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Abstract: Palatini-like theories of gravity have a remarkable connection to models incorporating
linear generalized uncertainty principles. Considering this, we delve into the thermodynamics of
systems comprising both Bose and Fermi gases. Our analysis encompasses the equations of state for
various systems, including general Fermi gases, degenerate Fermi gases, Boltzmann gases, and Bose
gases such as phonons and photons, as well as Bose–Einstein condensates and liquid helium.
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1. Introduction

The consistency of equations within Modified Gravity (MG) is brought into question
by numerous indications from prior investigations. For instance, the dependence of chem-
ical potential on gravity suggests that modifications in the description of gravitational
fields would have an impact [1]. Modified Gravity has been demonstrated to alter the
geodesic deviation equation on the surface of stars, resembling Hook’s law and introducing
corrections to the polytropic equation of state [2]. Moreover, microscopic quantities such as
opacity exhibit modifications, implying a need for an effective treatment [3]. Thermody-
namic laws, stellar stability criteria, and properties of Fermi gases also display corrections
stemming from gravitational proposals [4–7].

Theoretical descriptions of thermonuclear processes within stars’ interiors undergo
changes under modified gravity, thereby affecting computations of energy generation
rates [8–12]. Some gravity theories introduce a dependence of elementary particle inter-
actions on local energy-momentum distributions [13]. Additionally, specific heats, Debye
temperatures, and crystallization processes in white dwarfs are influenced by the gravity
model [14,15]. Furthermore, chemical reaction rates, which are influenced by gravity [16],
are expected to change with modifications to this interaction.

Relativistic effects in equations of state, when neglected in Tolman–Oppenheimer–
Volkoff equations derived from General Relativity (GR), result in an underestimation of
compact star limiting masses. Equations of state in curved spacetime for degenerate stars
explicitly depend on metric components, leading to alterations in chemical potentials and
temperatures [17–20]. Moreover, thermodynamic quantities and equations of state are
further modified when (pseudo-)scalar fields, such as axions, are considered [21].

The emerging link between MG and the Generalized Uncertainty Principle (GUP), as
shown in [22,23], opens up avenues for testing gravitational theories within Earth-based
laboratories. Additionally, techniques advanced by either community can be utilized to
evaluate proposals concerning MG or the GUP interchangeably [24]. Notice that such
a correspondence is also expected; it is believed that MG is an effective theory of some
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Quantum Gravity. Many proposals emphasize integrating the quantum structure of space-
time and deforming associated quantum phase spaces, leading to the generalization of
the Heisenberg uncertainty principle. This emphasis is underscored for the potential
measurable effects it offers [25–27]. In theories of quantum gravity, the GUP accounts
for possible quantum corrections (see, for instance, [28–33]). Such effects are expected to

manifest at small scales, which are of the order of the Planck scale LP ∼
√

h̄G
c3 , as detailed

in [34–36].
The GUP models introduce modifications to equations of state and microscopic vari-

ables, stemming from the interplay between special relativity and gravity. This proposition
incorporates a dispersion relation involving energy, mass, and momentum within Heisen-
berg’s Uncertainty Principle, incorporating constants such as the speed of light and the
gravitational constant [33,37–41].

Below, we will delve into a review of previous findings regarding ideal gases, de-
rived from the connection between Ricci-based gravity and linear GUP, based on [7,22,24].
Before proceeding, we will provide a brief recap of this correspondence. Additionally,
we introduce, for the first time, a theoretical framework for ideal and Boltzmann gases,
incorporating Fermi statistics in both idealized and realistic scenarios (with the temperature
corrections), along with a simplified portrayal of Bose gases, such as photon and phonon
gases, within the context of Ricci-based and linear GUP models.

2. Metric-Affine Gravity and Linear GUP Correspondence

The class of metric-affine gravity theories under consideration is defined by the fol-
lowing action:

S =
∫

d4x
√
−gLG(gµν, Rµν) + Sm(gµν, ψm) . (1)

Here, g denotes the determinant of the space-time metric gµν, and Rµν represents the
symmetric Ricci tensor, which relies solely on the affine connection Γ ≡ Γλ

µν. To construct the
gravitational Lagrangian LG as a scalar function using powers of traces of Mµ

ν ≡ gµαRαν,
the object Mµ

ν is introduced.
The matter action is described by

Sm =
∫

d4x
√
−gLm(gµν, ψm). (2)

In this framework, the matter action couples minimally to the metric, neglecting the torsion
(the antisymmetric part of the connection), akin to minimally coupled bosonic fields. Such
an assumption also applies to fermionic particles and allows degenerate matter to be
simply modeled as a perfect fluid [42]. Likewise, regarding only the symmetric piece,
the Ricci tensor has the added benefit of preventing ghostlike instabilities [43–46]. This
framework encompasses various gravity theories, including GR, Palatini f (R) gravity,
Eddington-inspired Born–Infeld gravity [47], and its extensions [48].

