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Abstract: We review the most general scalar-tensor cosmological models with up to second-order
derivatives in the field equations that have a fixed spatially flat de Sitter critical point independent
of the material content or vacuum energy. This subclass of the Horndeski Lagrangian is capable
of dynamically adjusting any value of the vacuum energy of the matter fields at the critical point.
We present the cosmological evolution of the linear models and the non-linear models with shift
symmetry. We come to the conclusion that the shift symmetric non-linear models can deliver a viable
background compatible with current observations.
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1. Introduction

The realisation that the Universe is currently undergoing an accelerated expansion is one
of the major discoveries in cosmology. During the last eighteen years, a number of proposals
to explain this evolution have been suggested. Most proposals involve scalar field dark energy
(quintessence, k-essence, kinetic braiding) or extensions of Einstein’s general relativity. These models
are in principle stable, as their equations of motion are only second-order. However, Lagrangians
consisting of second-order derivatives generally give rise to equations of motion with higher-order
derivatives. Such theories might propagate a ghost degree of freedom, or in other words, they have
an Ostrogradski instability [1]. In 1974, Horndeski wrote down the most general scalar-tensor theory
leading to second-order equations of motion [2]. Despite being unnoticed for almost four decades,
Deffayet et al. [3] rediscovered this theory when generalizing the covariantized version [4] of the
galileons models [5]. It turns out that Brans–Dicke theory, k-essence, kinetic braiding, or f (R) models
are subclasses of the most general Horndeski Lagrangian. The theory can be written in terms of the
arbitrary functions κi (φ, X) and F(φ, X), where X = ∂µφ∂µφ. Thus, although the Horndeski theory
restricts the type of stable scalar-tensor theories, there is still a huge amount of freedom.

As the vacuum energy gravitates in extensions to general relativity, the cosmological constant
problem persists whenever the scalar field can only screen a given value of that constant [6–8]. In order
to address this problem, Charmousis et al. [9,10] introduced the “fab four” models. In these models,
the scalar field may acquire a non-trivial time dependence once the cosmological constant has been
screened, hence avoiding Weinberg’s no-go theorem. This screening was constructed demanding
that the critical point of the dynamics is Minkowski. However, also by construction, as the dynamics
approaches Minkowski, the universe is forced to decelerate. Therefore, a universe accelerating at late
time does not naturally arise in this set up. In this article, we review how the concept of self-adjustment
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was extended from Minkowskian to de Sitter final states [11] and show that these models can lead to
very promising cosmological scenarios from the observational point of view [12–14].

1.1. Dynamical Screening

Let us consider a FLRW geometry of the universe. After integrating the higher derivatives by
parts, the Horndeski Lagrangian can be written as [10]

L(a, ȧ, φ, φ̇) = a3
3

∑
i=0

Zi(a, φ, φ̇) Hi, where L = V−1
∫

d3xLH , (1)

H = ȧ/a is the Hubble expansion rate, V is the spatial integral of the volume element, and a dot
identifies a derivative with respect to the cosmic time t. The functions Zi are written as

Zi(a, φ, φ̇) = Xi(φ, φ̇)− k
a2 Yi(φ, φ̇), (2)

where Xi and Yi are given in terms of the Horndeski free functions [10]. The Hamiltonian density yields

H(a, ȧ, φ, φ̇) =
1
a3

[
∂L
∂ȧ

ȧ +
∂L
∂φ̇

φ̇− L
]
=

3

∑
i=0

[
(i− 1)Zi + Zi,φ̇φ̇

]
Hi. (3)

Let us assume that the matter fluids, given by the energy density ρm(a), are minimally coupled
and do not interact with the scalar field. The Friedmann equation is then obtained from

H+HEH +Hmatter = 0, (4)

where the Einstein–Hilbert Hamiltonian density is HEH = −3M2
PlH

2 and the matter component is
Hmatter = ρm. We will follow the same procedure described in Reference [10] applied to Minkwoski,
but now requiring that self-tuning applies to a more general late-time solution or critical point
with H2 → H2

c 6= 0. Ideally, we would like this solution Hc to be an attractor solution; however,
this particular adjustment mechanism can only ensure that it is a critical point. The recipe for
a successful screening mechanism is the following:

1. At the critical point, the field equation must be trivially satisfied such that the value of the scalar
field is free to screen. This means that, up to a total derivative, at the critical point the Lagrangian
density must be independent of both φ and φ̇

3

∑
i=0

Zi(ac, φ, φ̇)Hi
c = c(ac) +

1
a3

c

dζ(ac, φ)

dt
. (5)

This immediately shows that ∑i Zi(ac, φ, φ̇)Hi
c is at most linear in φ̇.

