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Abstract: In this work, we present some results relating to the issue of the Loop Quantum Black Holes
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1. Introduction

Starting from the Hawking demonstration, made in the 1970s, which shows that black holes
can radiate thermally [1], some work has been undertaken in order to understand the black hole
evaporation phenomenon. In this sense, several methods have been developed in order to calculate
the temperature and entropy of black holes [2–5]. However, some questions about the black hole
evaporation process remain open until now, such as the information loss paradox [6,7] and the issue
about the origin of black hole entropy [8].

Among the methods that have been developed in order to understand black hole evaporation,
more recently, a semiclassical method has been constructed upon the interpretation of Hawking
radiation as a tunneling process across the black hole horizon [9–11]. The basic idea is that the
Hawking flux, observed at infinity, has its origin in positive energy particles created just inside the
horizon which could tunnel through it quantum mechanically. The tunneling approach is especially
interesting in order to calculate black hole temperature since it provides a dynamic model for the
black hole emission process. In this way, the tunneling approach turns out to be very useful when one
wishes to incorporate back-reaction effects in order to describe black hole evaporation. In addition,
even though calculations in the tunneling formalism are straightforward and relatively simple, they
are robust in the sense that they can be applied to a wide variety of spacetimes [12–25].

Tunneling formalism has also contributed to the discussion of the black hole information loss
paradox, even at the semiclassical level. In this way, Parikh [10] demonstrated, at first, that a
nonthermal spectrum could be calculated when one interprets the black hole emission process as a
tunneling phenomena. However, no information recovery was obtained from the Parikh analysis.
Such treatment was used also by Arzano et al. [26] where quantum gravity effects was considered.
However, Zhang et al. [27] have demonstrated that the Parikh argument needed to be rectified. In this
way, by the use of a statistical argument, Zhang et al. have shown that in the view of the tunneling
approach, some information could be recovered by black holes during their evaporation process.

On the other hand, in the framework of black hole evaporation, it is expected that quantum
gravity effects must have a crucial role, especially in the last stages of black hole evaporation. In this
way, additional investigations taking into account quantum gravity contributions to the black hole
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emission process have been done by considering noncommutative geometry, Generalized Uncertainty
Principle (GUP), as well as Loop Quantum Gravity (LQG) and string theory scenarios [28–37], where
the information loss issue has also been considered.

In this work, at first, we shall revisit the results of [38] where the Hamilton-Jacobi version of
the tunneling formalism can be used to investigate how quantum gravity effects could have an
influence in the emission process by means of a black hole. In order to do this, we shall investigate the
thermodynamic properties of Loop Quantum Black Holes [39,40], which correspond to a quantum
corrected black hole solution that appears in the context of LQG. The temperature and entropy of this
kind of black hole are calculated by the use of the tunneling method. These first results presented
in [38] replicate those found in the references [40–42], where other methods have been used. In this
way, it can be demonstrated that the quantum tunneling formalism can be successfully applied to
address the thermodynamics of LQBHs, opening a path for a whole range of applications. Among the
possible applications, in the present paper, we shall investigate the possibility of information recovery
through the calculation of the statistical correlations between consecutive modes emitted during the
LQBH evaporation. In this case, the results of [38], which were based on the Parikh approach, have
been improved by the use of the treatment introduced by Zhang et al. In order to perform the two last
tasks, back reactions effects will be taken into account, since it is supposed that such effects could give
us a mechanism for information recovery at the last stages of black hole evaporation.

This paper is organized as follows. In Section 2, we review the main features of the LQBHs
scenario. In Section 3, we review the use of the tunneling formalism to calculate the temperature and
entropy of LQBHs. In Section 4, we shall see how back reactions effects can be included. In Section 5,
we shall address the information loss problem in the LQBH scenario by the use of the tunneling
formalism. The last section is devoted to remarks and conclusions.

2. Loop Quantum Black Holes

Efforts in order to find out black holes solutions in the context of LQG have been made by
several authors [43–56]. In this work, we shall investigate the thermodynamics of a particular solution
called the self-dual solution which was obtained by the use of loop quantum cosmology quantization
techniques to the Schwarzschild scenario [39].

The self-dual black hole solution is obtained in the semiclassical limit of LQG. Even though the
semiclassical limit of the full theory of LQG is not completely understood yet, the situation is quite
different in the case of symmetry-reduced models where the semiclassical limit can be performed in a
trustable form [57].

