
universe

Article

Starobinsky-Like Inflation and Running Vacuum in
the Context of Supergravity

Spyros Basilakos 1, Nick E. Mavromatos 2,3 and Joan Solà 4,∗

1 Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efessiou 4,
115 27 Athens, Greece; svasil@academyofathens.gr

2 Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand,
London WC2R 2LS, UK; nikolaos.mavromatos@kcl.ac.uk

3 Theoretical Physics Department, CERN, Geneva CH-1211 Geneva 23, Switzerland
4 Departament de Física Quàntica i Astrofísica, and Institute of Cosmos Sciences (ICCUB),

Univ. de Barcelona, Av. Diagonal 647 E-08028 Barcelona, Catalonia, Spain
* Correspondence: sola@fqa.ub.edu

Academic Editor: Lorenzo Iorio
Received: 11 May 2016; Accepted: 18 July 2016; Published: 26 July 2016

Abstract: We describe the primeval inflationary phase of the early Universe within a quantum
field theoretical (QFT) framework that can be viewed as the effective action of vacuum decay in the
early times. Interestingly enough, the model accounts for the “graceful exit” of the inflationary
phase into the standard radiation regime. The underlying QFT framework considered here is
supergravity (SUGRA), more specifically an existing formulation in which the Starobinsky-type
inflation (de Sitter background) emerges from the quantum corrections to the effective action
after integrating out the gravitino fields in their (dynamically induced) massive phase. We also
demonstrate that the structure of the effective action in this model is consistent with the generic
idea of re-normalization group (RG) running of the cosmological parameters; specifically, it follows
from the corresponding RG equation for the vacuum energy density as a function of the Hubble
rate, ρΛ(H). Overall, our combined approach amounts to a concrete-model realization of inflation
triggered by vacuum decay in a fundamental physics context, which, as it turns out, can also be
extended for the remaining epochs of the cosmological evolution until the current dark energy era.
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1. Introduction

In the last two years, we have witnessed extraordinary developments on experimental tests of
inflationary models [1], based on studies of photons in the Cosmic Microwave Background radiation.
In particular, the results of Planck collaboration [2–4] and the associated non-observation of B-mode
polarizations of primordial light fluctuations have imposed very stringent restrictions on single
scalar-field models of slow-roll inflation, allowing basically models with a very low tensor-to-scalar
fluctuation ratio r = nT/ns � 1, with a scalar spectral index ns ' 0.96 and no appreciable running.
In fact, the upper bound set by Planck collaboration [2–4] on this ratio, as a consequence of the
non-observation of B-modes, is r < 0.11, but their favoured regions point towards r ≤ 10−3. This
is a feature that characterizes the so-called Starobinsky-type (or R2-inflation, with R denoting the
scalar spacetime curvature) inflationary models [5]. The estimated energy scale EI of inflation, which
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in inflaton-type models is related to the, approximately constant, scalar potential during inflation
through EI = V1/4

I , reads [1]:

EI =
(

3 H2
I M2

Pl

)1/4
' 2.1× 1016 ×

( r
0.20

)1/4
GeV , (1)

where MPl = 1/
√

8πG ' 2.43 × 1018 GeV is the reduced Planck mass (G being the Newtonian
constant). The upper bound r < 0.11 placed by the Planck collaboration implies:

HI = 1.05
( r

0.20

)1/2
× 1014 GeV ≤ 0.78× 1014 GeV . (2)

The above can be rephrased as HI/mP 6 6.39 × 10−6, where mP = 1/G1/2 =
√

8πMPl '
1.22× 1019 GeV is the Planck mass in natural units. This result is consistent with the well-known
CMB bound HI/mP . 10−5 on the temperature fluctuations induced by the tensor modes. As we
will see, the actual value of H during inflation for the class of models under study satisfies H . HI ,
and hence, the CMB bound is preserved by them.

The recent joint BICEP2-Planck analysis [6] confirmed the early Planck result, namely the
likelihood curve for r yields an upper limit r < 0.12 at 95%. Moreover, the present BICEP2-Planck
data are consistent with a scalar spectral index ns ' 0.96 and no appreciable running, in agreement
with the previous Planck data [2–4]. Using the aforementioned new upper limit rmax = 0.12, the
Hubble parameter during slow-roll inflation HI is estimated to be below:

HBicep2+Planck
I ≤ 0.81× 1014 GeV , (3)

and hence, HI/mP 6 6.64× 10−6. Because of the low significance of the new limit on r, the possibility
that r is actually much smaller than the current upper limit rmax remains as natural as it was before.
In fact, nothing actually prevents at present that the typical value of the tensor to scalar ratio can be,
for example, r = O(10−3), and in this sense, the Starobinsky-type scenarios can still be considered as
a serious possibility to describe the inflationary Universe. Following this point of view, we continue
in this paper with the investigation of Starobinsky-like models as potential candidates for the realistic
implementation of inflation compatible with the data.

In previous publications one of us (Nick E. Mavromatos) with collaborators [7,8] discussed
the dynamical breaking of supergravity (SUGRA) theories via gravitino condensation and
demonstrated [9] the compatibility of this scenario with Starobinsky-like [5] inflationary scenarios.
As we discussed, this phase is characterized by the dynamical emergence of a de Sitter background.
As argued in [7,8], the Starobinsky-type inflation appears much more natural (from the point of
view of the order of the parameters involved) than a hill-top inflation scenario [10] in which the
gravitino condensate itself is the inflaton field. In the latter, very large values of the wave function
re-normalization of the condensate field are required to ensure slow-roll inflation if one insists on
(phenomenologically realistic) sub-Planckian supersymmetry breaking scales. It is important to
notice at this point that in the original Starobinsky model [5], the R2 terms crucial for inflation
arise from the conformal anomaly in the path integral of massless (conformal) matter in a de Sitter
background, and thus, their coefficient is arbitrary and can only be fixed phenomenologically. A
similar, although not identical, situation occurs in the context of anomaly-induced inflation [11–13],
where the term R2 is absent at the classical level, but is generated from the conformal anomaly. In
this case, however, the coefficient of �R (entering the β-functions and controlling the stability of
inflation) presents also some arbitrariness, which can only be fixed by a special re-normalization
condition. Par contrast, in the considered SUGRA scenario, such terms arise in the one-loop effective
action of the gravitino condensate field, evaluated in a de Sitter background, after integrating
out massive gravitino fields, whose mass was generated dynamically. The order of the de Sitter
cosmological constant, Λ > 0, that breaks supersymmetry and the gravitino mass are all evaluated
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dynamically (self-consistently) in our approach from the minimization of the effective potential.
Thus, the resulting R2 coefficient, which determines the phenomenology of the inflationary phase,
is calculable [9].

Also very important for our considerations is the framework of the running vacuum model
(RVM) [13–19]; see [20–22] and the references therein for a recent detailed exposition. The
implications of these dynamical vacuum models have recently been analysed both for the early
Universe [22–28], as well as for the phenomenology of the current Universe [29–31]; see also [32–40]
for previous analyses.

In regard to the early Universe, we emphasize that the RVM defines a class of non-singular
inflationary scenarios with graceful exit into the standard radiation regime. These models are related
to Starobinsky inflation models, although they are not equivalent. We will discuss in this paper the
correspondence between them and most particularly with the dynamically-broken SUGRA model
with gravitino condensation that we have mentioned above. It is especially remarkable that such
a specific implementation of the SUGRA model leads, as we will show in this paper, to the effective
behaviour of the RVM with calculable coefficients. In this way, the former automatically benefits from
the successful consequences of the latter. Let us mention that the RVM also provides some important
clues for alleviating the cosmological constant problem [20,21].

Finally, we would like to mention that the RVMs have been tested against the wealth of accurate
SNIa + BAO + H(z) + LSS + BBN + CMB data (see [41] for a recent summary review), and they turn
out to provide a quality fit that is significantly better than the ΛCDM. This fact has become especially
prominent in light of the most recent works [42,43]. Therefore, there is every motivation for further
investigating these dynamical vacuum models from different perspectives, with the hope of finding
possible connections with fundamental aspects of the cosmic evolution. In point of fact, this is the
main aim of this work.

The structure of the article is as follows. The general framework of the RVM is introduced in
Section 2. The basic theoretical elements of the Starobinsky inflation are presented in Section 3.
The main properties of the dynamical breaking of local SUGRA theory and its connection to
Starobinsky-type inflation are reviewed in Section 4. In Section 5, we demonstrate how the RVM
describes the effective framework of the Starobinsky [5] and the dynamically-broken SUGRA [10]
models at the inflationary epoch. Finally, our conclusions are summarized in Section 6.

2. Running Vacuum: A Natural Arena for Vacuum Decay in Cosmology

It is the purpose of this work to go one step further from demonstrating the compatibility
of the dynamically-broken SUGRA scenario [7–9] with inflation and to discuss the possibility of
a dynamical evolution of the inflationary phase ground state to the standard radiation regime
within the context of the running vacuum model (RVM) of the cosmic evolution utilizing an
effective “re-normalization group (RG) approach”; see [13–15] and [20–22] for comprehensive
expositions. Specifically, we wish to show that the behaviour of the aforementioned SUGRA
scenario effectively mimics the RVM. Once this link is elucidated, the general “decaying” vacuum
description inherent to the RVM formulation allows one to smoothly connect inflation to the standard
Fridman–Lemaître–Robertson–Walker (FLRW) radiation era, which subsequently proceeds into a
matter and dark energy domination in the present era, in which it still carries a mild dynamical
behaviour compatible with the current cosmological data [29,30]. Such an expansion history of the
Universe has been put forward in previous works by the authors in various collaborations and
contexts, e.g., non-equilibrium string-inspired cosmologies [44–46] or conventional field-theoretic
cosmologies in which the above-mentioned RVM is extensively applied for the study of the early
cosmic history [23–26,28].

