2+1)D vector ~R. One can show that this sum is
equal to πTr + ln [1 − exp(−2πTr )] + const, where an infinite constant “const” is irrelevant, since it is
r -independent. To obtain this expression for ln(µR), one can use the equality

x
+∞∑

n=−∞

1

x2 + (2πn/b)2
=
b

2
coth

(
bx

2

)
,

and notice that its left-hand side can be written as 1
2

d
dx

+∞∑
n=−∞

ln
[
x2 +

(
2πn
b

)2
]
. Integrating then over x ,

one obtains

+∞∑
n=−∞

ln

x2 +

(
2πn
b

)2
= b

∫
dx coth

(
bx

2

)
= bx + 2 ln

(
1 − e−bx

)
+ const.

Setting here 2π
b = µβ and x = µr , we prove the above formula:

+∞∑
n=−∞

ln
[
µ
(
r 2 + (βn)2

)1/2
]
= πTr + ln [1 − exp(−2πTr )] + const.

Thus, for r & β of interest, the statistical weight of the interaction mediated in the
monopole-antimonopole molecule by massless quark zero modes, reads e−Γ ∝ (Tr )−2Nf . Accounting
also for the Coulomb interaction between the constituents of the molecule, we obtain for the sought
mean squared separation:

〈r 2〉 ∼

∫
d2r r 2− д

2
mT
2π −2Nf . (87)

Similarly to the above-considered case without quarks, the condition of the infra-red finiteness of this
expression yields the deconfinement critical temperature in the presence of Nf massless quark flavors
(cf. Equation (85)):

Tc =
д2

4π
(2 −Nf).

We see that, for Nf = 1, the deconfinement phase transition occurs at a twice smaller critical
temperature than for Nf = 0. For Nf ≥ 2, the mean squared separation in the molecule stays infra-red
finite throughout the entire dimensionally-reduced phase. That is, for such a number of massless
fundamentally charged quark flavors, quark zero modes keep the system in the deconfinement phase,
characterized in particular by the deconfinement of these very quarks. Finally, one can show that, for
Nf � max

{
1, 4πT/д2

}
, the mean squared separation in the monopole-antimonopole molecule becomes

as small as 1/M2
W , where MW is theW -boson mass. Thus, for this number of flavors, the mean size of

monopole-antimonopole molecules reaches its smallest possible value (cf. Ref. [130]).
In conclusion of this Section, let us mention that, in the 3D compact QED extended by the

Chern-Simons term, the monopole plasma undergoes a Kosterlitz-Thouless phase transition to the
molecular phase even at zero temperature [135]. The Lagrangian of such a theory has the form

L =
1

4д2 F
2
µν +

n

8π
εµνλFµνAλ . (88)
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The Chern-Simons term entering this Lagrangian is not invariant under the gauge transformations
which do not vanish at the boundary of the 3D manifold. Consequently, for the parameter ϕ of gauge
transformations, one obtains the following induced boundary action:

S =
n

8π

∫
d2x (∂iϕ)

2. (89)

While in the non-compact case, where ϕ ∈ (−∞,+∞), this theory describes free massless bosons, in
the compact case at issue the gauge parameter takes its values in the circle, i.e., ϕ ∈ S1. Such a 2D
XY model (89) possesses vortices, which can be either in the plasma or in the molecular phase, with
the phase transition between the two phases being the Kosterlitz-Thouless one. This phase transition
takes place at the critical value nc = 8 of the Chern-Simons coefficient n. Accordingly, in the theory (88)
with the compact U(1) group, monopoles stay in the plasma phase only for n < nc . However, even in
that phase of the theory (88), there is no confinement of external electrically charged particles as long
as n > 0 (cf. Ref. [135]). For n > nc , the monopole vacuum of the theory (88) exists in the molecular
phase, where a monopole and an antimonopole forming a molecule interact with each other through
the linear potential.

2.2. Deconfinement Phase Transition in the 3D Georgi-Glashow Model

As has already been mentioned,W ±-bosons make the critical properties of the 3D Georgi-Glashow
model different from those of the 3D compact QED. While, at zero temperature, these bosons are
irrelevant for the monopole-based mechanism of confinement because of their large masses, at finite
temperature they form a plasma, which significantly affects the deconfinement phase transition [136].
The density of this plasma can be readily calculated as

ρW = 6
∫

d2p

(2π )2
1

eβ
√
~p2
+M2

W − 1
'

3MWT

π
e−βMW .

