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Abstract: A minimalist approach to the linear stability problem in fluid dynamics is developed that
ensures efficiency by utilizing only the essential elements required to find the eigenvalues for given
boundary conditions. It is shown that the problem is equivalent to a single first-order ordinary
differential equation, and that studying the argument of the unknown complex function in the
eigenvalue space is sufficient to find the dispersion relation. The method is applied to a model for
relativistic magnetized astrophysical jets.
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1. Introduction

Understanding the stability properties of magnetized plasma flows is important for
unraveling the basic characteristics of many phenomena we observe in astrophysics, solar,
and space physics. Unstable perturbations may significantly alter the dynamics of these
flows and be the reason behind changes in the shape; bulk velocity; magnetization; heating;
particle acceleration; and consequently, the emitted radiation.

Linear stability analysis is a tool that enables simplifying the problem as much as
possible, focuses on the main ingredients of each mechanism, and corroborates more
complicated and expensive work, such as numerical simulations or laboratory experiments.
It has its own difficulty, mainly due to the complex mathematics involved, especially in
the relativistic regime, and using curvilinear coordinates. This remains true even if one
neglects dissipative effects related to finite viscosity and resistivity, and assumes a simplified
unperturbed state of a cylindrical flow with helical magnetic field, which approximates
astrophysical jets in the propagation phase well.

From the simplest possible cases we know of, there exist unstable modes related to
discontinuities of density (Rayleigh–Taylor), shear of bulk velocity (Kelvin–Helmholtz),
current (current driven), or rotation (centrifugal and magnetorotational). An overview
of the linear stability method and many nonrelativistic cases can be found in Refs. [1,2].
In magnetized astrophysical jets, the various instabilities often appear simultaneously,
and it is nontrivial to disentangle them. Studies for nonrelativistic magnetized jets can be
found, e.g., in Refs. [3–9]. There is also a relatively small number of studies that examined
relativistic magnetized jets [8,10–13] and two more recent studies [14,15] based on the
methodology of the full problem presented in [16]. Refs. [17–20] also consider relativistic
magnetized jets in the force-free limit.

All existing works on ideal fluids (neglecting dissipative effects) share a common
procedure: they arrive in a system of two first-order differential equations in the complex
domain, or equivalently, one second-order differential equation. The requirement that the
solution of this system needs to satisfy certain boundary conditions gives the dispersion
relation. In this paper, we show that this procedure may be simplified by reducing the
number of equations by half. Following this novel approach, which we dub minimalist, one
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needs to solve only one differential equation in order to find the eigenvalues of the problem.
In Section 2, we present the equations of the approach, and in Section 3, we explain how to
solve the boundary condition, again following a minimal path by using only the argument
of the eigenfunction. In Section 5, we apply the method to a model of a magnetized jet,
extending a result of [6] to relativity. We conclude with a discussion in Section 6.

2. The Minimalist Approach

The linearization of the relativistic ideal magnetohydrodynamic equations in cylindri-
cal coordinates (ϖ, ϕ, z), assuming a cylindrical unperturbed state and perturbations of the
form Q1(ϖ) exp[i(mϕ + kz − ωt)] for all physical quantities, yields the following system of
two complex first-order differential equations:

d
dϖ

(
y1
y2

)
+

1
D

(
F11 F12
F21 F22

)(
y1
y2

)
= 0 . (1)

Here y1 is related to the Lagrangian displacement in the radial direction, and y2 is
related to the total pressure in the perturbed locations of fluid elements. There are known
algebraic relations giving all the other quantities in terms of y1 and y2, and thus, these
two functions fully determine the solution. The pair of functions y1 and y2 is the most
convenient choice because they are continuous everywhere, even at cylindrical surfaces,
where the undisturbed state is discontinuous, e.g., in the interface between the jet and its
environment. Details on the form of the unperturbed state, the derivation of the system of
Equation (1), the expressions for the various Fij/D, and the proof that y1 and y2 should be
continuous everywhere can be found in [16].