In the effective RG approach underlying the RVM, one can write down an evolution equation
for the effective vacuum energy density ρΛ(t) = ρΛ(µc(t)), treated as a dynamical quantity whose
cosmic time evolution is inherited from its dependence on a characteristic cosmic scale variable
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µc = µc(t). This variable plays the role of the running (mass) scale of the re-normalization group
approach, and a natural candidate for such a scale in FLRW cosmology is the Hubble parameter H(t).
Therefore, the proposed RG equation is [20,21]:

d ρΛ(t)
d lnH2 =

1
(4π)2 ∑

i

[
ai M2

i H2 + bi H4 + ci
H6

M2
i
+ . . .

]
. (4)

In general, µ2
c can be associated with a linear combination of H2 and Ḣ, and the variety of terms

appearing on the r.h.s. of (4) can be richer [22]; however, the canonical possibility is the previous
one, and hereafter, we restrict to it. The coefficients ai, bi, ci . . . appearing in (4) are dimensionless
and receive contributions from loop corrections of boson and fermion matter fields with different
masses Mi. It must be stressed that the general covariance of the action [13,16–19] necessitates the
appearance of only even powers of the (cosmic-time t dependent) Hubble parameter H(t) on the
right-hand-side of (4). For a specific framework where the above RG is concretely realized and the
β-function coefficients can be computed, see [13].

We note at this stage that, if the evolution of the Universe is restricted to eras below the grand
unified theory (GUT) scale, then for all practical purposes, it is at most the H4 terms (those with
dimensionless coefficients bi) that can contribute significantly. The H2 term is of course negligible at
this point, and the higher powers of Hn for n = 6, 8, .. are suppressed by the corresponding inverse
powers of the heavy masses Mi, which go to the denominator, as required by the decoupling theorem.
In the scenarios of the dynamical breaking of local supergravity discussed in [7–10], the breaking
and the associated inflationary scenarios could occur around the GUT scale, in agreement with the
inflationary phenomenology suggested by the Planck satellite data [2–4], provided Jordan-frame
supergravity models (with broken conformal symmetry) are used, in which the conformal frame
function acquired, via appropriate dynamics, some non-trivial vacuum expectation value. For these
situations, therefore, corrections in (4) involving higher powers than H4 will be ignored.

In the next sections, after revising the general framework of Starobinsky inflation, we shall
compute ρΛ in such supergravity models and study their evolution from the exit from the Starobinsky
inflationary phase that occurs in the massive gravitino phase until today. The computation of ρΛ will
be made via the corresponding calculation of the one-loop effective action after massive gravitinos
are integrated out in a path integral. Then, an identification of the effective equation of state can be
derived by integrating (4), following the approach of [23–26,28]. Before doing so, it is instructive to
review first the emergence of Starobinsky-type inflation.

3. Generic Starobinsky Inflation

Starobinsky inflation is the oldest model of inflation [5], prior to the traditional,
scalar-field-based, inflaton models. It is characterized for being able to realize the de Sitter
(inflationary) phase from the gravitational field equations derived from a four-dimensional action that
includes higher curvature terms, specifically of the type involving the quadratic curvature correction
∼ R2 [5]:

S =
1

2 κ2

∫
d4x
√
−g

(
R + β R2

)
, β ≡ 8 π

3M2 . (5)

Our metric signature is (−,+,+,+), and the definitions of the Ricci and Riemann curvature tensors
are Rµν = Rλ

µλν and Rλ
µνρ = ∂ν Γλ

µρ − . . . , respectively, i.e., we follow the exact three-sign conventions
(+,+,+) of Misner–Thorn–Wheeler [47]).

In the above equation, κ2 = 8πG = 1/M2
Pl (in the units of h̄ = c = 1 we are working on),

G = 1/m2
P is Newton’s (gravitational) constant in four spacetime dimensions, with mP the Planck

mass, and M is a constant of mass dimension one, characteristic of the model. Notice that the
curvature terms in the action are just the dimension-four combination m2

PR/16π + R2m2
P/(6M2).
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With this normalization, M gives the value of the so-called scalaron mass. The smaller is M in
Planck mass units (i.e., the larger is the dimensionless parameter m2

P/M2 in front of R2), the longer
is the inflationary time (cf. Figure 2 of [22]). Of course,M cannot be much below the natural scale
of inflation, and in fact, it should be of the same order, i.e.,M ∼ MX , where MX is some GUT scale
below the Planck mass. Typically, MX ∼ 1016 GeV ∼ 10−3mP.

The most relevant feature of this model is that inflationary dynamics is driven by the purely
gravitational sector, through the R2 terms. From a microscopic point of view, these terms can be
viewed as the result of quantum fluctuations (at one-loop level) of conformal (massless or high
energy) matter fields of various spins, which have been integrated out in the relevant path integral
in a curved background spacetime [48–50]. The model in fact is to be understood in the context of
QFT in curved spacetime. The quantum mechanics of this model, by means of tunnelling of the
Universe from a state of “nothing” to the inflationary phase of [5], has been discussed in detail in [51].
The above considerations necessitate truncation to one-loop quantum order and to curvature-square
(four-derivative) terms, which implies that there must be a region of validity for curvature invariants,
such that O

(
R2/m4

P
)
� 1. Recalling that R ∼ 12 H2

I in the inflationary phase (where HI is the
nearly constant Hubble rate in that phase), we observe that this is indeed a condition satisfied in
phenomenologically-realistic scenarios of inflation [1,2], for which the inflationary Hubble scale HI
is typically constrained to obey (2) (Planck data [2–4]) or (3) (BICEP2 data), which are at present
essentially the same.

Although the inflation in this model is not driven by fundamental rolling scalar fields,
nevertheless, the model (5) (and for that matter, any other model where the Einstein–Hilbert
spacetime Lagrangian density is replaced by an arbitrary function f (R) of the scalar curvature)
is conformally equivalent to that of an ordinary Einstein-gravity coupled to a scalar field with
a potential that drives inflation [52,53]. To see this, one firstly linearises the R2 terms in
(5) by means of an auxiliary (Lagrange-multiplier) field α̃(x), before rescaling the metric by
a conformal transformation and redefining the scalar field (so that the final theory acquires
canonically-normalised Einstein and scalar-field terms):

gµν → gE
µν = (1 + 2 β α̃(x)) gµν ,

α̃ (x)→ κϕ(x) ≡
√

3
2

ln (1 + 2 β α̃ (x)) , (6)

where again, κ =
√

8πG. These steps may be understood schematically via:∫
d4x
√
−g

(
R + β R2

)
↪→

∫
d4x
√
−g

(
(1 + 2 β α̃ (x)) R− β α̃(x)2

)
↪→

∫
d4x
√
−gE

(
RE − gE µ ν ∂µ ϕ ∂ν ϕ−V(ϕ)

)
, (7)

where the arrows have the meaning that the corresponding actions appear in the appropriate path
integrals. The ensuing effective potential Veff(ϕ) is given by:

Veff(ϕ) =

3M2
(

1− e−
√

2
3 κϕ
)2

4 κ2 . (8)

One can check that the mass of the scalaron, which can be seen as the new gravitational degree
of freedom that the conformal transformation was able to elucidate from the Starobinsky action, is
indeed given by the parameterM =

√
8π/3β:
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d2Veff(ϕ)

dϕ2

∣∣∣∣
ϕ=0

=M2 . (9)

Note that for ϕ = 0, one has α̃ = 0, and the two conformally equivalent metrics coincide at this point.
The effective potential for the scalar d.o.f. that conformally replaces the effect of the R2 term is plotted
in Figure 1.

κϕ

β κ2

2π
V (ϕ)

Figure 1. The effective potential (8) of the collective scalar field ϕ that describes the one-loop quantum
fluctuations of matter fields, leading to the higher-order scalar curvature corrections in the Starobinsky
model for inflation (5). Notice that according to (8), we have β = 8π/3M2. The potential is sufficiently
flat for κϕ � 1 to ensure slow-roll conditions for inflation are satisfied, in agreement with the Planck
data, for appropriate values of the scale 1/

√
β ∝ M (which sets the overall scale of inflation in

the model).

We observe that V(ϕ) is sufficiently flat for κϕ = ϕ/MPl � 1 (i.e., for sufficiently large values
of ϕ as compared to the reduced Planck scale) to produce phenomenologically-acceptable inflation.
Obviously, the scalaron field ϕ is effectively playing the role of the inflaton in this context. The
difference with the usual inflaton is that ϕ is not a new scalar d.o.f. imported from outside the
gravitational action, but just an integral part of it, namely it is just a gravitational d.o.f. that describes
in an effective (and very convenient) way the ∼ R2 term of (5). The Starobinsky model based on the
action (5) indeed fits excellently with the Planck data on inflation [2–4] and, also, the corresponding
data from the joint BICEP2-Planck analysis [6].

Quantum-gravity corrections in the original Starobinsky model (5) have been considered
recently in [54] from the point of view of an exact re-normalisation-group analysis [55,56]. It was
shown that the non-perturbative beta-functions for the ‘running’ of Newton’s ‘constant’ G and the
dimensionless inverse R2 coupling κ2β−1 ∼ M2/M2

Pl in (5) imply an asymptotically-safe ultraviolet
(UV) fixed point for the former (that is, G(k → ∞) → constant, for some four-momentum cut-off
scale k), in the spirit of Weinberg [57], and an attractive asymptotically-free (κ2β−1(k → ∞) → 0)
point for the latter. In this sense, the smallness of the (inverse) R2 coupling, required for agreement
with inflationary observables [2–4], is naturally ensured by the presence of the asymptotically-free
UV fixed point.

The agreement of the model of [5] with the Planck data triggered an enormous interest in
the current literature, and indeed, Starobinsky inflation has been revisited from various points of
view, such as its connection with no-scale supergravity [58,59] and (super)conformal versions of
supergravity and related areas [60–67]. In the latter works, however, the Starobinsky scalaron field is
fundamental, arising from the appropriate scalar component of some chiral superfield that appears
in the superpotentials of the model.