Here, the factor of 6 describes the total number of spin states ofW +- andW −-bosons, and we have used
the fact that the deconfinement temperature has the order of д2, which is much smaller than MW = дη

in the weak-coupling regime of д � η at issue. To estimate the deconfinement temperature Tc , one can
use the heuristic criterium that the thickness of the confining string at this temperature becomes equal
to its length. While the thickness of the string in the dimensionally-reduced theory at issue is ∝ ξ−1/2,
where ξ was introduced in Equation (84), the length of the string is of the order of the mean distance
betweenW ±-bosons, which is ρ−1/2

W . Therefore, with an exponential accuracy, the thickness and the
length of the string become equal to each other at the temperature

Tc =
д2

4πε
, (90)

where the function ε was defined in Equation (27).
We proceed now to the formal analysis of the deconfinement phase transition in the 3D

Georgi-Glashow model. To this end, we first rewrite the Lagrangian corresponding to the partition
function (30), in terms of the so-called vortex operator V = e−iдm χ/2 as

L3D =
1
2
(∂µ χ )

2 − 2ζ cos(дm χ ) =
2
д2
m

���∂µV
���
2
− ζ

[
V 2 + (V ∗)2

]
.

This representation makes manifest the magnetic Z2-symmetry of the 3D compact QED [137,138].

At zero temperature, this symmetry is spontaneously broken, since
〈
V (~x)V ∗ (~0)

〉 |~x |→∞
−→ 1. The breakdown

of the magnetic symmetry is associated with the generation of the Debye mass of the dual photon,
and, consequently, with confinement. Furthermore, since the 3D compact QED “inherits” the
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magnetic symmetry from the 3D Georgi-Glashow model, the deconfinement phase transition in the 3D
Georgi-Glashow model should be associated with the restoration of this symmetry. Together with the
dimensional reduction, this observation indicates that the deconfinement phase transition in the 3D
Georgi-Glashow model should be of the same kind as in the 2D Ising model, where the latter model
also possesses a Z2 symmetry. The universality class of the 2D Ising model implies a second-order
phase transition, with the value of 1 for the critical exponent ν characterizing the behavior of the
correlation length at T → Tc . As such, this universality class radically differs from the universality
class of the Kosterlitz-Thouless phase transition in the 3D compact QED, which is an infinite-order
phase transition with the correlation length possessing an essential singularity.

One can account for W ±-bosons in the Lagrangian L2D =
1
2 (∂µφ)

2 − 2ξ cos(дm
√
Tφ) of the

dimensionally-reduced 3D compact QED [cf. Equation (84)] by noticing that these bosons are nothing
but vortices of the φ-field, described by the additional term −2µ cos φ̃ (cf. Ref. [136]). The field φ̃ dual
to the field φ, is defined through the relation i∂µ φ̃ = д

√
βεµν ∂νφ, and the fugacity µ ofW ±-bosons is

proportional to their density ρW , i.e., µ ∝ MWTe−βMW . Owing to this extra cosine term, the dual photon
does not become massless even in the absence of the monopole plasma, as opposed to the phase of the
3D compact QED where monopoles and antimonopoles are bound into molecules. Instead, with the
increase of temperature, the dual-photon Debye mass MD increases, so that the correlation length in
the system decreases, as expected on general grounds. To illustrate this, one can suppress monopoles
by setting ξ = 0, which yields the Lagrangian

L2D =
1
2
(∂µϕ)

2 − 2µ cos
(
д
√
βϕ

)
, (91)

where ϕ =
√
T φ̃/д. As follows from this Lagrangian, M2

D = 2µβд2 ∝ MWд
2e−βMW , which shows

that the Debye mass MD indeed increases with the increase of T . Furthermore, one can find the
critical temperature of the Kosterlitz-Thouless phase transition associated with the Lagrangian (91).
To do so, it suffices to calculate the mean squared separation in the W +-W − molecule, which reads

〈r 2〉 ∼
∫
d2r r 2− д2

2πT . The condition of the infra-red finiteness of this expression yields the critical

temperature д2

8π . Thus, at this temperature,W ±-bosons undergo a deconfinement Kosterlitz-Thouless
phase transition from the molecular to the plasma phase.