Before proceeding further, we need to introduce the tensor qµν which is related to the
space-time metric gµν through

qµν = gµαΩα
ν. (3)

The deformation matrix Ωα
ν is theory-dependent and determined by the gravitational

Lagrangian LG. For instance, for the considered models (Palatini and EiBI), it is an outcome
of the fields Equation (7), and they are, respectively,

qµν = f ′(R)gµν (4)

qµν =gµν + ϵRµν, (5)

where ϵ = 1/MBI , and MBI is the Born–Infeld mass (the theory parameter). For more
details, see [48].
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The gravitational action encapsulates theories that, despite complex field equations,
can be conveniently reformulated [48]:

Gµ
ν(q) =

κ

|Ω̂|1/2

(
Tµ

ν − δ
µ
ν

(
LG +

T
2

))
. (6)

Here, |Ω̂| denotes the determinant of the deformation matrix, and T represents the trace of
the energy-momentum tensor of matter fields. The Einstein tensor Gµ

ν(q) is linked to a
tensor qµν, where the connection Γ adopts the Levi-Civita connection of qµν:

∇Γ
µ(
√
−qqαβ) = 0. (7)

These theories yield second-order field equations, reducing to GR counterparts in vacuum
(Tµ

ν = 0), implying no extra degrees of freedom propagate in these theories beyond the
usual two polarizations of the gravitational field.

The nonrelativistic limit of the field Equations (6) is particularly intriguing. Notice
that on the right-hand part of the equations, we are dealing with functions of the energy-
momentum tensor and its trace. As the Poisson equation is of the second-order, the only
component of the energy-momentum tensor is T00 ≈ −T ≈ ρ (see more details in [49]
for the second-order corrections). Regarding the curvature impact, it was also shown
there that only R2 terms have an influence in the second-order approximation. In the
most popular models such as Palatini f (R) [49] and EiBI [50,51] gravities, the Poisson
equation (more complicated Lagrangians would require a detailed analysis; however, it
seems that their non-relativistic limits will not differ significantly from the form studied
here as only R2 terms provide corrections to the second order equations) takes the following
particular form:

∇2ϕ =
κ

2

(
ρ + ᾱ∇2ρ

)
, (8)

where ϕ represents the gravitational potential, κ = 8πG, and ᾱ stands for the theory
parameter. In Palatini f (R), ᾱ = 2β̄, with β̄ accompanying the quadratic term, while in EiBI,
ᾱ = ϵ/2, where ϵ = 1/MBI and MBI denotes the Born–Infeld mass. The resemblance in the
Poisson equation between these two gravity proposals is not coincidental; the EiBI gravity,
in the first-order approximation, reduces to Palatini gravity with the quadratic term [52].
Furthermore, only the quadratic term R2 influences the non-relativistic equations, as higher
curvature scalar terms enter the equations at the sixth order [49].

As indicated in [22], the augmentation in the Poisson Equation (8) can be interpreted
as a modification to the Fermi gas at a finite temperature. This modification arises when
considering a deformation of the phase space represented by the following integral:

1
(2πh̄)3

∫ d3xd3 p
(1 − σp)d , (9)

where d = 1 corresponds to Palatini-like gravity theories. The connection between the
deformation parameter σ and the Palatini parameter β̄ is established as follows:

σ =
4πG
K2

β̄ and K2 =
3
π

h3N2
A

meµ2
e

, (10)

with me being the electron mass, NA is the Avogadro constant, µe is the mean molecular
weight per electron defined in terms of the mass fractions of hydrogen X and helium Y as
1
µe

= X + Y
2 , and other constants hold their usual definitions.