The above system is linear, and if our purpose is to find the eigenvalues and eigenfunc-
tions, the proportionality constants are free. The only constraints that need to be satisfied
are the boundary conditions. All kinds of boundary conditions are discussed in [16] and
they refer to either on the axis, an interface where the unperturbed state is discontinuous,
infinity, or a solid boundary (wall). In all these cases, the boundary conditions give the ratio

Y =
y1

y2
(2)

and not the functions y1 and y2 separately. Thus, a minimalist approach is to work with
this ratio, which has the advantage that it is uniquely defined for each eigenvalue, but
most importantly, that the number of differential equations is reduced by half. The new
equation is non-linear, but this does not burden the procedure if one satisfies the boundary
conditions using a shooting method.

2.1. Differential Equation

The differential equation for the new unknown function Y can be derived by direct
differentiation and using the system (1). It is the following single complex equation:

dY
dϖ

=
F21

D Y2 +
F22 −F11

D Y − F12

D . (3)

Any solution of this equation that satisfies certain boundary conditions, which will
be discussed below, and is continuous everywhere is an eigenfunction corresponding to a
particular eigenvalue. The original pair of functions, if needed, can be found a posteriori
using the equations (that are equivalent to the original system)

y′2
y2

= −F21

D Y − F22

D ,
y′1
y1

= −F12

D
1
Y
− F11

D . (4)

(Note that only one variable, i.e., y2, needs to be found by solving the related differen-
tial equation, the other is given by y1 = Yy2.)
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An instructive approximate solution of Equation (3), which shows its typical expected
behavior, is presented in Appendix A.

2.2. Boundary Conditions on the Axis

On the axis, there are regularity conditions on y1 and y2 that are translated in a
condition on their ratio Y. The detailed derivation of the former can be found in [16]. In
addition, the behavior of Y near the axis is discussed in Appendix B.1.

The resulting boundary condition at the symmetry axis is

for m ̸= 0 , Y(ϖ = 0) = lim
ϖ→0

ϖF11 − |m|
ϖF21

= − lim
ϖ→0

ϖF12

ϖF11 + |m| =
λ1

λ2
, (5)

for m = 0 , Y(ϖ = 0) = − lim
ϖ→0

ϖF12

2
= − b12

2
ϖ2 ≈ 0 . (6)

2.3. Boundary Conditions at Infinity

If at large distances from the axis, the medium is static and homogeneous with zero
B0ϕ, as it is usually assumed, the solution for Y can be found analytically; see Appendix B.2.
In any case, whatever the unperturbed state of the jet environment, care must be taken that
the perturbations vanish as ϖ → ∞, and if they are oscillating, they correspond to outgoing
waves in the radial direction.

2.4. Boundary Conditions at Interfaces

The function Y is everywhere continuous, including possible interfaces where the
unperturbed state is discontinuous.

In the subcase of a solid boundary (wall), we simply require Y = 0 at the boundary.

3. Finding the Eigenvalues

The dispersion relation is found by solving Equation (3) subject to boundary conditions.
In the following, we use the temporal approach (given a real k and integer m, search for
complex eigenvalues ω), although the procedure is the same in the spatial approach (given
a real ω and integer m, search for complex eigenvalues k).

Also, to be specific, suppose we have a jet with radius ϖj and we know Y in its
environment as a function of ϖ, k, m, and ω. Its value Y|ϖ=ϖ+

j
on the boundary is denoted

as YBC and is an analytic function of the complex variable ω. For given m, k, and all possible
ω, we can integrate in the interior of the jet, starting from the axis using the appropriate
boundary condition there, and when we reach the interface ϖ = ϖj from the left, we find
the value Y|ϖ=ϖ−

j
, which, for brevity in this section, we simply call Y. This is also an

analytical function of the complex variable ω. The accepted eigenvalues ω are the ones for
which Y = YBC.

This procedure with obvious modifications can be applied to any other case. For
example, if we have discontinuities in the jet interior, we simply cross them, keeping Y
continuous and again work with Y = YBC at the jet surface. If we do not know the solution
in the environment, we simply continue the integration in the ϖ > ϖj regime, and the
boundary condition that will determine the dispersion relation is at infinity. Alternatively,
we begin the integration from a large distance, reach ϖj from the right, and match with the
solution from the left. In any case, a complex equation of the form Y = YBC at some surface
will determine the eigenvalues.