We have considered above two limiting cases, where either W ±-bosons or monopoles are
suppressed. In the first case, which corresponds to the 3D compact QED, the phase transition occurs

at the temperature д2

2π , while in the second case it occurs at the temperature д2

8π . In the full 3D
Georgi-Glashow model, which contains bothW ±-bosons and monopoles, the deconfinement phase
transition takes place at the intermediate temperature (90). Furthermore, the overlap of the inverse
and the direct Kosterlitz-Thouless phase transitions turns out to yield the expected second-order
deconfinement phase transition of the universality class of the 2D Ising model.

An independent condition of the deconfinement phase transition is given by the equality of the
scaling dimensions of the operators : cos

(
дm
√
Tφ

)
: and :cos

(
д
√
βϕ

)
:. These scaling dimensions read

∆ =
д2
mT
4π and ∆̃ =

д2β
4π , respectively, so that the monopole cosine term is relevant at T < д2

2π , while the

cosine term describingW ±-bosons is relevant at T > д2

8π . The two scaling dimensions become equal to
each other once the condition

д2
mT = д

2β

is fulfilled. This extremely simple and symmetric relation illustrates the full duality that holds between
magnetically charged monopoles and electrically chargedW ±-bosons at finite temperature. It yields

the critical temperature д2

4π , which is indeed equal to Tc up to the factor of 1
ε . At the temperature д2

4π ,
scaling dimensions of the two cosine operators are both equal to 1, so that both these operators are

relevant at this temperature, as well as in the whole range of temperatures д2

8π < T <
д2

2π .
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A small discrepancy between the values of Tc =
д2

4πε and Tc =
д2

4π , obtained from the equality of
the length of the confining string to its width and from the equality of the two scaling dimensions,
respectively, has been resolved in Ref. [139], where an exact value of Tc has been found from the
renormalization-group equations. The critical temperature corresponds to an infra-red unstable fixed
point of these equations, where the fugacities ξ and µ become equal to each other. In addition, one
should impose the condition that both ξ/Λ2 and µ/Λ2 (where Λ is the momentum scale) should not
exceed 1 at the critical point, since the opposite would contradict the dilute-plasma approximation for
both monopoles andW ±-bosons. The renormalization-group equations read [140–142]

d

dλ

ξ (Λ)

Λ2 = (2 − ∆)
ξ (Λ)

Λ2 ,
d

dλ

µ (Λ)

Λ2 = (2 − ∆̃)
µ (Λ)

Λ2 ,

where λ = ln(T/Λ). Their integration yields

ξ (Λ)

Λ2 =
ζ

T 3

(T
Λ

)2−∆
,
µ (Λ)

Λ2 =
µ

T 2

(T
Λ

)2−∆̃
.

Equating further these expressions to 1, one obtains with an exponential accuracy the following relation:

− S0 + (2 − ∆)λ = −βMW + (2 − ∆̃)λ = 0, (92)

where S0 =
4πMW
д2 ε is the monopole action (27). Unlike the two mutually independent criteria for the

determination of Tc considered above, Equation (92) contains the information on the fugacities and on
the scaling dimensions ∆ and ∆̃. With the use of the aforementioned explicit expressions for ∆ and ∆̃,
one readily obtains the corresponding critical temperature:

Tc =
д2

4π
2 + ε

1 + 2ε
. (93)

In the formal limit of ε → 0, where the density of monopoles is exponentially larger than the density of
W ±-bosons, Equation (93) reproduces the critical temperature (85) in the 3D compact QED. Accordingly,
in the opposite formal limit of ε → ∞, where the density of monopoles is exponentially smaller than
the density of W ±-bosons, Equation (93) reproduces the other above-obtained critical temperature

of д2

8π .
In the same way, one can find the deconfinement critical temperature in the 3D Georgi-Glashow

model extended by Nf flavors of massless quarks which transform under the fundamental
representation of the group SU(2). By using Equation (87) along with the above definition of the scaling
dimension ∆, we observe that the monopole-antimonopole interaction mediated by the quark zero

modes yields for ∆ the following modified expression: ∆ = д2
mT
4π +Nf. Substituting it into Equation (92),

we obtain for the critical temperature in the presence of Nf massless flavors:

Tc =
д2

4π
2 + ε −Nf

1 + 2ε
.