Although of great value, illuminating a strong connection between supergravity models and
inflationary physics, and especially for explaining the low-scale of inflation compared to the Planck
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scale, these works contradict the original spirit of the Starobinsky model (5), where, as mentioned
previously, the higher curvature corrections are viewed as arising from quantum fluctuations of
matter fields in a curved spacetime background, such that inflation is driven by the pure gravity
sector in the absence of fundamental scalars. On the other hand, the scenario of [9], in which a
Starobinsky-type inflation arises in the massive gravitino phase of SUGRA models, after integrating
out the massive degrees of freedom, is in the same spirit of Starobinsky and, even better, in the sense
that the model does not have to assume the dominance of conformal matter during inflation.

We next proceed to summarize the construction of the one-loop effective action of the massless
degrees of freedom after massive gravitino integration in this dynamically-broken SUGRA model
with spontaneous breaking of global supersymmetry (SUSY) [7,8].

4. Starobinsky-Type Inflation in Dynamically-Broken SUGRA

Dynamical breaking of SUGRA, in the sense of the generation of a mass for the gravitino field ψµ,
whilst the gravitons remain massless, occurs in the model as a result of the four-gravitino interactions
characterizing the SUGRA action, arising from the torsionful contributions of the spin connection,
characteristic of local supersymmetric theories.

Our starting point is the N = 1 D = 4 (on-shell) action for ‘minimal’ Poincaré supergravity in
the second order formalism [68,69]:

SSG =
∫

d4x e
(

1
2κ2 R (e)− ψµγµνρDνψρ + Ltorsion

)
, (10)

κ2 = 8πG , γµνρ =
1
2
{γµ, γνρ} , γνρ =

1
2
[γν, γρ] ,

where R(e) and Dνψρ ≡ ∂νψρ +
1
4 ωνab (e) γabψρ are defined via the torsion-free connection; and given

the gauge condition γ · ψ = 0,

Ltorsion = −κ2

8

(
ψ

ρ
γµψν

) (
ψργµψν + 2ψργνψµ

)
, (11)

arising from the fermionic torsion parts of the spin connection. Extending the action off-shell requires
the addition of auxiliary fields to balance the graviton and gravitino degrees of freedom. These fields
however are non-propagating and may only contribute through the development of scalar vacuum
expectation values, which would ultimately be re-summed into the cosmological constant.

Making further use of the above gauge condition together with the Fierz identities (as detailed
in [7,8]), we may write:

Ltorsion

κ2 = λS

(
ψ

ρ
ψρ

)2
+ λPS

(
ψ

ρ
γ5ψρ

)2
+ λPV

(
ψ

ρ
γ5γµψρ

)2
, (12)

where the couplings λS, λPS and λPV express the freedom we have to rewrite each quadrilinear
in terms of the others via Fierz transformation. This freedom in turn leads to a known
ambiguity in the context of (perturbative) mean field theory [70] and can only be resolved by a
non-perturbative treatment.

Specifically, we wish to linearise these four-fermion interactions via suitable auxiliary fields, e.g.,

1
4

κ2λS

(
ψ

ρ
ψρ

)2
∼ σ κ

√
λS

(
ψ

ρ
ψρ

)
− σ2 , (13)

where the equivalence (at the level of the action) follows as a consequence of the subsequent
Euler–Lagrange equation for the auxiliary scalar σ. Our task is then to look for a non-zero vacuum
expectation value 〈σ〉, which would induce as an effective mass m3/2 ∼ σ κ

√
λS for the gravitino.

This is however complicated by the fact that our coupling λS into this particular channel is, by virtue
of Fierz transformations, ambiguous at a perturbative level, and as mentioned, in order to fix them, a
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fully non-perturbative treatment of SUGRA-like models would be required, which are not currently
at hand. Nevertheless, there is another way out [7,8,10], whereby the Fierz ambiguities may be
absorbed by dilaton-expectation-value shifts in an extension of N = 1 SUGRA, which incorporates
local supersymmetry in the Jordan frame, enabled by an associated dilaton superfield [71,72]. The
(logarithm of the) scalar component ϕ of the latter can be either a fundamental spacetime scalar mode
of the gravitational multiplet, i.e., the trace of the graviton (as happens, for instance, in supergravity
models that appear in the low-energy limit of string theories) or a composite scalar field constructed
out of matter multiplets. In the latter case, these could include the standard model fields and their
superpartners that characterise the next-to-minimal supersymmetric standard model [73], which can
be consistently incorporated in such Jordan frame extensions of SUGRA.

Upon appropriate breaking of conformal symmetry, induced by specific dilaton potentials
(which we do not discuss here), one may then assume that the dilaton field acquires a non-trivial
vacuum expectation value 〈φ〉 6= 0, thus absorbing any ambiguities in the value of the appropriate
coefficient λS induced by Fierz (12). One consequence of this is then that in the broken conformal
symmetry phase, the resulting supergravity sector, upon passing (via appropriate field redefinitions)
to the Einstein frame, is described by an action of the form (10), but with the coupling of the gravitino
four-fermion interaction terms being replaced by:

κ̃2 ≡ λS κ2 = e−4〈φ〉κ2 , (14)

while the Einstein term in the action carries the standard gravitational coupling 1/2κ2. For
phenomenological reasons, associated with gravitino masses in the ball-park of GUT scales, one must
have κ̃ � κ. This is assumed to be guaranteed by appropriate microscopic dilaton potentials that
break the (super)conformal symmetry of the Jordan-frame SUGRA appropriately.

To induce the super-Higgs effect [74], we couple to the action (10) the Goldstino associated to
global supersymmetry breaking via the addition of:

Lλ = f 2 det
(

δµν +
i

2 f 2 λγµ∂νλ

) ∣∣∣∣
γ·ψ=0

= f 2 + . . . , (15)

where λ is the Goldstino,
√

f expresses the scale of global supersymmetry breaking and . . .
represents higher order terms, which may be neglected in our weak-field expansion of the
determinant. It is worth emphasising at this point the universality of (15); any model containing
a Goldstino may be related to Lλ via a non-linear transformation [75], and thus, the generality of our
approach is preserved.

Upon the aforementioned gauge choice for the gravitino field γµψµ = 0 and an appropriate
redefinition, one may eliminate any presence of the Goldstino field from the final effective action
describing the dynamical breaking of local supersymmetry, except the cosmological constant term
f 2 in (15), which serves as a reminder of the pertinent scale of supersymmetry breaking. The
non-trivial energy scale this introduces, along with the disappearance (through field redefinitions)
of the Goldstino field from the physical spectrum and the concomitant development of a gravitino
mass, characterises the super-Higgs effect.

The linearisation of the four-gravitino terms (13), when combined with the f 2 term of the
super-Higgs effect, implies a tree-level cosmological constant:

Λ0

κ2 ≡ σ2 − f 2 , (16)

which must be negative due to the incompatibility of supergravity with de Sitter vacua (notice that
in our conventions, both σ and f have dimension +2 in natural units).

The one-loop effective potential for the scalar gravitino condensate field σ(x) (with vacuum
expectation value σc ∝ 〈ψµ ψµ〉) has a double-well shape as a function of σ(x), which is symmetric
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about the origin (cf. Figure 2), as dictated by the fact that the sign of a fermion mass does not have
physical significance. Dynamical generation of the gravitino mass occurs at the non-trivial minima
corresponding to σc 6= 0. The potential of the σc field is also flat near the origin, and this has been
identified in [10] with a first inflationary phase.

Figure 2. Generic shape of the one-loop effective potential (in dimensionless units κ̃4 Veff, where
κ̃ is the conformally-rescaled gravitational coupling; see the text) for the gravitino condensate field
σ in dynamically-broken (conformal) supergravity models in the presence of a non-trivial de Sitter
background with cosmological constant Λ > 0 [9]. The Starobinsky inflationary phase is associated
with fluctuations of the condensate and gravitational field modes near the non-trivial minimum of
the potential, where the condensate σc 6= 0 and the potential assumes the value Λ > 0, consistent
with supersymmetry breaking. The dashed green lines denote “forbidden” areas of the condensate
field values, violating the condition (17), for which imaginary parts appear in the effective potential,
thereby destabilizing the broken symmetry phase.

In [7,8], the one-loop effective potential was derived by first formulating the theory on a curved
de Sitter background [76,77], with cosmological constant (one-loop induced) Λ > 0, not to be
confused with the (negative) tree-level one Λ0 (16), and then integrating out spin-two (graviton) and
spin 3/2 (gravitino) quantum fluctuations in a given class of gauges (physical), before considering
the flat limit Λ → 0 in a self-consistent way. The detailed analysis in [7,8], performed in the physical
gauge, has demonstrated that the dynamically-broken phase is then stable (in the sense of the effective
action not being characterized by imaginary parts) provided the scale of the gravitino condensate is
equal to or below the scale of spontaneous breaking of global SUSY:

σ2 ≤ f 2 , (17)

which guarantees the aforementioned result on the necessity of the negative nature of the tree-level
cosmological constant (16).