This correspondence enables the expression of a general partition function in three
dimensions within a large volume

lnZ =
V

(2πh̄)3
g
a

∫
ln
[
1 + aze−E/kBT

] d3 p
(1 − σp)d , (11)
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where V :=
∫

d3x denotes the volume of the cell in configuration space, and setting a = 1
(a = −1) corresponds to a system of fermionic (bosonic) particles with energy states Ep.
The fugacity is represented by z = eµ/kBT , with µ as the chemical potential, and g indicating
the spin of a particle.

As we can see from (11), the deformation in the phase space introduced here is
parameterized by σ. Hence, the procedure described in this work can be paralleled to the
GUP theories containing linear corrections in p [53–58]. In the context of the GUP, the
deformation is derived through the utilization of the Liouville theorem [59]. Consequently,
the effective h̄ depends on the momentum p in the generalized uncertainty relation, leading
to a momentum-dependent size of the unit cell for each quantum state in a phase space.

With this modified partition function, one can straightforwardly derive thermody-
namic variables for the requisite statistics, focusing primarily on pressure, number of
particles, internal energy, and specific heat, which are, respectively, given by

P = kBT
∂

∂V
lnZ, (12)

n = kBT
∂

∂µ
lnZ |T,V , (13)

U = kBT2 ∂

∂T
lnZ |z,V , (14)

CV =
∂U
∂T

|V . (15)

3. Boltzmann Gas

In the case of high temperature, thermodynamic systems described by Bose or Fermi
statistics behave as the Boltzmann one. The Maxwell–Boltzmann statistics corresponds to
the limit a → 0, from which the general partition function (11) acquires the form:

lnZ =
V

(2πh̄)3

∫
ze−E/kBT d3 p

(1 − σp)d . (16)

Moreover, the distribution function for this statistics is given by

fMB(E) = ze−E/kBT , (17)

corresponding to the regime where Fermi–Dirac, Bose–Einstein and Maxwell–Boltzmann
statistics become identical, i.e., (E − µ)/kBT >> 1.

Taking the partition function (16), we can easily obtain

P =
1

2π2h̄3

∫ 1
3

p3
2F1(3, d, 4, pσ) fMB(E)

c2 p
E

dp, (18)

n =
V

2π2h̄3

∫
fMB(E)

p2dp
(1 − σp)d , (19)

U =
V

2π2h̄3

∫
E fMB(E)

p2dp
(1 − σp)d , (20)

where 2F1 represents the hypergeometric function.

4. Fermi Statistics

In this extended scenario, utilizing (11) and (12) with a = 1 for fermions and g = 2 for
electrons, we derive the microphysical description of the system employing the Fermi–Dirac
distribution f (E):

f (E) =
(

1 + z−1eE/kBT
)−1

, (21)
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resulting in the expression for pressure as

P =
1

π2h̄3

∫ 1
3

p3
2F1(3, d, 4, pσ) f (E)

c2 p
E

dp, (22)

Meanwhile, the particle number density and internal energy are given by

n =
V

π2h̄3

∫
f (E)

p2dp
(1 − σp)d (23)

U =
V

π2h̄3

∫
E f (E)

p2dp
(1 − σp)d . (24)

For the case when |σp| < 1, the general form of the pressure (22) can be written as the series

P =
1

π2h̄3

∫ p3

3

(
∞

∑
k=0

(d)k
( 3

2
)

k(σp)k( 5
2
)

kk!

)
f (E)

c2 p
E

dp. (25)

While taking into account only the first two terms of the series (as we consider the gravity
deformation only up to linear terms in σ), we have

P =
1

π2h̄3

∫ 1
3

p3
(

1 +
3d
4

σp
)

f (E)
c2 p
E

dp. (26)

We will now discuss its form in more detail.

4.1. Non-Relativistic and Relativistic Degenerate Fermi Gas

We will now shift our focus to a specific form of matter that holds significant impor-
tance in stellar physics: degenerate gases. These gases are utilized to characterize the dense
cores of stellar and substellar objects, as well as degenerate matter in compact stars. In
the toy model that we are employing here, all states with energies lower than the Fermi
energy level are occupied, while all states with higher energies remain empty at absolute
zero temperature (T → 0). Consequently, the chemical potential µ takes on the value of
the Fermi energy EF. In such scenarios, the Fermi–Dirac distribution takes the form of a
step function:

f (E) =
{

1 if E ≤ EF
0 otherwise.