Recalling the upper bound of ε < 1.8 (cf. Ref. [87]), one finds that, for Nf ≥ 4, the 3D Georgi-Glashow
model extended by Nf massless quark flavors stays in the deconfinement phase throughout the entire
dimensionally reduced phase, i.e., from the exponentially small temperatures T ∼ ζ 1/3 onwards.
The critical number of flavors Nf = 4 is larger than Nf = 2, which was found in the previous Section
for the case of the 3D compact QED. It is remarkably close to the critical number ' 5 of massless
quark flavors, at which instantons and anti-instantons, within the instanton-liquid model of the QCD
vacuum, form molecules already at the vanishingly small temperatures [143,144]. This coincidence
does not look purely accidental in view of the already mentioned fact that monopoles in the 3D
case at issue are actually instantons [84]. Nevertheless, physical phenomena associated with the
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phase transitions in the 3D Georgi-Glashow model and in the 4D QCD, are different. Namely, the
formation of instanton–anti-instanton molecules in QCD corresponds not to the deconfinement but
to the restoration of chiral symmetry. That is, it is the chiral phase transition in QCD, which occurs
already in the hadronic phase if the number of massless quark flavors gets larger than the critical one.

3. Summary

In this review, we have discussed various topological effects and critical properties of the gauge
theories where confinement is based on the condensation of magnetic monopoles. Those theories
included the 3D SU(N ) Georgi-Glashow model, the 4D [U(1)]N−1-invariant compact QED, and the
[U(1)]N−1-invariant dual Abelian Higgs model. We have started with illustrating the importance of
Wilson loops for the description of confinement, and proceeded further to the general properties of the
static quark-antiquark potential and the associated Nambu-Goto and the rigid-string models of the
confining string. In this way, we have in particular considered various models of the deconfinement
phase transition. At the next step, we have provided a detailed treatment of confinement in the
3D SU(N ) Georgi-Glashow model, along with the analytic study of the so-called k-string tensions
in that model, demonstrating that these tensions obey Casimir scaling. In the corresponding 3D
[U(1)]N−1-invariant compact QED, we have obtained the string representation of the Wilson loop,
and presented the Nambu-Goto string tension and the rigid-string coupling constant. We have
further proceeded to the discussion of the topological effects, which appear in 3D due to the
Chern-Simons term and in 4D due to the Θ-term. While the effects of the Chern-Simons term in
the 3D Maxwell theory reveal themselves for Wilson loops defined at knotted contours, the Θ-term in
the strongly-coupled 4D [U(1)]N−1-invariant compact QED induces the string θ -term, which describes
self-intersections of the string world sheet. We have also presented general arguments which explain
why, in the models allowing for quantum plasmas of magnetically charged objects, confinement of
point particles most naturally occurs in 3D and 4D. Next, we have derived the string representation of
the ’t Hooft-loop average in the [U(1)]N−1-invariant dual Abelian Higgs model. There, in the presence
of the Θ-term, external electrically charged particles acquire the magnetic charge. Owing to this
induced magnetic charge, such particles experience long-range Aharonov-Bohm-type interactions with
the dual Abrikosov-Nielsen-Olesen strings. Rather, the Chern-Simons term in the 3D dual Abelian
Higgs model leads to the appearance in the partition function of a non-trivial phase factor, which is
caused by self-intersecting dual Abrikosov vortices. Finally, we have presented the analysis of critical
properties, first of the 3D compact QED and the fermionic extension thereof, and then of the full 3D
Georgi-Glashow model. Remarkably, the known vacuum structure of these weakly-coupled confining
theories allowed for an analytic study of their finite-temperature behavior and of the corresponding
deconfinement phase transitions.
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Appendix A. Derivation of Equation (48)

The sum (47) can be written as

S =
N − 1

2N

( p∑
i=1

n2
i +n

)
−

1
2N

p∑
i=1

p∑
i′=1
i′,i

nini′ −
n

2N

p∑
i=1

ni −
1

2N

n∑
j=1

n∑
j′=1
j′,j

1.
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The two nested sums in this expression can be further represented as

p∑
i=1

p∑
i′=1
i′,i

nini′ =
( p∑
i=1

ni
)2
−

p∑
i=1

n2
i and

n∑
j=1

n∑
j′=1
j′,j

1 =
( n∑
j=1

1
)2
−

n∑
j=1

1 = n2 −n,

which yields

S =
N − 1

2N

( p∑
i=1

n2
i +n

)
+

1
2N

p∑
i=1

n2
i −

n2 −n

2N
−

1
2N

( p∑
i=1

ni
)2
−

n

2N

p∑
i=1

ni .