The former result demonstrates the importance of the existence of the global SUSY breaking
scale for the stability of the phase where dynamical generation of gravitino masses occurs, which
was not considered in the previous literature [78,79]. In super-conformal versions of SUGRA, e.g.,
those in [71–73], phenomenologically realistic scales for f 2 and gravitino mass of order of the GUT
scale appear for appropriate values of the expectation value of the conformal factor. These imply
inflationary scenarios in perfect agreement with the Planck data [2–4,10], on equal footing with the
original Starobinsky model.
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In [9], we considered an extension of the analysis of [7,8] to the case where the de Sitter parameter
Λ is perturbatively small compared to m2

P, but non-zero, so that truncation of the series to order Λ2

suffices. This is in the spirit of the original Starobinsky model [5], with the role of matter fulfilled
by the now-massive gravitino field. Specifically, we were interested in the behaviour of the effective
potential near the non-trivial minimum, where σ ' σc is a non-zero constant (cf. Figure 2). The
one-loop effective potential, obtained by integrating out [76,77] gravitons and (massive) gravitino
fields in the scalar channel (after appropriate Euclideanisation), may be expressed as a power series
in Λ:

Γ ' Scl −
24π2

Λ2

(
αF

0 + αB
0 +

(
αF

1 + αB
1

)
Λ +

(
αF

2 + αB
2

)
Λ2 + . . .

)
, (18)

where Scl denotes the classical action with tree-level cosmological constant Λ0 (to be contrasted with
the one-loop cosmological constant Λ):

− 1
2κ2

∫
d4x
√

g
(

R̂− 2Λ0

)
, Λ0 = κ2

(
σ2

c − f 2
)

, (19)

with R̂ denoting the fixed S4 background; we expand around (R̂ = 4Λ, and the four-dimensional
Euclidean volume is 24π2/Λ2); the α’s indicate the bosonic (graviton) and fermionic (gravitino)
quantum corrections at each order in Λ. The reader should notice that, upon the restriction (17)
guaranteeing the absence of imaginary parts in the one-loop effective action, the tree-level
cosmological constant (16) Λ0 < 0, while the one-loop one Λ > 0, as appropriate for a de Sitter
background. Thus, Λ0 should not be confused with the current-epoch positive cosmological constant
Λ̃0, which we introduce later on, in Section 5.2, when we discuss the running vacuum model (RVM)
(cf. (57)).

The leading order term in Λ is then the effective action found in [7,8] in the limit Λ→ 0,

ΓΛ→0 ' −
24π2

Λ2

(
−Λ0

κ2 + αF
0 + αB

0

)
≡ 24π2

Λ2
Λ1

κ2 , (20)

with:

Λ1 = − κ2
(
−Λ0

κ2 + αF
0 + αB

0

)
, (21)

where:

αF
0 = κ̃4 σ4

c

(
0.100 ln

(
κ̃2 σ2

c
3µ2

)
+ 0.126

)
, (22)

and:

αB
0 = κ4

(
f 2 − σ2

c

)2
(

0.027− 0.018 ln

(
3κ2 ( f 2 − σ2

c
)

2µ2

))
, (23)

indicate the leading (as Λ → 0) contributions to the effective potential from bosonic (graviton)
and fermionic (gravitino) quantum fluctuations, respectively, to one-loop order. Above, µ is an
RG scale, associated with a short-distance proper time cut-off [7,8], not to be confused with the
RG scale of the RVM µc(t) (cf. Section 2), which is such that the flow from ultraviolet (UV) to
infrared (IR) corresponds to the direction of increasing µ; σc denotes the gravitino scalar condensate
σc ∝ κ̃ 〈ψµ ψµ〉 at the non-trivial minimum of the one-loop effective potential (cf. Figure 2); κ̃ is the
conformally-rescaled gravitational constant in the Jordan-frame SUGRA model of [71,72], defined
in (14), corresponding to a non-trivial v.e.v.of the conformal (‘dilaton’) factor, 〈φ〉 6= 0, assumed to be
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stabilized by means of an appropriate potential, leading to the breaking of the conformal symmetry.
In the case of standard N = 1 SUGRA, 〈φ〉 = 0.

The remaining (higher order in Λ) one-loop quantum corrections then, proportional to Λ and
Λ2 may be identified respectively with Einstein–Hilbert R-type and Starobinsky R2-type terms in an
effective action of the form

Γ '− 1
2κ2

∫
d4x
√

g
[(

R̂− 2Λ1

)
+ α1 R̂ + α2 R̂2

]
, (24)

where we have combined terms of order Λ2 into curvature scalar square terms. The reader should
recall at this stage that the sign of g in

√
g and the overall minus sign in front of the right-hand-side

of (24) is due to the Euclidean-signature formulation of the path integral and disappears upon analytic
continuation back to the Minkowski spacetime at the end of the computations, which is necessary in
order to make contact with phenomenology/cosmology (see, e.g., (5)). This should be understood in
what follows, and especially in the context of linking the SUGRA model with the RVM in Section 5.

For general backgrounds, such terms would correspond to invariants of the form R̂µνρσ R̂µνρσ,
R̂µν R̂µν and R̂2, which for a de Sitter background all combine to yield R̂2 terms. In the pure SUGRA
case, with no dilaton frame functions, the fact that the Gauss–Bonnet combination Rµνρσ Rµνρσ −
4Rµν Rµν + R2 is a total derivative in four spacetime dimension implies that one can consider only
the Ricci-scalar and Ricci-tensor squared terms as independent. This is not the case though in the
conformal SUGRA case [71,72].

The coefficients α1 and α2 in (24) absorb the non-polynomial (logarithmic) in Λ contributions, so
that we may then identify (24) with (18) via:

α1 =
κ2

2

(
αF

1 + αB
1

)
, α2 =

κ2

8

(
αF

2 + αB
2

)
, (25)

where we note that α1 is dimensionless, whereas α2 has the dimension of inverse mass squared. The
coefficients αF,B

i , i = 1, 2 in Equation (25) can be computed using the results of [7,8], derived via an
asymptotic expansion:

αF
1 = 0.067 κ̃2σ2

c − 0.021 κ̃2σ2
c ln

(
Λ
µ2

)
+ 0.073 κ̃2σ2

c ln
(

κ̃2σ2
c

µ2

)
,

αF
2 = 0.029 + 0.014 ln

(
κ̃2σ2

c
µ2

)
−−0.029 ln

(
Λ
µ2

)
, (26)

and:

αB
1 = −0.083Λ0 + 0.018 Λ0 ln

(
Λ

3µ2

)
+ 0.049 Λ0 ln

(
−3Λ0

µ2

)
,

αB
2 = 0.020 + 0.021 ln

(
Λ

3µ2

)
− 0.014 ln

(
−6Λ0

µ2

)
. (27)

To identify the conditions for phenomenologically-acceptable Starobinsky inflation around the
non-trivial minima of the broken SUGRA phase of our model, we impose first the cancellation of the
“classical” Einstein–Hilbert space term R̂ by the “cosmological constant” term Λ1, i.e., that:

R̂ = 4 Λ = 2 Λ1 ≡ −2 κ2
(
−Λ0

κ2 + αF
0 + αB

0

)
> 0 . (28)

This condition should be understood as a necessary one characterizing our background in
order to produce phenomenologically-acceptable Starobinsky inflation in the broken SUGRA phase
following the first inflationary stage, as discussed in [10]. This may naturally be understood as a
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generalization of the relation R̂ = 2Λ1 = 0, imposed in [7,8] as a self-consistency condition for the
dynamical generation of a gravitino mass in the flat (zero Λ) limit.

From Equation (28), it follows that the (positive) cosmological constant Λ > 0 satisfies the
four-dimensional Einstein equations in the non-trivial minimum and, in fact, coincides with the value
of the one-loop effective potential of the gravitino condensate at this minimum. As we discussed
in [7,8], this non-vanishing positive value of the effective potential is consistent with the generic
features of dynamical breaking of supersymmetry [80]. In terms of the Starobinsky inflationary
potential (8), the value Λ > 0 corresponds to the approximately constant value of this potential in
the high ϕ-field regime (κϕ� 1) of Figure 1, in the flat region where Starobinsky-type inflation takes
place. Thus, we may set:

Λ ∼ 3 H2
I , (29)

where HI is the (approximately) constant Hubble scale during inflation, which is constrained by the
current data to satisfy (2) or (3). In the SUGRA context under discussion, HI is linked to the scale of
global SUSY breaking through HI ' f /MPl .

The effective Newton’s constant in (24), after the imposition of (28), is then defined as:

κ2
eff =

κ2

α1
, (30)

and from this, we can express the effective Starobinsky parameter (5) in terms of κeff as:

βeff ≡
α2

α1
. (31)

This condition thus makes a direct link between the action (18) with a Starobinsky type action (5).
Comparing to (5), we can determine the effective scalaron mass in this case:

M =

√
8π

3
α1

α2
, (32)

As we know, this mass parameter also sets the order of magnitude of the inflationary scale in the
Starobinsky model.

We may then determine the coefficients α1 and α2 in order to evaluate the scale 1/
√

β ∼ M
of the effective Starobinsky potential given in Figure 1 in this case and, thus, the scale of the second
inflationary phase.

In [9], we searched numerically for points in the parameter space, such that:

• The effective equations

∂Γ
∂Λ

= 0 ,
∂Γ
∂σ

∣∣∣
σ=σc

= 0 , (33)

are satisfied, together with the condition (28):
• The cosmological constant Λ is small and positive, satisfying (29), and for phenomenological

reasons, it should be of order:
0 < Λ ∼ 10−10M2

Pl , (34)

to ensure the validity of our expansion in Λ, consistent with the phenomenology of
Planck-satellite data [2–4].

• The scalaron mass should also be of order M ∼ 10−5 MPl, hence allowing us to achieve
phenomenologically-acceptable Starobinsky inflation in the massive gravitino phase, consistent
with the Planck-satellite data [2–4].
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For κ̃ = κ (i.e., for non-conformal supergravity), we were unable to find any solutions satisfying
these constraints. This, of course, may not be surprising, given the previously demonstrated
non-phenomenological suitability of this simple model [7,8]. If we consider κ̃ � κ, however, we
find that we are able to satisfy the above constraints for a range of values. A comment concerning
SUGRA models in the Jordan frame with such large values for their frame functions is in order here.
In our approach, the dilaton 2φ could be a genuine (dimensionless) dilation scalar field arising in
the gravitational multiplet of string theory, whose low-energy limit may be identified with some

form of SUGRA action. In our normalization, the string coupling would be gs ≡ eφ =
(

κ̃/κ
)−1/2

.