In this way, the self-dual black hole scenario is obtained by the reduction from the full LQG theory
to the minisuperspace model by spherical symmetric reduction of the Hamiltonian constraint [39].
The semiclassical approximation of the Hamiltonian is then performed and a quantum gravitationally
corrected Schwarzschild solution, described by the following metric, is obtained

ds2 = −G(r)c2dt2 + F(r)−1dr2 + H(r)dΩ2 , (1)

with
dΩ2 = dθ2 + sin2 θdφ2 . (2)

In the Equation (1), the metric functions are given by

G(r) =
(r− r+)(r− r−)(r− r∗)

r4 + a2
0

, (3)

F(r) =
(r− r+)(r− r−)r4

(r + r∗)2(r4 + a2
0)

, (4)
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and

H(r) = r2 +
a2

0
r2 , (5)

where

r+ =
2Gm

c2 ; r− =
2Gm

c2 P2 .

In the loop black hole scenario, we have the presence of two horizons—an event horizon and a
Cauchy horizon. Moreover, r∗ is defined as

r∗ =
√

r+r− = 2Gm
c2 P , (6)

where P is the polymeric function [39].
Moreover, a0 = Amin

8π , where Amin represents the minimal value of area in Loop Quantum Gravity,
and the mass parameter m is related with the ADM mass M by

m = M(1 + P) . (7)

In this way, the LQBH scenario consist in a semiclassical scenario which differs from the classical
Schwarzschild solution by the presence of quantum corrections in terms of the polymeric function
P and the LQG minimal area. The classical Schwazschild scenario is restored when one takes the
limit where a0 → 0 and P→ 0. The complete treatment regarding the way that the LQBH scenario is
obtained from LQC is archived in [39].

In order to discuss the properties of LQBH solution, let us write the Kretschmann invariant for
this solution which, for r ≈ 0, is given by

K = RµναβRµναβ =
3145728π4r6

a4
0γ8δ8m2

. (8)

Consequently, in a different way from the classical Schwarzschild solution, the LQBH Kretschmann
invariant does not diverge when r → 0. This fact indicates that the resolution of the black hole
singularity at r = 0. In fact, in the LQBH scenario, the black hole singularity is replaced by another
asymptotic flat region, as can be seen in the LQBH Carter-Penrose diagram depicted in Figure 1.

Figure 1. Carter-Penrose diagram for a self-dual black hole. The LQBH scenario possess two asymptotic
regions, one at infinity and the other near the origin, which no observer can reach in a finite time.
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The LQBH spacetime possess yet another interesting property, that of self-duality. This property
is given by a symmetry present in the metric (1). In this way, the LQBH metric is invariant by
the transformations r̃ = a0/r and t̃ = tr2

∗/a0, with r̃± = a0/r∓. Such transformations connect the
description of an outside to an inside observer, where the first sees a black hole with mass m described
by the metric (1) while the inside observer sees a black hole with mass 1/m described by the dual
metric. From the self-duality property, in a different way from the classical Schwarzschild solution,
the LQBH scenario allows black holes to have a mass smaller than the Planck mass [39].

Another interesting feature of the LQBH scenario comes from the fact that, in the metric (1), r is
only asymptotically the radial coordinate. This is because gθθ is not given by r2 but by H(r). In this
way, the physical radial coordinate, defined in order to measure the proper circumferential distance,
is given by

R =

√
r2 +

a2
0

r2 . (9)

The Equation (9) reveals vital aspects of the LQBH’s internal structure. From this expression, we
obtain that, as r decreases from ∞ to 0, R initially decreases from ∞ to

√
2a0, at r =

√
a0, so it

will increase once more to ∞. In this way, we have that, at the limit of r → 0, we shall have
another asymptotically flat Schwarzschild region rather than a singularity as has been depicted in the
Carter-Penrose diagram (1). Such a new region corresponds to a wormhole whose dimensions are the
order of the Planck length. The wormhole throat is described by the Kantowski-Sachs spacetime [58].

The thermodynamical properties of LQBH can be obtained from the metric (1). In fact,
the Bekenstein-Hawking temperature TBH is related with the surface gravity κ which is given by

κ2 = −gµνgρσ∇µχρ∇νχσ = −1
2

gµνgρσΓρ
µ0Γσ

ν0 , (10)

where, in the expression above, χµ = (1, 0, 0, 0) is identified as a timelike Killing vector and Γµ
σρ are the

connections coefficients.
In this way, from the metric (1), we obtain

TH =
}

2πc
κ =

}c3

4πGkB

(2m)3(1− P2)

[(2m)4 + a2
0]

. (11)

As we can observe, the temperature above agrees with the classical Hawking temperature in the large
mass limit. On the other hand, it goes to zero for m→ 0.