2. In order to compensate for possible discontinuities of the cosmological constant appearing on
the right hand side of the Friedmann equation, this equation must depend on φ̇ once screening
has taken place. In other words, H,φ̇ 6= 0. Taking into account Equation (4) and given that

∑i Zi,φ̇φ̇(ac, φ, φ̇)Hi
c = 0, as we saw above, it leads to

3

∑
i=1

i Zi,φ̇(ac, φ, φ̇)Hi
c 6= 0. (6)

3. Requiring a non-trivial cosmology before screening implies that the scalar field equation of
motion must depend on Ḣ. This leads to the same condition (6) if Hc 6= 0. In other words,
Zi,φ̇(ac, φ, φ̇)Hi

c 6= 0 for at least one value of i.
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Let us take a particular Lagrangian, L, that satisfies these conditions at the critical point a = ac,

L =
3

∑
i=0

Zi(ac, φ, φ̇)Hi
c , (7)

and
3

∑
i=1

i Zi,φ̇(ac, φ, φ̇)Hi
c 6= 0, (8)

as before, and where Z0 is arbitrary. We now choose Z0 such that at the critical point the Lagrangian is
L = c(ac). The Lagrangian is given quite generically as

L(a, ȧ, φ, φ̇) = a3

[
c(a) +

3

∑
i=1

Zi(a, φ, φ̇)
(

Hi − Hi
c

)]
. (9)

By construction, this Lagrangian has a critical point at Hc. We will now search for the form of the
Zi’s. As it was explicitly shown in Reference [10], two Horndeski Lagrangians which self-tune to Hc

are related by a total derivative of a function µ(a, φ), such that

L(a, ȧ, φ, φ̇) = L(a, ȧ, φ, φ̇) +
dµ(a, φ)

dt
. (10)

This relation must be valid during the whole evolution; therefore, equating equal powers of H,
we obtain

Z0 = c(a)−
3

∑
i=1

Zi Hi
c +

φ̇

a3 µ,φ, Z1 = Z1 +
1
a2 µ,a, Z2 = Z2, Z3 = Z3, (11)

which upon substituting Zi in the first of the above equations yields [10,11]

3

∑
i=0

Zi(a, φ, φ̇)Hi
c = c(a) +

Hc

a2 µ,a(a, φ) +
φ̇

a3 µ,φ(a, φ). (12)

1.2. The de Sitter Critical Point: H2
c = Λ

Let us first consider a flat universe with k = 0, which means that the dependence of Zi’s on the
scale factor and Yi’s disappears. We also require that H2

c = Λ, which leads to

3

∑
i=0

Xi(φ, φ̇)Λi/2 = c(a) +
√

Λ
a2 µ,a +

φ̇

a3 µ,φ. (13)

As the left hand side of this equation is independent of a, so should the right hand side be for any
value of φ̇. The function µ(a, φ) must, therefore, be of the form

µ(a, φ) = a3h(φ)− 1√
Λ

∫
da c(a)a2. (14)

Thus, we have

Lc = a3
3

∑
i=0

Xi(φ, φ̇)Λi/2 = a3
(

3
√

Λ h(φ) + φ̇ h,φ(φ)
)

. (15)

Therefore, we can consider three different kinds of terms in the Lagrangian. These are: (i) Xi-terms
linear in φ̇; (ii) Xi-terms non-linear in φ̇, the contribution of which must vanish at the critical point;
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and; (iii) terms not able to self-tune as they contribute via total derivatives, or terms that multiply by
the curvature k in the Lagrangian.