In such a case, a value of κ̃ = e−2〈φ〉 κ = O(103−4) κ would imply a large negative v.e.v. of the
(four-dimensional) dilaton field of order 〈φ〉 = −O(5) < 0 and, thus, a weak string coupling squared
gs = O(10−2), which may not be far from the values attained in realistic phenomenological string
models. On the other hand, in the Jordan-frame SUGRA models of [71,72], the frame function
reads Φ ≡ e−2φ = 1 − 1

3

(
SS + ∑u,d Hi H†

i

)
− 1

2 χ
(
− H0

u H0
d + H+

u H−d + h.c.
)

, in the notation
of [73] for the various matter super fields of the next-to-minimal supersymmetric standard model
that can be embedded in such supergravities. The quantity χ is a constant parameter. At energy
scales much lower than GUT, it is expected that the various fields take on sub-Planckian values, in
which case the frame function is almost one and, hence, κ̃ ' κ for such models today. To ensure
κ̃ � κ and, thus, large values of the frame function, Φ � 1, as required in our analysis, one
needs to invoke trans-Planckian values for some of the fields, H0

u,d, and large values of χ, which
may indeed characterize the inflationary phase of such theories. A similar situation occurs for the
values of the Higgs field (playing the role of the inflaton) in the non-supersymmetric Higgs inflation
models [81,82]).

In general, typical values obtained in phenomenological-realistic conformal SUGRA models
satisfy κ̃ � κ (e.g., of order κ̃/κ = O(103 − 104)), under the constraints (29) and (34), in such a
way that:

Λ ∼ 3H2
I ∼ m2

3/2 ∼ κ̃2σ2
c ∼ κ2 f 2 � µ2 = 8π/κ2 , σ2

c � f 2. (35)

Since the scale of SUSY breaking must be in the ballpark of the typical GUT scale associated with
the inflation, namely

√
f ∼ 1016 GeV∼ 10−2 MPl , from the above, we have Λ ∼ κ2 f 2 = f 2/M2

Pl ∼
1027 GeV2. As a result, the scale of the gravitino is some two to three orders of magnitude below the
GUT scale, that is to say, m3/2 ∼

√
Λ & 1013 GeV∼ 10−5 MPl . These values are compatible with both

the combined Planck and Bicep2 bound (3) and the typical mass of the gravitino in this framework [9].
Exit from the inflationary phase is, of course, a complicated issue, which we shall not discuss

here at the level of the SUGRA model itself, aside from the observation that it can be achieved by
coherent oscillations of the gravitino condensate field around its minima and subsequent decays to
radiation and matter fields (thus requiring detailed knowledge of the matter content of the SUGRA
models in order to arrive at quantitative predictions for the exit phase) or tunnelling processes à la
Vilenkin [51]. However, in the next section, we will show that the SUGRA model can be represented
by an effective running vacuum model along the lines indicated in Section 2, and from this point of
view, the exiting from the inflationary phase into the standard radiation phase can be guaranteed on
very general grounds.

Before doing so, though, we should make some important remarks concerning the presence
of logarithms of the de Sitter scale Λ in the coefficients αi of the curvature terms of the effective
action (24). When one computes the effective action in a fixed de Sitter background, it is tempting to
identify a Λ term with the Ricci scalar, which eventually will be allowed to depend on time. Thus,
naively, the presence of logarithms would imply non-polynomial terms of the form R lnR, which
would be problematic for any RVM interpretation of the exit from the inflationary phase, as it would
contradict the spirit of the approach where only integer powers of the curvature terms would be
allowed in the respective flow equations [13–15,17–22]. Fortunately, this is not the case. To understand
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this, we first remark that any effective action obtained by integrating out massive degrees of freedom,
such as gravitino fields, which we restrict ourselves here, must consist for reasons of covariance and
consistency of the weak gravitational fluctuations about the de Sitter background only of polynomial
structures of the curvature tensors, for instance to fourth order in derivatives terms involving the
squares of the Ricci scalar and Ricci tensors and covariant derivatives thereof. Any R lnR term would
be incompatible with the weak gravity perturbative expansion about a background, say of constant
non-zero curvature.

Thus, the coefficients α1 and α2 in the action (24) are kept fixed, not undergoing temporal
evolution, which is guaranteed by the fixing of the two free scales in the problem µ (35) and Λ (29).
Notice that the scale µ should not be confused with the subsequent RG scale µc(t) that describes the
cosmological evolution of the RVM vacuum (cf. Section 2). Indeed, the scale µ first of all is a high
energy cut-off. As already mentioned, it plays the role of a proper-time cut-off scale [7,8], appearing
in the integral representations of some ζ-functions that are part of the determinants arising in the
path integral of the SUGRA action arising from integrating out massive spin 3/2 (gravitino) and spin
two (graviton) fluctuations about the de Sitter background. The scale µ is therefore, in contrast to
µc(t), an inverse re-normalization group scale. Its value has to be fixed so as to guarantee SUGRA
breaking and to generate a fixed gravitino mass, which should not depend on time. This implies that
the spontaneous breaking of SUGRA and the inflationary phase are characterised by such fixed scales,
which implies the time independence of Λ (or, equivalently, the Hubble parameter) during inflation,
the gravitino mass, related to the gravitino condensate vacuum expectation value σc and, thus, the
coefficients α1 and α2. On the other hand, integer positive powers of Λ appearing in the effective
action may be replaced by higher order tensorial structures involving the square of the curvature
tensors, which are allowed to vary with the cosmic time during the RVM phase after exiting from
inflation. Notice that microscopically, the exit phase is characterised by an unknown sort of phase
transition, either through decays of the gravitino condensates to matter parts and reheating of the
inflated Universe, or tunnelling, as mentioned previously, and thus, using different RG running to
relate various eras of the Universe after inflation is to be expected.

5. “Decay” of Effective Vacuum Energy: Running Vacuum Model

The main aim of this section is to demonstrate that there exists a family of time-dependent
effective vacuum energy decaying models of running type, i.e., the class of the running vacuum
models (RVMs) introduced in Section 2, which characterize the evolution of the Universe from the
exit of the Starobinsky inflationary phase till the present era. In fact, the RVMs are able to interpolate
on very general grounds the primeval de Sitter epoch with the late time de Sitter era, i.e., the dark
energy one, where a much smaller cosmological constant essentially dominates. We shall follow the
approach of the RVM outlined in Section 2, in which the vacuum energy density ρΛ(H) varies with
time through its dependence on H = H(t). The Hubble parameter, having the dimension of energy
in natural units, acts as the natural running scale via the RG equation Equation (4). As mentioned in
Section 2, only the even powers of H can be involved in that equation, owing to the general covariance
of the effective action. This is an important point to make possible a general QFT description of this
RG approach and is essential for the connection with the SUGRA model under discussion.

It is evident that the expansion (4) quickly converges at low energies, where H is rather small;
certainly much smaller than any particle mass. No other H2n-term beyond H2 (not even H4) can
contribute significantly to the r.h.s. of Equation (4) at any stage of the cosmological history below the
GUT scale MX ∼ 1016 GeV, where presumably inflation occurs.

On the other hand, if we want to deal with the physics of inflation and in general the very early
states of the cosmic evolution, we have to keep at least the term H4, which in fact is the dominant
term in the series (4) during the high energy regime. In contrast, the terms H6/M2

i and above are
less and less important, because these higher and higher powers of H are suppressed by the inverse
powers of the heavy fermion and boson masses in the GUT, as required by the Appelquist–Carazzone
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decoupling theorem. Therefore, the dominant part of the series (4) is expected to be naturally
truncated at the H4 term. Higher order terms should contain the bulk of the high energy contributions
within quantum field theory in curved spacetime, namely within a semi-classical description of
gravity near, but (possibly a few orders) below the Planck scale. Models of inflation based on higher
order terms inspired by the RG framework have existed for a long time in the literature (see [14,15]), as
well as the unified inflation-dark energy framework of [13]. For a more phenomenological treatment
unrelated to the RG, see [83–86].

5.1. A Distinct Class of Running Vacuum Models

Based on the above arguments, it is natural to consider the case in which the highest power
of the Hubble rate in the RG Equation (4) is H4. Integrating the RG equation provides the simplest
realization of RVM that can describe inflation and the various stages of the FLRW regime:

ρΛ(H) =
Λ(H)

κ2 =
3
κ2

(
c0 + νH2 + α

H4

H2
I

)
. (36)

Here, c0 is an integration constant (with dimension +2 in natural units, i.e., energy squared),
which can be fixed from the low energy data of the current Universe [29,32]. On the other hand, the
dimensionless coefficients are given as follows:

ν =
1

48π2 ∑
i=F,B

ai
M2

i
M2

Pl
, (37)

and:

α =
1

96π2
H2

I
M2

Pl
∑

i=F,B
bi . (38)

At this point, we would like to make some comments that will hopefully make the reader
appreciate the physical interpretation of the running vacuum scenario. The coefficient ν behaves as
the reduced (dimensionless) beta-function for the RG running of ρΛ at low energies, whereas α plays
a similar role at high energies. Notice that the index i depends on whether bosons (B) or fermions (F)
dominate in the loop contributions. Of course, since the coefficients (ν, α) play the role of one-loop
beta-functions (at the respective low and high energy scales), they are expected to be naturally small
because M2

i � M2
Pl for all of the particles, even for the heavy fields of a typical GUT. Indeed, an

estimate of ν within a generic GUT is found in the range |ν| = 10−6 − 10−3 [13]. The dimensionless
coefficient α is also small, |α| � 1, because the inflationary scale HI is certainly below the Planck
scale; see Equation (3). From the observational viewpoint, utilizing a joint likelihood analysis of the
recent supernovae Type Ia data, the CMB shift parameter and the baryonic acoustic oscillations, it
has been found |ν| = O(10−3) [29,30,32,33], which is nicely in accordance with the aforementioned
theoretical expectations, as well as it ensures a mild dynamical behaviour of the vacuum energy
at low energies. As we have already stated in Section 2, the quantum-gravity corrections in the
Starobinsky model have been found in the context of the RG analysis [54–56] through the appropriate
beta-functions. The fact that the nature of the main coefficients of both theories (running vacuum
and Starobinsky) are based on the RG approach is a hint that perhaps there is a possible connection
between the two models.