Roots and Poles as Positive and Negative Line Charges

It is essential to work with the difference Y − YBC in the complex plane ω. Since we
are interested in unstable modes, we consider only the half plane ℑω > 0. The properties
of this analytic function help us to find the eigenvalues, which are its roots. It is convenient
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to write it as Y − YBC = e−Φ+iΨ, where −Φ and Ψ are the real and imaginary parts of
ln(Y − YBC). Equivalently, Φ = − ln |Y − YBC| and Ψ = Arg[Y − YBC].

There is a direct analogy between the complex plane ω and a Cartesian xy plane by
writing ω = x + iy. The Cauchy–Riemann conditions give ∇Φ⊥∇Ψ and that Φ and Ψ
satisfy the Laplace equation at all points y > 0, except the positions where Φ becomes
infinity, i.e., the roots and poles of the function Y − YBC.

Suppose this function has roots ωrn, n = 1, 2, . . . , and poles ωpm, m = 1, 2, . . . , with the
corresponding positions in the xy plane rrn and rpm. The function Φ(x, y) can be thought
of as an electric potential associated with line charges, i.e., positive at the positions of
the roots and negative at the positions of the poles (sources of the potential are also line
charges located at positions with ℑω ≤ 0, but we are interested in finding the line charges
only at ℑω > 0). The function Ψ is the stream function of the corresponding electric field
−∇Φ = ∇Ψ × ẑ (the field lines are isocontours of Ψ and are normal to the isopotentials
Φ = constant).1

These can be proved by looking at the form of the potential/stream function near
roots and poles. Writing the function as Y − YBC = Crn(ω)(ω − ωrn)qrn (with qrn as the
multiplicity of the root), we indeed see that the dominant contributions near a root are

Φ ≈ −qrn ln |r − rrn| + Crn and Ψ ≈ qrn arctan
y − yrn

x − xrn
+ Drn (where Crn and Drn are

constants), corresponding to an electric field of a positive line charge −∇Φ = ∇Ψ × ẑ ≈

qrn
r − rrn

|r − rrn|2
. Similarly, near a pole, by writing the function as Y − YBC =

Cpm(ω)

(ω − ωpm)
qpm

,

we find that the dominant contributions near the pole are Φ ≈ +qpm ln |r − rpm|+ Cpm and

Ψ ≈ −qpm arctan
y − ypm

x − xpm
+ Dpm (where Cpm and Dpm are constants), corresponding to an

electric field of a negative line charge −∇Φ = ∇Ψ × ẑ ≈ −qpm
r − rpm

|r − rpm|2
.

Near each positive line charge (a root), the relations Φ ≈ −qrn ln |r − rrn|+ Crn and

Ψ ≈ qrn arctan
y − yrn

x − xrn
+ Drn mean that the polar coordinates in a system with the axis at

the line charge are e−Φ+Crn and Ψ − Drn. It is important to note, first, that Φ is +∞ at the
location of the line charge and decreases as we move away, and second, that Ψ increases
as we move counterclockwise around the line charge. Working similarly, near a negative
line charge (a pole), we conclude that we have the opposite behavior: Φ is −∞ at the
location of the line charge and increases as we move away, and Ψ decreases as we move
counterclockwise around the line charge.

Evidently, the potential and the stream function are not independent. We can find one
from the other using the Cauchy–Riemann conditions and their isocontours are normal
to each other. In the spirit of the minimalist approach, we can use only one. The stream
function is a better choice since it does not involve infinities.