The entropy of LQBH is obtained from the usual thermodynamical relation SBH =
∫

c2dm/T(m),
which gives us

S =
4πkBc3

}G
(1 + P)2

(1− P2)

[16m4 − a2
0

16m2

]
. (12)

Further investigations about LQBH have been performed in order to calculate the gravitational
wave spectrum and the gravitational lensing by this kind of black hole [59,60]. Moreover, the
entropy-area relation that appears in the context of LQBH has been used in order to derive, based on a
thermodynamical argument, quantum corrected bounce-type Friedmann equations [61], in agreement
with the standard loop quantum cosmology [62].

As we can see, the LQBH metric brings quantum gravity corrections, expressed in terms of
LQC parameters like P and a0, to the black hole thermodynamical properties like temperature and
entropy. Such corrections could induce modifications in the way how the black hole evaporates. In the
following, we shall use the quantum tunneling formalism in order to address the thermodynamical
properties of LQBHs. The information loss problem will also be addressed in this context.
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3. Quantum Tunneling Radiation from Loop Quantum Black Holes

In 2000, Parikh and Wilczec [9], following previous discussions by Krauss and Wilczec [63–65],
developed the first tunneling method in order to describe the black hole evaporation process, named the
null geodesic method. Subsequently, in 2005, Angheben et al. [16] presented an alternative description
to the black hole tunneling process based on a Hamiltonian-Jacobi ansatz, consisting of an extension of
the complex path analysis developed by Padmanabham et al. [25,66–68].

By the use of the Hamilton-Jacobi method introduced by Angheben et al., the thermodynamical
properties of LQBHs have been investigated by Silva and Brito [38], where the inclusion of back
reaction effects and the information loss problem have been addressed. However, the discussion
about the information loss problem undertaken in [38] has been based on an approach introduced by
Parikh [10] which has been rectified by Zhang et al. [27].

In this way, we shall at first review the results of [38] related to the calculation of LQBH
temperature and entropy and the inclusion of back reaction effects. In the Section 5, we shall improve
the results of [38] related to the issue of information recovery, by the use of the approach introduced by
Zhang et al. Regarding this point it is necessary to emphasize that the tunneling method, which works
in the semiclassical level, will be applied here to a semiclassical black hole solution that appears in the
context of LQG. In this way, even though the spacetime in LQG is discrete, the black hole geometry we
consider here is an effective geometry that is obtained by taking the semiclassical limit of a symmetry
reduced model of LQG [39].

In this way, we have that, near the event horizon, one could reduce the description of the particle
emission by a black hole to a 2-dimensional theory [69,70], where the metric corresponds to the
(t− r) sector of the original metric since its angular part is red-shifted away in this limit. Therefore,
the near-horizon metric becomes:

ds2 = −G(r)c2dt2 + F(r)−1dr2 . (13)

In addition, in the near-horizon limit, the effective potential vanishes and there are no grey-body factors.
Now, let us consider the Klein-Gordon equations

}2gµν∇µ∇νφ−m2c2φ = 0 , (14)

which, by the application of the metric (13) give us

− 1
c2 ∂2

t φ + Λ∂2
r φ +

1
2

Λ′∂rφ− m2c2

}2 G(r)φ = 0 , (15)

where Λ = F(r)G(r).
At this point, we shall take the standard WKB ansatz:

φ(r, t) = e−
i
} I(r,t). (16)

Such WKB approximation is justified by the fact that, when the outgoing wave is traced back
towards the horizon, its wavelength, as measured by a local fiducial observer, is ever-increasingly blue
shifted and the point particle interpretation can be allowed [9].