Indeed, as we will confirm below, this is the case. In particular, let us start with the effective
action (24), with the coefficients (25)–(27) and the constraints (28) and (35). As we have seen, this
action was obtained after integrating out both quantum-gravity (metric) fluctuations and massive
gravitino fields. The action admits dynamical solutions of de Sitter vacua with a small cosmological
constant Λ of order less than the GUT scale at early epochs of the Universe. At the non-trivial
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minimum, the effective potential takes on a value of order Λ (cf. Figure 2). Around the minimum, we
should replace Λ by an effective Hubble parameter during inflation, HI ; Equation (29).

At the end of the day, the effective (dynamical) vacuum energy density, ρΛ(H), during
the inflationary phase of our SUGRA model can be extracted from the SUGRA effective action
Γ (24), upon applying the constraint (28) and analytically continuing the results back to Minkowski
spacetime signature. In particular, the effective potential is defined as Veff ≡ −Γ→

∫
d4x
√−g ρΛ(H).

Doing so, we observe that the so-obtained ρΛ(H), remarkably, adopts precisely the generic RVM
structure (36) around that phase, in which the Ricci scalar (see Equation (50) below) boils down to
R ' 12H2 since H remains (approximately) constant in this phase.

Some important remarks are in order here. The imposition of the constraint (28) during the
Starobinsky inflationary phase implies, as already mentioned, that the correct phenomenology is
attained as a result of the effective gravitational coupling (30) that characterises that phase. Therefore,
if the constraint was an exact result, the effective vacuum energy density of the SUGRA model
would then correspond to the R̂2 → 144 H4 terms in (24) with (30) playing the role of the effective
gravitational constant,

ρSUGRA
Λ (H)exact

constraint =
72
κ2

eff

α2

α1
H4 =

18
κ2

eff

αF
2 + αB

2
αF

1 + αB
1

H4 , (39)

where we used (25)–(27). The form (39) constitutes an admissible class of RVM (cf. Equation (36)).
Notice that in Equation (39), there is no ν term. This is important, in the sense that in such a model, as a
result of the effective gravitational constant (30) entering the game, which in this scenario [9] is viewed
as the ‘physical’ reduced Planck mass of order 1018 GeV, the gravitino mass and global SUSY breaking
scales, (35), when expressed in terms of κeff are of order one; that is, one encounters a Planck-scale
gravitino. Despite this, the vanishing of ν makes the re-normalization-group Equation (39) a
consistent one within the perturbative class of (36).

However, the above construction leads to the absence of a present-era (small, positive)
cosmological constant c0. This arises from the fact that we imposed the constraint (28) exactly. It
may well be that such a condition leaves (non-perturbatively, when all of the higher than one-loop
contributions are taken into account) a very small (constant in cosmic time) contribution c0 > 0, which
is preserved until the present day. Unfortunately, our one-loop construction does not allow us to
explain the magnitude and the sign of this constant term, but this is equivalent to offering a solution
to the cosmological constant problem, which of course our approximate one-loop analysis cannot
provide. While we do not have a quantitative calculation at this point, the above argument provides
at least an interesting qualitative explanation, to wit: the origin of the current cosmological term ρ0

Λ
in the model might well be attributed to quantum (non-perturbative) effects in the SUGRA effective
action, which prevent the complete cancellation (28) from being realised. The constant residue c0

is then transferred throughout the cosmic history and pops up in our days in the form of the tiny
vacuum energy ρ0

Λ = (3/κ2)(c0 + νH2
0) ' 3c0/κ2.

Under this assumption, then, the initial gravitational coupling κ and, thus, the Einstein term
1

2κ2

∫
d4x
√−g R̂ would enter the game during the exit phase from inflation. The reader should bear in

mind that, since during the inflationary phase, the scalar degree of freedom of the Starobinsky action
is slowly rolling, if there is inflation in the conformally-rescaled metric (6), there is also inflation in
the initial metric. The Starobinsky inflation arguments are also not affected if a small contribution
to the cosmological constant, of order of the present-era one, enters the effective action (7), as this is
negligible compared to the Hubble scale of inflation. In such a case, in the exit phase, the effective
vacuum energy of the SUGRA model at the inflationary phase should correspond to both α1 and α2

terms of (24), with the constraint (28) failing by a tiny amount c̃0 > 0 corresponding to the present-era
cosmological constant.

ρSUGRA
Λ (H) =

1
κ2

(
c̃0 + 6α1 H2 + 72 α2 H4

)
, (40)
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where the explicit form of the coefficients αi, i = 1, 2, given by Equations (25)–(27), in which the scales
µ and Λ are fixed through (29) and (35), respectively. As mentioned already, fixing of the scale µ and
Λ, implies fixed values for the gravitino mass.

It is worth stressing that the aforementioned ambiguity concerning the failure of the exact
constraint (28) can be avoided altogether by observing that the corresponding ρΛ(H) ultimately
derives from the RG Equation (4) discussed in Section 2. It is therefore more appropriate, and elegant,
if one performs the matching between the running vacuum energies ρΛ(H) in the SUGRA model and
RVM by equating the corresponding “RG beta” functions, d ρΛ

d ln H2 :

d ρΛ

d ln H2 = 6 κ−2 α1 H2 + 144 κ−2 α2 H4

' 3 (αF
1 + αB

1 ) H2 + 18 (αF
2 + αB

2 ) H4. (41)

It is remarkable that the effective dynamical vacuum energy density ρΛ(H) associated with the
SUGRA model under consideration turns out to follow the general RG of the RVM (see Equation (4))
in which the coefficients of the H2 and H4 terms can be computed precisely from the underlying
SUGRA framework.

From Equation (41), it follows that ρΛ = ρΛ(H) evolves (“runs”) with the (time-evolving) value
of H. Such evolution will be studied in more detail in the next section, but is relatively small in the
beginning, namely the varying H is only slightly below the initial value given in Equation (29). As a
result, the Universe can start with an initial inflationary phase, which is dominated by the ∼ H4 term
of (41). However, well after the inflationary period, the ∼ H2-term takes over and remains in force
until the present time, thereby providing a mild evolution of the current cosmological “constant”.

Eventually, one has to add to the effective action loop contributions from other matter fields,
including particle multiplicities, but at the moment, we take a mass of order of the gravitino mass and
shall comment on the possible additional effects below. The value of m3/2 is of order of the GUT scale,
since it is proportional to the gravitino condensate through σc ∼ κ̃−1 m3/2, the latter being bounded
from above by the GUT scale:

√
σc ≤

√
f ∼ 10−2MPl (see Equation (17)). We must also keep in mind

that for phenomenologically-acceptable solutions of the broken SUGRA model, the ratio r ≡ κ̃/κ is
forced to stay in the range r = O(103 − 104).

From the generic values (35) we adopt here, we find:

d ρΛ

d ln H2 ∼ 1.59 κ̃2σ2
c H2 + 25.76 H4 . (42)

The integrated form of Equation(42) yields of course the effective vacuum energy density at the
scale H, ρΛ(H), Equation (40), within the current SUGRA scenario. We thus have:

ρΛ(H) ' c̃0 + 1.59 κ̃2σ2
c H2 + 12.88 H4 , (43)

where c̃0 is the integration constant, which will play the role of the current-era cosmological
constant, as already mentioned. The result naturally adopts the generic form of the canonical RVM,
Equation (36) with c0 = κ2 c̃0/3 and the effective values for the coefficients ν and α given by:

νeff ' 0.53 κ2κ̃2σ2
c ' O

(
m2

3/2

M2
Pl

)
, (44)

αeff ' 4.30 H2
I κ2 ' O

(
H2

I
M2

Pl

)
. (45)

Thus, we observe that, within the context of the pure SUGRA model, where only the gravitino
plays the role of “matter”, both coefficients are small, of typical order 10−9, in accordance with their
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interpretation as β-function coefficients of the running vacuum energy density. Let us also note that
the above estimate for νeff nicely fits with the formal expression obtained in the different context of
anomaly-induced inflation, where it also takes the structure (37), namely a quantity proportional to
the (squared) ratio of a heavy particle scale (in general, a collection of them) to the Planck mass;
see [13] for details. In the full SUGRA case, after its coupling to ordinary matter and radiation fields,
other SUSY heavy fermions with masses near the SUSY breaking scale should also contribute to
νeff and α, and this should enhance the value of this coefficient very significantly, thus bringing
the obtained result even closer to the situation studied in [13]. Overall, such considerations in
phenomenologically-realistic SUGRA situations could bring these parameters to a range ∼ 10−4

accessible to current observations [29,30].
We next remark that, in the general case where the parameters of the SUGRA model are varied

from the generic values considered in (35), but within the allowed range, the values of νeff and αeff can
also undergo some variation, and the sign of νeff could change. However, we stress that the sign of
αeff remains always positive, which is essential for a correct description of inflation. This can be seen
explicitly by comparing the various logarithms involved in the structure of the coefficient α2 of the
H4-term in Equation (41), together with the size and sign of their respective numerical coefficients
(cf. Equations (25)–(27). The positivity of α2 is maintained throughout the physically-allowed
parameter space, and derives essentially from the fact that H2

I ∼ κ̃2 σ2
c ∼ κ2 m2

3/2, in agreement
with the generic result (35).