Consequently, in Equation (26), integration is carried out up to the Fermi energy EF:

P =
1

π2h̄3

[
(2meEF)

5/2

6me
+

σd
3

(2meEF)
3

8me

]
, (27)

which corresponds to the effective pressure in Palatini theories when d = 1 (see [22]). Using
the definition of the electron degeneracy

ψ = (βEF)
−1 =

kBT
A

(
µe

ρ

)2/3
, (28)

we can rewrite it as a function of the density such that one deals with the non-relativistic
polytrope EoS. Let us write it in a more convenient form for the further analysis:

P = Kρ
5
3 + σK2ρ2, (29)
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where K2 is given by (10), while

K =
1

20

(
3
π

) 2
3 h2

me(µemu)
5
3

refers to the standard polytropic parameter for n = 3/2.
On the other hand, the relativistic polytropic EoS is given simply by inserting E = pc

in (26) and using the relation between the pressure and density (recall that for electrons
g = 2)

p =

(
6π2h̄3ρ

gme

) 1
3

, (30)

providing

P =
h̄c
4

(
3π2

m4
e

)1/3

ρ4/3 +
9

20
dσh̄2c

(
32π4

m5
e

)1/3

ρ5/3. (31)

Note that the phase-space deformation provides a mixture of two polytropes; that is, in the
case of non-relativistic case, the modification is in the form of the rigid polytrope, while the
relativistic one has a term resembling the non-relativistic polytrope (n = 3/2).

5. Bose Statistics

Let us briefly recall the basic equations describing a system of N spinless, non-

interacting particles in Palatini gravity [24]. The Hamiltonian is given by H = ∑N
i=1

p2
i

2m ,
with p2

i = pi · pi and pi being the momentum operator of the single-particle with energy
Ep = p2/2m. Since the grand partition function of an ideal Bose gas for such a system is
given by (β =: (kBT)−1)

Z = ∏
p

1
1 − ze−βEp

, (32)

an average occupation number for a state p is (the total number of particles N = ∑p⟨np⟩)

⟨np⟩ = − 1
β

∂

∂Ep
lnZ =

ze−βEp

1 − ze−βEp
, (33)

while the equation of state is

βPV = −∑
p

ln(1 − ze−βEp). (34)

Considering V → ∞ and defining the specific volume v = V/N, the above series can be
written as

βP =− 4π

(2πh̄)3

∫ ∞

0

dpp2

1 − σp
ln
[
1 − ze−β

p
2m

]
− ln(1 − z)

V
, (35)

1
v
=

4π

(2πh̄)3

∫ ∞

0

dpp2

1 − σp
1

z−1eβ
p

2m − 1
+

1
V

z
1 − z

. (36)

Taking into account only the terms linear in the parameter |α| =: |σ|
√

2mkBT, one writes
(to see how the series converge, see [24])

βP =
1

λ3

[
g5/2(z) +

2α

π
Li3(z)

]
− ln(1 − z)

V
, (37)

1
v
=

1
λ3

[
g3/2(z) +

2α

π
Li2(z)

]
+

1
V

z
1 − z

, (38)
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where λ =
√

2πh̄2

mkBT is the thermal wavelength, gm(z) = ∑∞
n=1

zn

nm , and Lin(z) is the poly-

logarithm function which can be expressed for |z| < 1 as Lin(z) = ∑∞
k=1

zk

kn . The internal
energy is given simply by

U
V

= − 1
V

∂

∂β
lnZ =

3kBT
2λ3

[
g5/2(z) +

2α

π
Li3(z)

]
. (39)

Comparing (37) with the assumption that its last term can be neglected, we deal with a
well known relation between the internal energy and temperature U = 3

2 PV. Notice that in
order to study the further properties of an ideal Bose gas, one needs to know the fugacity z
dependence on the temperature and specific volume v. We will come back to this issue in
Section 5.3.

5.1. Photon Gas

Since photons are massless, their energy will be simply given by E = cp. Its wave
number and frequency are related by p = h̄k = h̄ω/c, and there are two propagating
modes, which are taken into account by multiplying the partition function (11) by a factor
of 2. The internal energy will be given by

U =
V
π2

[
π4(kBT)4

15(h̄c)3 + 24σd
(kBT)5ζ(5)

c4h̄3

]
, (40)

where the first term corresponds to Stefan’s law. Accordingly, the specific heat will be
given by

CV =
V
π2

[
4π4k4

BT3

15(h̄c)3 + 120σd
k5

BT4ζ(5)

c4h̄3

]
, (41)

while pressure is simply given by PV = U/3.