Let us now consider terms with an arbitrary dependence on φ and φ̇. The Lagrangian is given by

L = a3
3

∑
i=0

Xi(φ, φ̇) Hi, (16)

and the Hamiltonian density is

H =
3

∑
i=0

[
(i− 1)Xi(φ, φ̇) + φ̇ Xi,φ̇(φ, φ̇)

]
Hi. (17)

The field equation can be written as

3

∑
i=0

[
Xi,φ − 3Xi,φ̇H− iXi,φ̇

Ḣ
H
− Xi,φ̇φφ̇− Xi,φ̇φ̇φ̈

]
Hi = 0. (18)

2. Linear Models “the Magnificent Seven”

In order to satisfy Equation (15) considering only terms linear on φ̇, it is sufficient to set

Xms
i (φ, φ̇) = 3

√
Λ Ui(φ) + φ̇ Wi(φ), (19)

provided the potentials Ui and Wi satisfy the constraint

3

∑
i=0

Wi(φ)Λi/2 =
3

∑
i=0

Ui,φ(φ)Λi/2. (20)

As there are in total eight functions Ui and Wi, and only one constraint, there are seven free
functions—the magnificent seven. In these models, the field equation and the Friedmann equation
read [12],

H′ = 3
∑i Hi

(√
Λ Ui,φ(φ)− H Wi(φ)

)
∑i i HiWi(φ)

, φ′ =
√

Λ
(1−Ω) H2 − 3 ∑i(i− 1) Hi Ui(φ)

∑i i Hi+1Wi(φ)
, (21)

where a prime means a derivative with respect to ln a. The critical point of the system is (Hc, φc, Ω) =

(
√

Λ, φc, 0), and its stability depends on the particular form of Ui and Wi [12]. We are now going
to consider a number of cases in our search for viable cosmological models compatible with
current observations.

2.1. Only W0 6= 0

Let us first assume that W0 6= 0, and W1 = W2 = W3 = 0. In this case, H′ is ill-defined as the
denominator of (21) vanishes. This can be understood by inspecting the Hamiltonian

Hlinear = ∑
i

[
3(i− 1)

√
Λ Ui(φ) + i φ̇ Wi(φ)

]
Hi = ∑

i

[
3(i− 1)

√
Λ Ui(φ)

]
Hi.

We see that this Hamiltonian is independent of φ̇, therefore violating condition (ii) for a successful
Lagrangian. Thus, this model does not screen dynamically, and only the de Sitter solution exists.
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2.2. Only a Wi, Uj Pair

From the constraint equation, we have that Wi = Uj,φΛ(j−i)/2, and then

H′

H
= −3

i

[
1−

(
H√
Λ

)j−i−1
]

,

which is independent of φ, and consequently, the matter content has no influence on the Universe’s
evolution. When j − i − 1 < 0, the de Sitter solution is an attractor. When H �

√
Λ, the field

equation can be approximated by H′/H = −3/i. We can obtain a dust-like behaviour provided i = 2
and—as we expected by construction—we reach a de Sitter evolution when H →

√
Λ.

2.3. Only a Wi, Wj Pair

In this case, from the constraint equation, Wi = −Wj,φΛ(j−i)/2, and we have

H′

H
= −3

1− (H/
√

Λ)i−j

j− i(H/
√

Λ)i−j
,

which is again φ independent. For j > i, the de Sitter solution is an attractor. For H �
√

Λ, we can
approximate the field equation as H′/H = −3/j, and we recover a dust-like evolution for j = 2. A de
Sitter universe is attained when H →

√
Λ.

2.4. Term-by-Term Model

We now consider that the constraint equation is satisfied for equal powers of Λ, such that
Wi = Ui,φ. There are eight functions and four constraints; therefore, only four free potentials. Defining
Ui,φ = Λ−i/2Vi,φ, we can write

H′

H
= −3

(
1−
√

Λ
H

)
∑i(H/

√
Λ)iVi,φ

∑i i(H/
√

Λ)iVi,φ
.

In this case, the scalar field contributes to the dynamics of the universe, as there is a dependence on
φ, which is itself determined by the matter content via Equation (21). For H �

√
Λ and when only

one i component dominates, H′/H = −3/i, which means that dust is recovered for i = 2. As before,
we reach de Sitter when H →

√
Λ.

2.5. Tripod Model

Let us consider the three potentials U2, U3, and W2. The constraint equation imposes
U2,φΛ + U3,φΛ3/2 = W2Λ, and then

H′

H
= −3

U2,φ

W2

(
1−
√

Λ
H

)
.

For H �
√

Λ, we have approximately

H′

H
= −3

2
U2,φ

W2
.

In order to obtain a cosmological viable model, we need: U2,φ/W2 = 1 during a matter domination
epoch, and U2,φ/W2 = 4/3 for a radiation domination epoch. This can be achieved with the choice of
potentials, U2 = eλφ + 4

3 eβφ, and W2 = λeλφ + βeβφ, as shown in Figure 1. The de Sitter evolution is
obtained when H →

√
Λ.
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Figure 1. The evolution of the energy densities for the tripod models. Figure from [12].