Finally, let us note that the circumstance that νeff could have either sign can only affect the
dynamics of the vacuum energy in the late Universe. The phenomenological implications for both
signs have actually been explored recently in [29,30]; see also [22].

The upshot of the above considerations points to the existence of a remarkable relation between
the running vacuum model Equation (36) with that of SUGRA Equation (43). In the next section,
we discuss the predicted inflationary scenario [23–25] in the context of the general RVM [20–22] and
provide some interesting phenomenology that can be tested for the low energy regime, namely for
the current Universe.

5.2. Running Vacuum Evolution: From the Current to the Inflationary Era

In this section, we investigate the conditions under which the running vacuum model can
provide an inflationary era. The point of this session is first to demonstrate that, if one starts from
an inflationary era, at an early epoch, obtained in the context of a microscopic model, such as the
Starobinsky inflation induced in the SUGRA model, then the RVM can smoothly connect it with
the current era, characterised by a very small value of the vacuum energy, with a cosmology of the
ΛCDM type. We shall follow a “bottom-up” approach, in which, by starting from a late epoch FLRW
Universe and applying RVM evolution (“backwards” in cosmic time, or, in a RG sense, an IR to
UV flow), one arrives at an inflationary era in the early Universe. As we shall see, however, in this
bottom-up approach, there is no unique way to identify the underlying microscopic model during
the de Sitter era, which was to be expected in view of the rather generic features encapsulated in the
RVM evolution.

To this end, let us first reproduce the Friedmann equations in the framework of a running ρΛ.
The resulting equations are expected to be formally equivalent to the ΛCDM case, inasmuch as the
cosmological principle, which is embedded in the FLRW metric, perfectly allows the possibility of
a time-evolving cosmological term. In general, the Einstein–Hilbert action is given by (here and in
what follows, we are back in Minkowski-signature spacetime, described by a metric gµν):

SR,Λ =
∫

d4x
√
−g
[

1
2κ2 (R− 2Λ) + Lm

]
, (46)

where in our case, ρΛ(t) = Λ(t)/κ2 represents the effective vacuum energy, which is allowed to
vary with the cosmic time (more specifically as a function of a dynamical cosmological variable that
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evolves with time), and Lm is the Lagrangian of matter. Varying the action (46) with respect to the
metric, we arrive at:

Rµν −
1
2

gµνR = κ2 T̃µν , (47)

where the total T̃µν is given by T̃µν ≡ Tµν − gµν ρΛ, with Tµν = −2∂Lm/∂gµν + gµν Lm the
energy-momentum tensor corresponding to the matter Lagrangian. The extra piece is ρΛ = Λ/κ2,
that is to say, the vacuum energy density associated with the presence of Λ(t) (with pressure
pΛ = −ρΛ). Let us remark that this equation of state (EoS) does not depend on whether the vacuum
is dynamical or not. In contrast with other forms of dark energy, the vacuum is defined as that for
which the EoS parameter is precisely ω = −1 in any circumstance.

Modelling the expanding Universe as a perfect fluid with velocity four-vector field Uµ, we obtain
Tµν = pm gµν +(ρm + pm)UµUν, where ρm is the density of the matter-radiation and pm = ωmρm is the
corresponding pressure, in which ωm is the EoS of matter. Obviously, T̃µν takes the same form as Tµν

with ρtot = ρm + ρΛ and ptot = pm + pΛ = pm − ρΛ, that is, T̃µν = (pm − ρΛ) gµν + (ρm + pm)UµUν.
In the context of a spatially-flat FLRW metric, we derive the Friedmann equations in the presence

of a dynamical Λ-term:
κ2ρtot = κ2ρm + Λ = 3H2 , (48)

κ2 ptot = κ2 pm −Λ = −2Ḣ − 3H2 (49)

and the Ricci scalar
R = gµνRµν = 6(2H2 + Ḣ) , (50)

where the overdot denotes derivative with respect to cosmic time t. Note that the Bianchi identities
5µ T̃µν = 0 ensure the covariance of the theory and, if the Newtonian coupling is strictly G = const.,
entail an energy exchange between vacuum and matter.

ρ̇m + 3(1 + ωm)Hρm = − ˙ρΛ . (51)

Combining Equations (48), (49) and (51), we infer the basic differential equation that governs the
dynamics of the Universe, namely the equation for the Hubble rate:

Ḣ +
3
2
(1 + ωm)H2 =

1
2

κ2(1 + ωm)ρΛ =
(1 + ωm)Λ

2
. (52)

Inserting in it the expression (36) for the dynamical vacuum energy, we arrive at the following
equation:

Ḣ +
3
2
(1 + ωm)H2

[
1− ν− c0

H2 − α
H2

H2
I

]
= 0. (53)

The dynamics of this model has been thoroughly discussed in [23–25]; see also [22]. We can
summarize it as follows. First of all, we identify the presence of an inflationary epoch (de Sitter
phase) associated with the constant value solution H2 = (1− ν)H2

I /α of Equation (53), which is valid
for the very early epoch of the Universe (in which we can neglect c0/H2 � 1). In this regime, solving
Equation (53), we find:

H(a) =
(

1− ν

α

)1/2 HI√
D a3(1−ν)(1+ωm) + 1

, (54)

where D is a positive constant of integration. For the early Universe, we assume that matter is
essentially relativistic; thus, we take ωm = 1/3 at this point. Overall, one can see from (54)
that for Da4(1−ν) � 1, the Universe starts from an unstable inflationary phase (early de Sitter
era, H2 = (1 − ν)H2

I /α) powered by the huge value HI presumably connected to the scale of the
GUT. Well after the primeval inflationary era, specifically for Da4(1−ν) � 1, the Universe enters
the standard radiation phase. Subsequently, the radiation component becomes subdominant, and
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the matter-dominated era appears. This is confirmed from the evolution of the vacuum energy and
radiation energy densities. If we neglect ν and c0/H2 in this early epoch, which is justified, we can
insert (54) into (36), and we find:

ρΛ(a) =
ρI
α

1

[1 + D a4]
2 . (55)

Then, solving (51), we obtain:

ρr(a) =
ρI
α

D a4

[1 + D a4]
2 . (56)

Here, ρI = 3H2
I /κ2 is the critical density in the inflationary epoch. As it is obvious from the above

expressions, there is no singularity in the initial state: the Universe starts at a = 0 with a huge vacuum
energy density ρI/α (and zero radiation), which is progressively converted into relativistic matter. In
the asymptotic radiation regime, we indeed retrieve the standard behaviour ρr ∼ a−4 with essentially
negligible vacuum energy density: ρΛ ∼ a−8 � ρr. Graceful exit is, therefore, implemented.

Subsequently, the radiation component becomes subdominant, and the matter-dominated era
appears. This is the point when the c0/H2 term in Equation (53) surfaces and starts to dominate
over αH2/H2

I , because the early de Sitter era is left well behind (H � HI). In this case, Equation (36)
boils down to Λ(H) = Λ̃0 + 3ν(H2−H2

0), which corrects the concordance ΛCDM model a posteriori.
Notice, that:

Λ̃0 = 3c0 + 3νH2
0 (57)

is the vacuum (cosmological constant) energy density at the present time, which is positive, and
should not be confused with the negative tree-level Λ0 of the SUGRA model (19). This can be
understood by studying the evolution of the Universe at a time after recombination, therefore
consisting of dust (ωm = 0) plus the running vacuum fluid with H � HI . In this case, using
d/dt = aH d/da, we can rewrite Equation (53) as:

a
dH2

da
+ 3(1− ν)H2 − 3 c0 = 0 ,

The solution satisfying the boundary condition H = H0 at present (a = 1) is:

H2(a) =
H2

0
1− ν

[
(1−Ω0

Λ) a−3(1−ν) + Ω0
Λ − ν

]
.

Note that the aforementioned boundary condition fixes the value of the parameter c0 as follows:
c0 = H2

0(Ω
0
Λ − ν). For ν = 0, we correctly recover the behaviour of the ΛCDM. However, for small ν,

the Universe possesses a mildly-evolving vacuum energy that could appear as dynamical dark energy
without invoking spurious scalar fields. Furthermore, the above vacuum model is in agreement with
the latest cosmological data, and it predicts a growth rate of clustering that is in agreement with the
observations (for more details concerning the late dynamics, see [29,30,32,33]).

Let us note that the main stage of the cosmic evolution where we can match the SUGRA model
of Section 4 with the RVM is the early period comprising inflation and the incipient radiation epoch,
to which it leads after graceful exit, as described in this section. Later on, the microscopic description
of the SUGRA model is more difficult to analyse, and we adopt here the point of view that the
subsequent effective behaviour of the Universe still follows the RVM flow dictated by the general RG
Equation (4), which, to order H4, entails the dynamical vacuum energy density (36). As previously
mentioned, at low energies, this implies that only the dynamical part ∼ H2 is active and may lead to
interesting phenomenological implications for the dynamical DE of the current Universe [29,30,33])
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5.3. Geometrical Description: RVM versus Starobinsky

Finally, let us focus now on some aspects of the inflationary era that are especially relevant for
the present study. As we have already mentioned, in this epoch, we have a de Sitter solution H2 '
(1− ν)H2

I /α = const. Now, as previously indicated, Ḣ ' 0 in this period, and hence, R ' 12H2.
Finally, neglecting the matter component from the action (46), which is justified in the inflationary
period, and using Λ(H) ' 3αH4/H2

I (see Equation (36)), we schematically find:

SR,Λ =
∫

d4x
√
−g

[
1

2κ2 R− ρΛ(H)

]
∼ 1

2κ2

∫
d4x
√
−g

(
R− 6α

H4

H2
I

)
. (58)

This demonstrates our point that an inflationary vacuum can be connected smoothly, under the
RVM, with a late epoch ΛCDM Universe. However, there is no unique way by means of which we
can associate the inflationary era RVM effective action (58) to a microscopic model, which, as already
mentioned, is to be expected due to the generic features of the RVM that describe classes of models
and therefore may correspond to more than one microscopic theory, as far as the exit from inflationary
phase is concerned.