Concluding, and returning to the ω plane, in order to find the eigenvalues, we only
need the isocontours of Ψ = Arg[Y − YBC]. An example is shown in the upper panel
of Figure 1. The points where Ψ experiences jumps equal to π are either roots or poles.
Moving counterclockwise around such a point, if Ψ increases, it is a root, and if Ψ decreases,
it is a pole. Moving from right to left, we see six line charges at locations ω ≈ 8.1 + 0.1i,
ω ≈ 7.74 + 0.29i, ω ≈ 6.82 + 0.47i, ω ≈ 6.71 + 0.57i, ω ≈ 6.46 + 0.28i, and ω ≈ 6.35 + 0.25i.
Checking the change in Ψ, we conclude that the first is a pole, the second a root, etc.

In fact, even the full map of isocontours of Ψ = Arg[Y − YBC] is not necessary. If we
are in a position at the ω plane, find its Ψ, and then find the ∇Ψ at this point (by looking the
Ψ of its neighbors), we know that a positive charge can be found in the direction opposite to
the field ∇Ψ × ẑ. We can move from point to point on the curve Ψ = constant and we will
reach a positive charge. In another variant that is probably even more economic, we can
plot the isocontours of just two neighboring values −π < Ψ1 < Ψ2 ≤ π. The roots/poles
are the endpoints of the contours, while the direction of ∇Ψ (it is normal to the contours
pointing from the Ψ1 to the Ψ2 > Ψ1 contour) is sufficient to understand which end is the
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root (it is in the direction opposite to the field ∇Ψ × ẑ). An example is shown in the upper
panel of Figure 2.
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Figure 1. The two upper panels show the parts of the function Y − YBC in the complex ω plane,
corresponding to the case examined in [16]. Y is the value at the jet radius ϖ = 1 as the result
of the integration from the axis, and YBC = 0 in this particular case. The bottom row shows the
eigenfunctions for the three eigenvalues that satisfy Y − YBC = 0.
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Figure 2. Two contours are shown in the upper panel, i.e., Ψ1 = 0.3 (blue) and Ψ2 = 0.6 (orange).
The Spectral Web in the middle panel shows the contours where Y − YBC is real (with blue) and
purely imaginary (with orange). The lower panel shows (with blue) the field line that connects all
the roots and poles, which corresponds to real (Y − YBC)eiπ/4. The purely imaginary (Y − YBC)eiπ/4

is also shown (in orange).
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The “Spectral Web” method was developed and presented in [2,21] for nonrelativis-
tic magnetohydrodynamic flows. According to this method, in cases where y1BC =
0, the eigenvalues can be found in the ω complex plane as intersections of the “so-
lution paths”, where {ℜ[y1]ℑ[y2]−ℑ[y1]ℜ[y2]}BC = 0, and “conjugate paths”, where
{ℜ[y1]ℜ[y2] +ℑ[y1]ℑ[y2]}BC = 0. This system gives the roots but also “spurious roots”
corresponding to y2BC = 0. They also discuss the “complex oscillation theorem”, according

to which, along the solution path and in between the spurious roots,
y1

ϖy2
, which they call

the alternator, is real and monotonic function of the arc length, and similarly along the
conjugate path, the alternator is purely imaginary and monotonic function of the arc length.

The analogy with the minimalist approach that uses the analytical function Y is
obvious: the “solution paths” correspond to ℑ[Y − YBC] = 0 ⇔ Arg[Y − YBC] = 0 or π,
the “conjugate paths” correspond to ℜ[Y − YBC] = 0 ⇔ Arg[Y − YBC] = ±π/2 (these
paths are shown in the middle panel of Figure 2), the roots correspond to positive line
charges, and the spurious roots to negative line charges (poles). As we move along a field
line Ψ = Arg[Y − YBC] = constant (any constant, not only 0, ±π/2, and π) approaching
a positive line charge, the potential Φ = − ln |Y − YBC| monotonically increases. At
the position of the positive line charge, the potential becomes +∞ and the argument Ψ
experiences a jump equal to π (since it corresponds to the angular polar coordinate in the
local system with the line charge at the axis). As we move away from the positive line
charge, the potential decreases, reaching −∞ if we meet a negative line charge.