In this way, by the use of the WKB ansatz (16), one obtains the relativistic Hamilton-Jacobi
equation, in the limit of }→ 0:

1
c2 (∂t I)2 −Λ(∂r I)2 −m2c2G(r) = 0 . (17)
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We shall seek a solution in the form:

I(r, t) = −ωt + W(r) . (18)

in a way that we obtain

W =
∫ dr

Ξ

√
1
c2 ω2 −m2c2G , (19)

where Ξ = Λ1/2.
In this point, we shall adopt the proper spatial distance

dσ =
dr2

Ξ(r)
, (20)

where, by taking the near horizon approximation, we obtain

Ξ(r) = Ξ′(rH)(r− rH) + ... . (21)

In this way, we find that

σ = 2
√

r− rH
Ξ′(rH)

, (22)

where 0 < σ < ∞.
In terms of the proper spatial distance, we obtain for the spatial part of the action I

W =
2

Ξ′(rH)

∫ dσ

σ

√
1
c2 ω2 − σ2

4
m2c2G′(rH)Ξ′(rH)

=
2πiω

Ξ′(rH)c
+ real contribution . (23)

In this way, the tunneling probability of the emission of a particle with energy ω will be given by

Γ w Exp[− 2
} ImI] = Exp

{
− πG

c3}
[(2m)4 + a2

0]

m3(1− P2)
ω
}

. (24)

Now, assuming a Boltzmann form, Γ ∼ e−βω, for the emission probability above, where β is the
inverse temperature β = 1/kBTH , we obtain the LQBH temperature as:

TH =
ω

ImI
=

}c3

4πGkB

(2m)3(1− P2)

[(2m)4 + a2
0]

, (25)

which coincides with the former Expression (11) found out in the references [40–42].
From the expression for LQBH temperature, one obtains for the entropy:

S =
4πkBc3

}G
(1 + P)2

(1− P2)

[16m4 − a2
0

16m2

]
. (26)

From the results above, we have that the tunneling formalism is straightforward in order to
calculate the LQBH thermodynamical properties. Such results pave the way for many applications,
some of which we shall address in the following sections.

4. Back Reaction Effects

Based on the results obtained in the last section, which demonstrated that the tunneling approach
is appropriate to calculate the thermodynamical properties of LQBHs, following the results of [38],
in this section we shall discuss how back reaction effects can be introduced in the description of its
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evaporation process. By taking into account such self-gravitational effects, in this way, one can refine
the description of LQBH thermodynamics, mainly in the quantum gravitational regime. This is because
back reaction effects must be taken into account in the late stages of black hole evaporation, where the
usual framework for the emission process will loose its validity [9–11,23,25,64,66,67,71–77].

In this way, in the Hamilton-Jacobi formalism, back reaction effects can be introduced when one
takes the action I to be given by the following relation [78]

I = − i
2
}
kB

[S(M−ω)− S(M)] , (27)

where M is identified as the black hole ADM mass.
In the case of LQBHs, we shall take, for practical purposes, the changing in the mass parameter m

related with the black hole ADM mass through the Equation (7). Therefore, we shall consider that a
reduction in the black hole ADM mass will correspond to a reduction of ε = ω(1 + P)2 in the mass
parameter m.

Let us consider the following relation:

I = − i
2
}
kB

[S(m− ε)− S(m)]

= −4πc3

G
i(1 + P)2

(1− P2)
ε(ε− 2m)

[
1−

a2
0

16m2(m− ε)2

]
.

Consequently, we shall have, for the probability of the black hole emit a quanta with energy ε,
when back-reaction effects are taken into account:

Γ(ε) = Exp
{4πc3

G}
(1 + P)2

(1− P2)
ε(ε− 2m)

[
1−

a2
0

16m2(m− ε)2

]}
. (28)

In the next section, we shall apply these results in order to investigate the possibility to have some
correlation between the quanta emitted by a LQBH due to quantum gravity corrections present in
this scenario.

5. Information Recovery from LQBHs

In order to solve the black hole information loss paradox, many proposals have been made [79–85]
(For a recent review, see [86]). Among these proposals, we have the idea that information lost behind
the black hole event horizon could re-emerge via Hawking radiation by some process. The late
stages of black hole evaporation consist of an interesting scenario in order to have some mechanism
of information recovering through Hawking radiation. This is because, as has been emphasized in
the last section, the usual description for the emission process will loose its validity at these stages,
and gravitational back-reaction effects must be taken into account [9–11,23,25,64,66,67,71–77].