Representing the last two terms of this expression as

−
1

2N

( p∑
i=1

ni
)
·
( p∑
i=1

ni +n
)
= −

1
2N

(k −n) · k,

we have

S =
1
2

p∑
i=1

n2
i +n ·

N − 1
2N

−
1

2N
·
(
n2 −n + k2 −nk

)
.

Simplifying this expression, we arrive at Equation (48) of the main text.

Appendix B. Integration over the Field ~hµν in Equation (59)

The Gaussian functional integration in Equation (59) can be performed by finding the saddle-point
expression for ~hµν , and substituting further this expression back into the action

A ≡

∫
d3x *

,

1
12M2

D

~H
2
µνλ +

1
4
~h

2
µν −

iд~µα
2

~hµνΣµν +
-

, (A1)

where Σµν (~x) ≡
∫
S dσµν (~x(

~ξ ))δ (~x −~x(~ξ )). The saddle-point equation corresponding to the action (A1)
reads 33

−
1
M2

D

(
∂2
µ
~hα β + ∂µ∂β~hµα + ∂µ∂α~hβ µ

)
+ ~hα β = iд~µαΣα β .

Defining the Fourier-transformed field ~hµν (~p) =
∫
d3x e−i~p~x~hµν (~x), one can write the saddle-point

equation in the momentum representation as

1
M2

D

[
~p2 ~hα β (~p) +pµpβ~hµα (~p) +pµpα~hβ µ (~p)

]
+ ~hα β (~p) = iд~µαΣα β (~p). (A2)

This equation can be solved by further rewriting it with the use of the operators

1̂µν ,λρ =
1
2
(δµλδν ρ − δµρδνλ ) and P̂µν ,λρ =

1
2
(PµλPν ρ − PµρPνλ ),

33 The color index α of the weight vector ~µα , which takes the values 1, . . . ,N , should not be confused with a Lorentz index.
A confusion regarding various types of vectors should also be avoided, namely ~ξ is a 2-dimensional vector,~x and~x(~ξ ) are
3-dimensional vectors, and ~µα and ~hµν are (N − 1)-dimensional vectors.
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where Pµν = δµν −
pµpν
~p2 . The operators 1̂µν ,λρ and P̂µν ,λρ are antisymmetric with respect to permutations

inside the first and the second pair of indices, while remaining symmetric with respect to permutations
of these pairs of indices themselves, e.g.,

1̂µν ,λρ = −1̂ν µ ,λρ = −1̂µν ,ρλ = 1̂λρ ,µν .

Furthermore, the operators P̂ and (1̂ − P̂ ) possess the properties of projection operators, namely

P̂µν ,λρ P̂λρ ,α β = P̂µν ,α β , (1̂ − P̂ )µν ,λρ (1̂ − P̂ )λρ ,α β = (1̂ − P̂ )µν ,α β , P̂µν ,λρ (1̂ − P̂ )λρ ,α β = 0. (A3)

The saddle-point equation (A2) can then be represented as

*
,

~p2

M2
D

P̂α β ,µν + 1̂α β ,µν +
-
~hµν (~p) = iд~µαΣα β (~p).

A solution to this equation can be sought in the form

~hµν (~p) = iд~µα
[
A(~p) · 1̂µν ,λρ + B (~p) · (1̂ − P̂ )µν ,λρ

]
Σλρ (~p).

With the use of the properties (A3) of the operators P̂ and (1̂ − P̂ ), this ansatz for ~hµν (~p) yields the
following coefficient functions:

A(~p) =
M2

D

~p2
+M2

D

, B (~p) =
~p2

~p2
+M2

D

.