As suggested by [2], this property helps with counting the eigenmodes that correspond
to roots we meet as we move along a single field line. However, there is not always a single
line connecting all the roots, making the counting of solutions impossible in general. In
fact, in the particular case, there is a single line connecting all roots and poles, but it is not
the “solution path” nor the “conjugate path”. It is the line in which (Y − YBC)eiπ/4 is real,
consisting of the parts Arg[Y − YBC] = −π/4, 3π/4 shown in the lower panel of Figure 2
with blue (the normal field lines corresponding to Arg[Y − YBC] = π/4, −3π/4 are also
shown with orange lines).

The “Spectral Web” corresponds to the field lines Arg[Y − YBC] = 0, π/2, as well as
their continuations after jumps Arg[Y − YBC] = π, −π/2. Although these values do not
seem to have any special significance relative to others, it is convenient to include these
“paths” in the ω plane to show the location of line charges through the crossings of the
paths (as already discussed, any other choice of isocontours will also show these locations).
We include them in the following and continue to name the plot a “Spectral Web”, although
it has important additional information. The paths themselves are not enough; we need
to know the values of Ψ and separate roots from poles knowing whether Ψ increases or
decreases when moving counterclockwise around a line charge (or equivalently, understand
the direction of ∇Ψ and the electric field ∇Ψ × ẑ).

The middle panel of Figure 1 shows the potential for illustrative purposes (since the
eigenvalues were already found from the contours of Ψ alone). We verify that Φ = +∞ at
the roots and Φ = −∞ at the poles. We also see that the isopotentials are normal to the field
lines shown in the upper panel as contours of Ψ (to see the angles correctly, it is necessary
to have the same scaling in the ℜω and ℑω axes). The bottom panels of Figure 1 show the
eigenfunctions for the three eigenvalues found. All the results of that figure correspond to
the case examined in Section 6 of [16].

A last point to discuss is related to the possibility to encounter infinities of Y when
we integrate Equation (3). Since Y = y1/y2 is defined as a ratio, one could expect infinities
at points where y2 = 0. However, working in the complex domain, an infinite value of
Y requires both the real and imaginary parts of y2 to vanish simultaneously with perfect
accuracy, which is something that never happens during a numerical integration. Even
if we encounter such a point, we automatically pass through it without a problem. An
example is shown in Appendix C.
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4. Energy Consideration

In the minimalist approach, where we do not solve an equation reminiscent of New-
ton’s second law, one may think that the connection with the energy principle that is often
used to discuss instabilities (through the increase/decrease of kinetic energy due to a
decrease/increase of potential when moving from an equilibrium, in analogy to a ball on
a hill/valley; see, e.g., [22]) has been lost. However, there is still some connection, as one
could expect.

The energy of a particular mass of the plasma in general evolves in time according

to the relation
dE
dt

= −
{

[ΠV − (V · B)B] · da, which can be easily proved using the

equations of motion2. Considering the volume of the jet and using the boundary condition
on its perturbed surface, according to which the magnetic field remains always normal to
the boundary, we find

dEjet

dt
= −

x
ΠV · da . (7)

This has the simple meaning that the change in energy of the jet is due to the work
done by the total pressure of its environment. On the perturbed boundary, we also have (see

Section 3.2 in [16]) n̂ ·V = −iωξϖ̂
L , and thus, V · da = −iωξϖ̂

L da and Π = Π0 +Π1 + ξϖ̂
L

dΠ0

dϖ
.

Using the functions y1 and y2, we can express V · da = −iω
y1

ϖ
da exp[i(mϕ + kz − ωt)] and

Π = Π0 + y2 exp[i(mϕ + kz − ωt)].
Since we need to keep quadratic (nonlinear) terms in Equation (7), we should carefully

replace the real parts of the functions and take the real part of the product. Taking the
mean value of the result, the zeroth- and first-order terms disappear.3 The mean value has
a double meaning; over a length of the jet equal to multiples of the wavelength 2π/k, or
over a time period equal to multiples of 2π/ℜω, provided that the growth time is much
larger. The resulting expression for the mean value of the energy that is transferred from a
length ∆z of the jet to its environment is〈

dEjet

dt

〉
= π e2ℑωt

x
ℜ[iωy1y∗2 ]

da
2πϖ

= π e2ℑωtℜ[iωY] |y2|2 ∆z , (8)

evaluated at ϖj. This is related to the “complementary energy” derived in [2] in connection
with the force operator and its non-self-adjointness. The continuity of Y and y2 ensures that
the opposite energy per time is found when one integrates in the volume of the environment
(because the area vector is opposite), and thus, the total energy remains constant.