5.2. Phonon Gas

In spite of not being particles, the vibrations in lattices and in particular its normal
modes, phonons, can be mathematically described as bosons. This treatment is specially
relevant when considering a solid subject to low temperatures, where phonon interactions
are negligible. In this case, we have three propagation modes, in contrast with photons
which only have two, and the allowed frequencies are bounded. The energy per atom is

U
N

= 3κBTD3(βh̄ω) +
9
4c

κBTdσh̄ωmD4(βh̄ω), (42)

where ωm = c
(

6π2 N
V

)1/3
is the maximum frequency and

Dn(x) =
n
xn

∫ x

0

tn

et − 1
dt (43)

is the Debye function. By defining the Debye temperature via κBTD = h̄ωm, and using the
solutions for the Debye functions, we can rewrite (42) as

U
N

= 3κBT
(

1 − 3
8

TD
T

)
+

9
4c

κ2
BTDTdσ

(
1 − 2

5
TD
T

)
(44)

for T >> TD and

U
N

= 3κBT

[
π4

5

(
T

TD

)3
]
+ 216ζ(5)κBTdσ(κBTD)

(
T

TD

)4
(45)

for T << TD.
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The specific heat, for high and low temperatures, will be

CV

κBN
= 3

[
1 − 1

20

(
TD
T

)2
]
+

9
4c

dσκBTD

[
1 − 1

18

(
TD
T

)2
]

, T >> TD (46)

and
CV

κBN
=

12π4

5

(
T

TD

)3
+ 1080ζ(5)

dσ

c
κBTD

(
T

TD

)4
, T << TD. (47)

The first term in (46) corresponds to the Dulong–Petit law, namely Cv = 3NκB. However,
it should be emphasized that although T >> TD, the temperatures considered here are
low enough so that we can consider the phonons to be non-interactive. At very high
temperatures, the phonons interaction cannot be overlooked, and the current approach will
no longer be valid.

5.3. Bose–Einstein Condensate

The behavior of the fugacity z depends on the properties of the functions g3/2(z) and
Li2(z). Analyzing Equation (38), one can derive a modified condition which the ideal Bose
gas has to satisfy to become the Bose–Einstein condensate ( g3/2(1) ≈ 2.612):

λ3

v
− 2α

π
ζ(2) = g3/2(1). (48)

It clearly provides the critical value for the specific volume (or critical density nc = 1/vcr):

nc =

(
1

4πh̄2

) 3
2 [

ζ(3/2)(2mkBT)
3
2 + σ

π

3
(2mkBT)2

]
. (49)

Moreover, the fugacity dependence on the temperature T and specific volume v is

z =

{
1 for λ3

v − πα
3 ≥ g3/2(1)

solution of λ3

v =
[
g3/2(z) + 2α

π Li2(z)
]

otherwise.

Hence, the fugacity remains fixed at 1 throughout the Einstein–Bose condensate, indicating
a zero chemical potential. In other words, within the region where λ3

v − πα
3 ≤ g3/2(1), we

are dealing with the gas phase.
The equation of state and other thermodynamic functions in both regions can be also

derived and have the following forms:

βP =

{
1

λ3

[
g5/2(z) + 2α

π Li3(z)
]

if v > vcr,
1

λ3

[
g5/2(1) + 2α

π ζ(3)
]

if v < vcr,

U
N

=
3
2

Pv =

{
3
2

kBTv
λ3

[
g5/2(z) + 2α

π Li3(z)
]

if v > vcr,
3
2

kBTv
λ3

[
g5/2(1) + 2α

π ζ(3)
]

if v < vcr,

CV
NkB

=

{
15
4

v
λ3 h1(T) + 3

2
Tv
λ3 h2(T) dz

dT if v > vcr,
15
4

v
λ3 g5/2(1) + σ f1(T) if v < vcr,

where the functions h1 , h2, f1 were defined in [24]. The vapor pressure takes the following form

P0(T) =
kBT
λ3

[
g5/2(1) +

2σ
√

2mkBT
π

ζ(3)
]

, (50)
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while a modified latent heat resulting from the Clapeyron equations derived from (50) is
(the function f2 is given by [24])

f2(T) =
48
√

h̄2π
kB

5g5/2(1)(g3/2(1)vcr)1/3 ζ(3)−
√

8kBmTζ(2)
g3/2(1)

. (51)

L =
5
2

kBTg5/2(1)
g3/2(1)

(
1 +

σ

π
f2(T)

)
. (52)

The Bose–Einstein condensation is then also a first-order phase transition in the considered
models of gravity if L ̸= 0.