In order to investigate if some information can be recovered during the black hole evaporation, one
can investigate if there exist statistical correlations between the Hawking modes emitted. This method
was applied, at first by Parikh [10] and Arzano et al. [26] and consists of considering two emissions
with energies ε1 and ε2, or one emission with energy ε1 + ε2. The statistical correlation between two
Hawking modes emitted by a black hole can be measured by the function:

C(ε1 + ε2; ε1, ε2) = ln[Γ(ε1 + ε2)]− ln[Γ(ε1)Γ(ε2)] . (29)

It has been initially demonstrated by Parikh and Wilczek [9] that non-thermal corrections to
the black hole radiation spectrum can be obtained when one takes into account back reaction effects.
However, Parikh at first demonstrated that, in the classical treatment by the aforecited authors, no
statistical correlation between the quanta emitted by a black hole has been found [10]. Such treatment
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was later followed up by Arzano et al. [26]. On the other hand, based upon standard statistical
methods, by distinguishing statistical dependence or independence of sequential emissions, Zhang et al.
demonstrated that a statistical correlation can be established between the quanta emitted by a black
hole [27]. In this way, by the use of the approach introduced by Zhang et al., we shall refine the results
of [38] which was constructed upon the Parikh and Wilczek argument.

In order to do this, we have that the probability distribution for the simultaneous emission of
two modes with energies ε1 and ε2 is given by

Γ(ε1, ε2) = Γ(ε1 + ε2)

= Exp
{4πc3

G}
(1 + P)2

(1− P2)
(ε1 + ε2)[(ε1 + ε2)− 2m]

[
1−

a2
0

16m2(m− (ε1 + ε2))2

]}
, (30)

which is subject to a normalization factor Λ which is fixed by

Λ
∫ M

0
Γ(ε)dε = 1 . (31)

On the other hand, the probability distributions for two independent emissions ε1 and ε2 are
given by

Γ(ε1) = Λ
∫ M−ε1

0
Γ(ε1, ε2)dε2 = Exp

{4πc3

G}
(1 + P)2

(1− P2)
ε1(ε1 − 2m)

[
1−

a2
0

16m2(m− ε1)2

]}
(32)

and

Γ(ε2) = Λ
∫ M−ε2

0
Γ(ε1, ε2)dε1 = Exp

{4πc3

G}
(1 + P)2

(1− P2)
ε2(ε2 − 2m)

[
1−

a2
0

16m2(m− ε2)2

]}
. (33)

Therefore, considering the quantum gravity corrections from LQBHs, using the Equation (28),
the correlation function between two consecutive modes with energies ε1 and ε2 will be given by:

C(ε1 + ε2; ε1, ε2) =
8π(1 + P)2

(1− P)2
c3

G} ε1ε2 −
πa2

0(1 + P)2

4(1− P2)m2
G

c3}

{ (ε1 + ε2)(ε1 + ε2 − 2m)

(m− ε1 − ε2)2

−
[ ε1(ε1 − 2m)

(m− ε1)2 +
ε2(ε2 − 2m)

(m− ε2)2

]}
, (34)

where the semiclassical term found out by [27] appears, unless the polymeric function, with a quantum
gravity correction which comes from the LQBH metric. In the Figure 2, the correlation functions for a
classical and for a LQBH are compared.

As we can observe, the quantum gravity contributions to the black hole evaporation process
from the LQBH can, when compered with a classical black hole, relieve in a more substantial way
the information loss problem. Such effects become more evident when the black hole approaches the
Planck scale, in the final stages of the emission process, where both back-reaction and quantum gravity
effects become more important.
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Figure 2. The correlation functions for a classical and for a LQBH. The results point to a substantial
contribution to information recovery from LQBH’s front classical black holes. We have considered
ωm = 0.2 (the peak of the emission spectrum [87–89]).

6. Conclusions and Remarks

In this work, at first, we have revisited the results of [33] relating to the investigation of the LQBH
thermodynamics by the use of the Hamilton-Jacobi version of the tunneling formalism. We have
shown that the results obtained in the references [40–42] for the LQBH temperature and entropy can
be reproduced by the use of the tunneling method, in a way that such a method can be, in fact, reliably
applied in order to address LQBH thermodynamics. We have also presented the results related with the
inclusion of back reaction effects in the description of the LQBH evaporation process. Such effects are
important in order to understand the thermodynamical dynamics of black holes during the late stages
of their evaporation, where quantum gravity becomes important and the usual thermodynamical
approach to such phenomena fails.

Finally, we have addressed the possibility of recovery of some information during the LQBH
evaporation process, mainly during the its late stages. The results of the present work have revealed
that the modes emitted by a LQBH are related by a non-thermal correlation function with a quantum
gravity contribution. Consequently, some information can be recovered during the LQBH evaporation
process. The results presented in this paper, related with correlation functions, calculated upon the
argument by Zhang et al. [27], improve the results of [33], based on the Parikh argument [10].
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