Finding the function Y in the minimalist approach is sufficient to understand whether
energy flows from the jet toward the environment, which is the case if ℜYℑω +ℑYℜω > 0,
or the opposite. If one needs the exact value, first, y2 needs to be found from Equation (4).
Obviously, Equation (8) also shows that the system is unstable if there exist at least one
mode with positive ℑω.

The result can be directly generalized to any cylindrical distance, and the mean power
transferred from the interior to the exterior (algebraically) at a radius ϖ over a length ∆z is〈

dE(ϖ)

dt

〉
= π ∆z e2ℑωtℜ[iωy1y∗2 ] . (9)

We can also integrate this equation and find the mean energy contained between the
axis and the cylindrical distance ϖ over a length ∆z:

⟨E(ϖ)⟩ = E0(ϖ) +
π ∆z
2ℑω

(
e2ℑωt − 1

)
ℜ[iωy1y∗2 ] , (10)

where E0(ϖ) is the energy of the unperturbed state and we assume ⟨E(ϖ)⟩|t=0 = E0(ϖ).
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5. An Example Case

In this section, the results of applying the minimalist approach to a model for rela-
tivistic magnetized jets are presented. In particular, we chose to explore how relativity
changes the results of the constant pitch magnetic field model considered in [6]. This is a
simple model containing the basic characteristics of a jet and its environment. The goal is
not only to discuss the physics involved—without, of course, being able to exhaust this
interesting topic in this connection—but also to investigate the form of the eigenfunctions
corresponding to different instability mechanisms using the new formalism.

In the unperturbed state, we assume that the jet extends up to a cylindrical distance
ϖj = 1, has a constant bulk velocity V0ẑ (Lorentz factor γ0), has a constant rest density
ρ0a, has zero pressure P0 = 0 (specific enthalpy ξ0 = 1), and has a magnetic field B0 =

Ba
ẑ + (γ0ϖ/ϖ0)ϕ̂

1 + (ϖ/ϖ0)2 with constant Ba (the field on the axis) and ϖ0 (the pitch in the comoving

frame). For the environment, we assume a static hydrodynamic medium with a rest density

ρ0e = ηρ0a, pressure P0e =
B2

a/2
1 + (ϖj/ϖ0)2 from the pressure balance on the jet surface, and

specific enthalpy ξ0e =
5Θ0e +

√
9Θ2

0e + 4

2
, where Θ0e =

P0e

ρ0e
.

Relativity is included in the dynamics in three ways: by allowing the bulk, Alfvén,
and sound velocities to be relativistic in general. Defining the Alfvén velocity on the

axis UAa =
Ba√
ρ0a

and the corresponding Mach number MA =
γ0V0

UAa
, the dimensionless

parameters that fully define the unperturbed state are UAa, MA, ϖ0, and η.
We use units defined in [16], i.e., lengths in ϖj, wavelengths in 1/ϖj, velocities in c,

frequencies in c/ϖj, and the factor
√

4π absorbed into the magnetic field. We additionally
set Ba = 1, and thus, we measure densities, energy densities, and pressures in units of B2

a .
We assume in the following that UAa = 1, MA = 1, ϖ0 = 0.33, and η = 1; therefore,

the bulk four velocity is γ0V0 = MAUAa = 1, the Lorentz factor is γ0 =
√

1 + γ2
0V2

0 =
√

2,

and the Alfvén three velocity on the axis is vAa =
UAa√

1 + U2
Aa

=
1√
2

.