6. More Physical Models

Building upon the discoveries outlined in the preceding section of the paper, one can
delve into studying toy-model systems. However, it is crucial to handle the conclusions
drawn from such investigations with utmost care, as they have the potential to foster
misconceptions. Therefore, overly optimistic bounds on a theory parameter, as discussed
in [24], or “no-go theorems” for models of gravity with toy-model assumptions [52,60–62]
should not be decisive in assessing the plausibility of a theory (see, e.g., [2,7,63,64]).

Therefore, in the following section, we will derive a Fermi EoS with finite temperature
corrections and revisit a simple Landau model of liquid helium. This model realistically
describes its behavior at low temperatures, in contrast to treating it as an ideal Bose–Einstein
condensate.

6.1. Fermi Gas with Finite Temperature Corrections

The aim of the present subsection is to provide a more accurate EoS for a Fermi gas
at low temperatures. This approach is particularly significant in the study of substellar
objects, such as brown dwarfs, for which electron degeneracy is the main factor driving the
stellar evolution and stability. The temperatures considered here are low enough so that
kBT ≪ mc2, which means that we are dealing with a non-relativistic gas. In this regime,
the energy becomes E = p2/2m, and consequently, the pressure (26) becomes

P = a1

[∫ ∞

0

E3/2

1 + eβ(E−µ)
dE + a2

∫ ∞

0

E2

1 + eβ(E−µ)
dE

]
, (53)

where a1 = (2m)3/2

3π2 h̄3 and a2 = 3
4 σd(2m)1/2. The two integrals above are Fermi integrals

with the following solutions (we to refer Appendix A of [65] to the reader interested in the
details of this calculations):

∫ ∞

0

E3/2

1 + eβ(E−µ)
dE =

2
5

µ5/2 − 1
8

β−1µ3/2 ln(1 + e−βµ) (54)

+
π2

4
β−2µ1/2 +

3
4

β−2µ1/2Li2(−e−βµ) + . . .∫ ∞

0

E2

1 + eβ(E−µ)
dE =

µ3

3
+

π2

3
β−2µ1 + . . . (55)

Then, by setting µ = EF, we can rewrite the pressure as

PF = a1

{
2A5/2

5

(
ρ

µe

)5/3[
1 − 5

16
ψ ln(1 + e−1/ψ) +

5π2

8
ψ2 +

15
8

ψ2Li2(e−1/ψ)

]

+
a2

3
A3
(

ρ

µe

)2
(1 + π2ψ2)

}
, (56)
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where A = (3π2 h̄3 NA)
2/3

2me
is a constant, and ψ is the degeneracy parameter defined in (28).

Notice that the first terms of the EoS (56) corresponds to the pressure for T = 0 in a
non-deformed phase space, i.e., the polytrope equation for n = 3/2, discussed already
in Section Non-Relativistic and Relativistic Degenerate Fermi Gas. The first line in the
same equation corresponds to the pressure for a finite temperature T in a non-deformed
phase space.

In stars with a very low mass, apart from the Fermi pressure (56), we also consider the
pressure due to ionized gases. The total pressure will then combine both contributions. If
we consider an ionized hydrogen gas, for instance, we have the ideal gas law in the form
Pi =

κρT
µ1mH

, where mH is the mass of the hydrogen atom and µ−1
1 = ((1 + x+)X + Y/4),

with x+ being the ionization fraction of hydrogen. The equation of state then becomes
P = K′ρ

5
3 + σK′

2ρ2, with

K′ =
2a1 A5/2

5
µ−5/3

e

[
1 − 5

16
ψ ln(1 + e−1/ψ) +

5π2

8
ψ2 +

15
8

ψ2Li2(e−1/ψ) + αψ

]
, (57)

and

K′
2 =

a1a2

3σ
A3µ−2

e (1 + π2ψ2), (58)

where α = 5µe/2µ1. Such an equation of state is used to describe the matter properties in
low mass stars and brown dwarfs, in which the finite temperature corrections, providing
the time evolution of electron degeneracy, are important, see, e.g., [65–67].