An interesting point concerns Equation (58) if one replaces H4 by the square of the Ricci scalar.

In this case, one may write SR,Λ '
∫

d4x
√−g 1

2κ2

(
R− α R2

24 H2
I

)
. Notice that, since α > 0 in our case,

the RVM model is not formally and directly equivalent to a Starobinski-type model, for which the
effective Lagrangian has the form (5) corresponding to a negative α coefficient in (58). This point has
also been discussed in [22]. The root of the problem lies in the fact that the metric tensors of the two
models, (5) and (58), are different, related by a non-trivial conformal transformation (6) involving the
linearising Hubbard–Stratonovich field ϕ, which plays the role of the “physical” inflaton. The RVM
metric is identified with the Einstein-frame metric gE

µν in (6), while the original one-loop effective
SUGRA action is described in terms of the gµν metric. Nevertheless, contact with Starobinsky-type
models, like the one induced within the context of the SUGRA model examined here, can be achieved
by observing that it is precisely the passage from the Einstein to Jordan-frame actions, via (6), which
guarantees the opposite sign, relative to the Ricci scalar term, of the effective potential (8) of the
Hubbard–Stratonovich inflaton field in (7). Upon making the identification for large κϕ� 1:

3 α
H4

κ2 H2
I
= Veff(ϕ) =

3M2
(

1− e−
√

2
3 κϕ
)2

4 κ2 , (59)

where in the SUGRA model the scalaron mass scaleM is given by (32), one obtains the connection
of the RVM with the microscopic Starobinsky-type inflationary SUGRA model. The exit from the
inflationary phase, then, which in Figure 1 corresponds to the region of small κ ϕ < 4, which in the
context of the SUGRA model would require detailed knowledge of the matter content of the theory,
is then “effectively” described by the RVM evolution with the initial condition (59) that “fills up” the
missing details in the exit-phase of the evolution in a rather generic manner. Below, we compare the
two cosmological models at the dynamical level.

5.4. Scalar Field Description: RVM versus Starobinsky

Although the fundamental origin of the RVM has a root in the general structure of the effective
action of QFT in curved spacetime, we cannot provide the latter at this point; see [16] for an
explanation. However, we can resemble it via an effective scalar field φ using a field theoretical
language. We may call this scalar field φ as the vacuumon. Based on the Friedmann Equations (48)
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and (49) and following standard lines, namely ρtot ≡ ρφ = φ̇2/2 + U(φ) and ptot ≡ pφ =

φ̇2/2−U(φ), we arrive at:

φ̇2 = − 2
κ2 Ḣ , (60)

U =
3H2

κ2

(
1 +

Ḣ
3H2

)
=

3H2

κ2

(
1 +

aH
′

3H

)
, (61)

where U(φ) is the effective potential, Ḣ = aHH
′

and prime here denotes the derivative with respect
to the scale factor. Integrating Equation (60), we have:

φ =
∫ (
−2Ḣ

κ2

)1/2

dt =
√

2
κ

∫ (
− H

′

aH

)1/2

da . (62)

Now, for ωm = 1/3, the Hubble parameter (54) takes the form:

H(a) =
(

1
α

)1/2 HI√
D a4 + 1

. (63)

Notice that we have set ν = 0 in Equation (54), which is not important for the study of the early
Universe. Inserting Equation (63) into Equation (62) and performing the integration in the interval
[0, a], we find:

φ(a) =
1
κ

sinh−1
(√

Da2
)

,

=
1
κ

ln
(√

Da2 +
√

Da4 + 1
)

. (64)

In this context, utilizing Equations (61)–(63), the effective potential is given by:

U(a) =
H2

I
ακ2

3 + Da4

(1 + Da4)2 , (65)

which implies:

U(φ) =
H2

I
ακ2

3 + sinh2(κφ)

[1 + sinh2(κφ)]2
(66)

or:

U(φ) =
H2

I
ακ2

2 + cosh2(κφ)

cosh4(κφ)
. (67)

At this point, we would like to pose the following dynamical question: under what conditions is
the RVM potential equal to that of Starobinsky, namely U(φ) = Veff(ϕ) in Equation (59)?

Equating the right-hand-side of Equations (8) and (67), after some calculations, we can express
vacuumon field in terms of the scalaron:

φ(ϕ) =
1
κ

ln
[

χ(ϕ) +
√

χ(ϕ)2 − 1
]

, (68)

where χ(ϕ) > 1, as easily shown (hence, no restrictions on the scalar fields), and it is given by:

χ(ϕ) =

[
1 +

√
1 + 8F(ϕ)

2F(ϕ)

]1/2

, (69)
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F(ϕ) =

3αM2
(

1− e−
√

2
3 κϕ
)2

4 H2
I

=
ακ2

H2
I

Veff(ϕ) > 0 .

In Figure 3, we present the RVM effective potential ακ2U/H2
I (solid curve) as a function of κϕ.

In the same figure, we plot the effective Starobinsky (dashed curve) potential, which is shown in
Figure 1. From the comparison, it becomes clear that, although the RVM and Starobinsky models
live in different geometrical backgrounds, namely GR and R2, the two models are similar from the
point of view of those features of inflation that can be described by an effective scalar-field dynamics.
However, in other important aspects, they are different. We should mention that the RVM model
provides a simple description of the graceful exit and reheating problem; see [23–25,27,87] for details.
As for the Starobinsky model, the reheating of the Universe after the exit of the inflationary phase has
been discussed for example in [88–90]. In contrast to the Starobinsky model, a general effective action
from where the RVM can be derived is not known [16], and currently, this has been achieved only in
some cases [13].

Figure 3. The RVM effective potential ακ2U/H2
I (solid line) versus the scalaron field κϕ. In order to

produce the curve, we utilize M ∼ MX ∼ 1016 GeV, HI ∼ 0.81× 1014 GeV (see Equation (3)) and
α ∼ 10−4. The dashed line corresponds to the Starobinsky effective potential (see Figure 1).

6. Conclusions

In light of the latest Planck + Bicep2 results [6], it has been proposed that the Starobinsky
inflation plays a key role because it fits quite well with the Cosmic Microwave Background (CMB)
data on inflation. In the present paper, we have further investigated the class of the running vacuum
models (RVM) [20,21] (based on the re-normalization-group approach in curved spacetimes) and their
implications on the inflationary Universe [23–25]. In particular, we have addressed the possibility that
they can mimic both the original Starobinsky model and the spontaneously-broken SUGRA models
based on dynamically-induced gravitino condensates [10].

We have shown that the vacuum energy density ρΛ(H) of these SUGRA models can be expressed
as an even power series (4) of the Hubble parameter, which can be naturally truncated at the H4

term. This is exactly the generic form expected in the simplest class of running vacuum models, and
therefore, we can apply the known implications of these models for inflation [23–25]. Namely, after
computing the modified form of the Friedmann equation, we find that the physics of inflation (which
in our case occurs for H ' HI , a value associated with the spontaneously broken SUGRA model) is
mainly described by the H4-term. Furthermore, being H4 of order R2, we can trace some relationship
of this model with Starobinsky inflation, although of course, there is not a full identification or
equivalence. Most noticeably, we point out the distinguishing feature that within the entire class
of running vacuum models, and hence, in particular, the SUGRA model that we have studied (which
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adapts to the same pattern), the RVM performs the successful graceful exit from the inflationary phase
into the standard radiation regime [23–25]. This feature is characteristic of the running type of vacuum
models, in contrast to the original Starobinsky model. Nevertheless, we have also shown here that the
RVM model admits a scalar field description, as well, via the vacuumon field, and its potential can be
made equivalent to the Starobinsky potential upon appropriate scalar field redefinitions, despite the
fact that the geometric backgrounds of the two models are very different. This dynamical equivalence
implies that the two models should provide the same inflationary features, at least in all of the aspects
that can be described through an effective scalar field potential. Not so in other aspects, which may
differ from one model to the other. In particular, let us emphasize that the Starobinsky model derives
from a local effective action, whereas the structure of the effective action in the general case RVM is
not presently known, except in particular cases in which it is found to be non-local.

The low energy physics, on the other hand, and in particular the evolution of the Universe
in the current epoch, is determined by the constant additive term of ρΛ(H) and the power
H2, which provides a remnant dynamical evolution still in our days, which is of the form
ρΛ(H) = ρ0

Λ + (3 ν/κ2)(H2 − H2
0). Such an evolution is mild because the coefficient of H2 is small (it

is interpreted as the β-function coefficient of the running vacuum energy at present). The signature
of the RVM at present is precisely that mild quadratic dynamical behaviour of the vacuum energy
density around the current value ρ0

Λ, which is parameterized by the small parameter ν. The model
has been thoroughly put to the test recently, and it allows values of |ν| = O(10−3) [29,30,32,33]).
On the other hand, its successful performance in describing the physics of the early Universe
(in particular the graceful exit of the inflationary phase into the standard radiation one) is also quite
encouraging, especially after realizing that specific QFT models lead to this kind of behaviour. In
this paper, we have shown that SUGRA models with a dynamically-induced massive gravitino phase
lead to the RVM behaviour and, therefore, provide a strong support for a fundamental description of
the cosmic history.

Finally, we would like to stress that, in the context of the running vacuum model, the Universe
evolution, and especially its accelerated phase either during inflation or at late times, is not attributed
to an ad hoc scalar field or to a modification of the gravitational interaction, but rather, arises from
the modification of the vacuum itself, which is endowed with a dynamical nature. Remarkably,
the SUGRA framework studied here provides a concrete realization of this possibility within the
fundamental context of quantum field theory in curved spacetime.
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