Therefore, the saddle-point expression for the field ~Hµν (~p) becomes

~hµν (~p) = iд~µα

1̂µν ,λρ −

~p2

~p2
+M2

D

P̂µν ,λρ


Σλρ (~p). (A4)

The action (A1) can also be rewritten in the momentum representation, where it takes the form

A =

∫
d3p

(2π )3



1
4

*
,

~p2

M2
D

+ 1+
-
~hµν (~p)~hµν (−~p) −

~p2

4M2
D

(
1̂ − P̂

)
µν ,λρ

~hµν (~p)~hλρ (−~p)−

iд~µα
2

~hµν (~p)Σµν (−~p)
]

.

Substituting now into this formula the saddle-point expression (A4), we obtain

A =
(д~µα )

2

4

∫
d3p

(2π )3
Σµν (~p)Σλρ (−~p) ·

1

~p2
+M2

D

[
M2

D · 1̂ + ~p
2
· (1̂ − P̂ )

]
µν ,λρ

.

Performing the inverse Fourier transform to the coordinate representation, one obtains the result of
the ~hµν -integration in Equation (59) in the form of the following non-local action:

A =
(д~µα )

2

2

∫
d3x

∫
d3y DMD (~x − ~y)



M2
D

2
Σµν (~x)Σµν (~y) + jµ (~x)jµ (~y)


, (A5)

where jµ (~x) ≡
∮
C dxµ (τ ) δ (~x −~x(τ )). Note finally that, in the course of the derivation of Equation (A5),

the local form of the Stokes’ theorem, ∂νΣµν = jµ , has been used.
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Appendix C. Integration over the Aµ-Field in Equation (66)

The Aµ -integration in Equation (66) can be performed by imposing the Lorenz gauge-fixing
condition ∂µAµ = 0, which yields the saddle-point equation −∂2Aµ + imεµνλ∂νAλ = iд2jµ , where
m = 2д2Θ. Seeking a solution in the form Aµ = Uµ + iVµ , we get a system of equations

∂2Uµ +mεµνλ∂νVλ = 0, − ∂2Vµ +mεµνλ∂νUλ = д
2jµ . (A6)

The first of these equations can be solved with respect to Uµ as

Uµ (~x) =mεµνλ
∫
y
D0 (~x − ~y)∂νVλ (~y). (A7)

Differentiating now the second Equation (A6), and applying the maximum principle, one gets ∂µVµ = 0.
Using this relation, one further obtains from Equation (A7): εµνλ∂νUλ =mVµ . The substitution of this
formula into the second Equation (A6) yields for that equation a remarkably simple form: (−∂2 +

m2)Vµ = д
2jµ . Therefore, one obtains Vµ (~x) = д2

∫
y Dm (~x − ~y)jµ (~y), while Uµ (~x), given by Equation (A7),

can be calculated through the relation ∫
y
Dm (~x − ~y)D0 (~y − ~u) =

∫
y

∫
p

ei~p(~x−~y)

~p2
+m2

∫
q

ei~q(~y−~u)

~q2 =

∫
p

ei~p(~x−~u)

~p2
(~p2
+m2)

=
1
m2 [D0 (~x − ~u) −Dm (~x − ~u)] ,

where
∫
p ≡

∫ d3p
(2π )3 , and the equality 1

~p2
(~p2
+m2 )

= 1
m2

(
1
~p2 −

1
~p2
+m2

)
has been used at the last step.

The resulting Uµ (~x) reads Uµ (~x) = 1
2Θεµνλ

∫
y [D0 (~x − ~y) − Dm (~x − ~y)]∂ν jλ (~y), which yields for the

Wilson-loop average the expression (67) from the main text (for a review, see [145]). Note that,
in the limit of Θ → 0, Equation (67) recovers the expression for the Wilson-loop average in the 3D
Maxwell theory without the Chern-Simons term, namely

〈W (C )〉 = exp
[
−
д2

2

∮
C
dxµ

∮
C
dyµ D0 (~x − ~y)

]
.

Indeed, in this limit, one has D0 (~x − ~y) −Dm (~x − ~y) → m
4π , so that the expression∫

x ,y
jµ (~x)jλ (~y)∂xν [D0 (~x − ~y) −Dm (~x − ~y)] =

∫
x ,y

jµ (~x)[D0 (~x − ~y) −Dm (~x − ~y)]∂ν jλ (~y) →
m

4π

∫
x ,y

jµ (~x)∂ν jλ (~y)

vanishes, since
∫
x jµ (~x) = 0.
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