6.2. Liquid Helium He4

The Landau model [68,69] offers a comprehensive microscopic depiction of a two-fluid
model near absolute zero. As T approaches zero, the specific heat of liquid helium behaves
as T3, characteristic of a phonon gas and experimentally confirmed. However, at finite
temperatures, an additional term emerges. Thus, the dispersion relation of quasiparticles
as a function of wave number k for 4He can be described by

h̄ω =

{
h̄ck if k << k0,

∆ + h̄2(k−k0)
2

2γ if k ≈ k0,

where c denotes the sound velocity, while ∆, k0, and γ are experimental constants (We will
use the data from [70]).

c = 239 m s−1, ρ = 144 kg m−3, ∆/kB = 8.65 K, k0 = 1.92 × 1010 m−1, γ = 1.07 × 10−27 kg.

In the Landau theory, it is posited that the quantum states of 4He near the ground state can
be treated as those of a non-interacting gas with energy levels given by

U = E0 + ∑
k

h̄ωk⟨nk⟩ = E0 +
V

2π2

∫ ∞

0

k2h̄ωk

eβh̄ωk − 1
dk

(1 − σh̄k)
. (59)

Here, h̄ωk represents the elementary excitation energy with wave vector k and occupation
number ⟨nk⟩. In the second equality, the deformation of the phase space has been taken into
account. Now, let us compute the internal energy and its gravity corrections at low temper-
atures. In this context, only contributions from the phonon and roton components [70,71]
affect the energy in Equation (59). They are given, respectively, as follows:
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Ephonon =
V

2π2

(
π4(kBT)4

15h̄3c3
+ 24σ

(kBT)5ζ(5)
c4h̄3

)
, (60)

Eroton

V
≈

k2
0∆
π

√
γkBT
2πh̄2 e−

∆
kBT (1 + σh̄k0). (61)

Using Expression (15), we derive the specific heat for liquid helium in low temperature

CHe4 = 20.7T3 +
387 × 103

T3/2 e−8.85/T + σ(5.73 × 10−24T4 +
7.83 × 10−19

T3/2 e−8.85/T). (62)

7. Discussion and Conclusions

In this paper, our focus was to investigate the impact of Ricci-based gravity theories,
such as Palatini f (R) and Eddington-inspired Born–Infeld models, in conjunction with
linear Generalized Uncertainty Principle (GUP) models, on systems governed by Bose and
Fermi statistics. By leveraging the recently established correspondence between modified
gravity and GUP models, we developed a formalism to analyze ideal Bose and Fermi gases.
As anticipated, the inclusion of modified gravity or linear GUP resulted in the introduction
of additional terms to the familiar expressions. We outlined these modifications for general
Fermi gases, degenerate Fermi gases, and Boltzmann gases, as well as Bose gases including
phonons, photons, Bose–Einstein condensates, and liquid helium.

It is worth noting that the thermodynamic framework derived from this correspon-
dence is best suited for non-relativistic systems or those characterized by low curvature
regimes, such as planets, brown dwarfs, active stars, and white dwarfs. Even white dwarfs,
despite their dense nature, can still be considered within a non-relativistic regime due to
their size. Consequently, the compactness criterion applicable to our formalism is C << 1.

Let us now briefly summarize the previous and novel results. We start by extending
the method found in [7] for Fermi gases to obtain the pressure, number of particles and
energy for Bose–Einstein statistics (Equations (18)–(20)). In Section Non-Relativistic and
Relativistic Degenerate Fermi Gas, we introduced the corrections to the EoS for a non-
relativistic degenerate Fermi gas [25] and included the EoS for the relativistic case. In
Section 5, we review some key aspects of the Bose–Einstein statistics and the Bose–Einstein
condensate, which can be found in [24]. Additionally, we derive the energy and specific
heat for photon and phonon gases. We conclude our analysis in Section 6, with finite
temperature corrections to non-relativistic Fermi gases [25] and liquid helium [24].

This intriguing connection between Modified Gravity and GUP models opens up
avenues for testing gravitational proposals through various tabletop experiments, some
of which have already been explored and documented in the literature. Ongoing research
in this direction aims to delve deeper into the implications of Modified Gravity on the
microscopic properties of matter, seeking further validation and insights.
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