Unfortunately, the field has a large contribution at early time which is incompatible with
current constraints.

3. Non-Linear Models

In this section we consider that Xi(φ, φ̇) are non-linear terms in φ̇ in the Lagrangian

Lnl = a3
3

∑
i=0

Xi(φ, φ̇)Hi. (22)

As we saw before, any non-linear dependence of the Lagrangian on φ̇ must vanish at the critical
point; thus, ∑3

i=0 Xi(φ, φ̇)Λi/2 = 0. We will restrict the analysis to the shift-symmetric cases, as it
simplifies the calculations. Moreover, these cases also lead to a radiative stable situation since the
field is non-renormalizable [15]. Therefore, the system is independent of φ, and we will make use of
the convenient redefinition, ψ = φ̇. Under these assumptions, the field equation and the Friedmann
equation are [14],

H′ =
3(1 + w)Q0P1 −Q1P0

Q1P2 −Q2P1
, ψ′ =

3(1 + w)Q0P2 −Q2P0

Q2P1 −Q1P2
,

where Q0, Q1, Q2, P0, P1, P2, are complicated functions of Xi and H, and the average equation of state
parameter of matter fluids is

1 + w =
∑s Ωs(1 + ws)

∑s Ωs
.

The eigenvalues of the Jacobian matrix of the system formed by H′ and ψ′ evaluated at the critical
point are (−3,−3(1 + w)), which means that the critical point is stable whenever w > −1.

As for the linear models, we are now going to take a systematic evaluation of the possible
cosmological scenarios. In what follows, we will redefine Xi such that Xi = 3M2

PlΛ
1−i/2 fi.

3.1. f3 = ψn Is the Dominant Contribution

When f3 is the dominant potential and H �
√

Λ, the effective equation of state is

1 + weff '
2
3
(1 + w), for

|
(
2 f3 + ψ f3,ψ

)
f3,ψψ|

|
(
3 f3,ψ + ψ f3,ψψ

)
f3,ψ|

� 1

1 + weff '
2
3

, otherwise.

Neither of these allow for weff corresponding to radiation and/or matter domination epochs.
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3.2. f2 = ψn Is the Dominant Contribution

If instead f2 is the dominant potential, for H �
√

Λ, it follows that

weff ' w, for
|
(
1− f2 − ψ f2,ψ

)
f2,ψψ|

|
(
2 f2,ψ + ψ f2,ψψ

)
f2,ψ|

� 1,

weff ' 0, otherwise.

In this case, either weff is too small at present when compared with observational constraints,
or Ωψ is too large in the early universe.

3.3. f0 and f1 Are the Sole Contributions

If we take f0 and f1 to be the only non-negligible potentials, then it can be shown that when
H �

√
Λ, the equation of state parameter weff ' w. This represents an interesting case,

but unfortunately, models with realistic initial conditions do not evolve to the critical point.

3.4. Extension with f0, f1 and f2

Finally, we consider a case involving the three potentials X0, X1, and X2, such that

f2(ψ) = αψn, f1(ψ) = −αψn +
β

ψm , f0(ψ) = −
β

ψm .

None of the potentials dominates the whole evolution; instead, different potentials are important
at different epochs. This is a very promising case in what regards a background behaviour. We can
obtain a model with wψ = w0 + wa(1− a), such that w0 = −0.98 and wa = 0.04, which is compatible
with current observational bounds. Moreover, the example gives a negligible dark energy contribution
at early times. The evolution of the energy densities of the field and matter fluids is illustrated in
Figure 2.

ln (κρ m )

ln (κρ r )

ln (κρ ϕ )

-6 -4 -2 0

-20

-10

0

10

20

30

40

50

-log 10 (1+z)

Figure 2. The evolution of the energy densities for the model with non-negligible X0, X1, and X2.
Figure from [14].

4. Summary

In this article, we have considered a subclass of the Horndeski cosmological models that may
alleviate the cosmological constant problem by screening any value the vacuum energy might take.
They lead to a final de Sitter evolution of the universe regardless of the matter content. We have
presented linear and the non-linear models and shown that the class of non-linear models with shift
symmetry is very promising when tested against current observational constraints on the effective
equation of state parameter and limits on early dark energy contribution. The natural following step
of this work consists of investigating the evolution of linear perturbations of the field and of matter
fluids in this scenario.
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