Figure 3 shows the Spectral Web for k = 2 and m = −1, 0, 1 from top to bottom.
The top panel of Figure 3 shows two eigenvalues, one at ω ≈ 1.44 + 0.14i (shown

more clearly in the upper right panel) and a second at ω ≈ 0.84 + 0.31i. (It also shows
two poles; we recall that Arg[Y − YBC] increases as we move counterclockwise around the
eigenvalues, while it decreases as we move counterclockwise around poles.)

The m = −1 has a sign opposite to the azimuthal magnetic field, making it possible
to fulfill the resonant surface relations kco · Bco = 0 and ωco = 0 (for which D = 0). This
is related to the current-driven instability (CDI). Thus, the eigenvalue ω ≈ 1.44 + 0.14i
corresponds to CDI since it is absent for m = 0 and m = +1.

The second eigenvalue corresponds to the Kelvin–Helmholtz instability (KHI). It is
present for all m (at a slightly shifted position) and is the so-called surface mode (SM),
ordinary mode, or fundamental mode.

Figure 4 shows the Spectral Web for k = 10 and m = −1, 0, 1 from top to bottom.
We observe that the CDI is no longer present, which is something that is expected for

sufficiently large k beyond the value that satisfies the resonant surface relation.
We also observe that new modes appear on the left of the SM (two modes in this case).

These are connected to the Kelvin–Helmholtz instability and are called body modes (BMs)
or reflection modes.

The three panels are very similar, which is something that is expected for sufficiently
large k (compared with m).
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-π -
π

2
0

π

2
π

Figure 3. The Spectral Web. The parameters for each panel are shown at the top of the panel. The
upper-right panel is a zoomed region of the upper-left panel.

-π

-
π

2

0

π

2

π

Figure 4. Similarly to Figure 3 but for k = 10. Compared with that figure, here we see the new body
modes emerging at the left.

Repeating the process for all k, we find the dispersion relation shown in Figure 5 for
the three values of m.
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Figure 5. The dispersion relation for m = −1 (top), m = 0 (middle), and m = 1 (bottom).

Regarding the CDI, which is the main focus in [6], for the chosen parameters, relativity
only slightly modify the results. The maximum growth rate is ℑω ≈ 0.24 at k ≈ 3.2,
where ℜω = 2.28. In the frame comoving with the jet, these translate to ℜωco ≈ 0,

ℑωco = γℑω ≈ 0.34, and kcoz ≈ 2.26 − 0.24i. The ℑωco
ϖj

vAa
≈ 0.48 is compared with the

maximum growth rate shown in Figure 1 of [6], i.e., ℑωco
ϖj

vAa
≈ 0.4 for kcoz ≈ 2.3.

As expected, the CDI is advected with the flow (ℜωco ≈ 0) and the comoving wavevec-

tor along the motion is kcoz ≈
k

γ0
− iγ0V0ℑω. The resonant surface relations kco · Bco = 0

and ωco = 0 are shifted to k = −γ0
m
ϖ0

≈ 4.24, in agreement with the dispersion relation

for CDI shown in the upper panel of Figure 5 in blue (for k larger than the one satisfying
the resonant surface relation the mode is stable—this limiting k depended on m).

The eigenfunctions for k = 2 are shown in Figure 6. The first row corresponds to the
CDI (for m = −1). The following three rows correspond to the KHI modes for the three
values of m.

The corresponding y1 and y2 are shown in Figure 7. The absolute values of the

amplitudes of the Lagrangian displacement
|y1|
ϖ

and the total pressure |y2| are also shown.
These plots definitely provide additional information for the perturbation compared with
what is shown in Figure 6 through Y. For m = −1, the CDI is mostly concentrated near the
axis (and displaces the axis, as expected), while the KHI is near the interface. The modes
for m = 0 and m = 1 show mixed behavior. For m = 0, the displacement is maximum at
the interface, but the perturbation of the pressure is maximum on the axis. For m = 1, we
find displacement on the axis similarly to the CDI, but also on the interface.
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Figure 6. The eigenfunctions for k = 2. The parameters for each panel are shown at the top of the
panel.
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Figure 7. The eigenfunctions y1 and y2 for k = 2.

Figure 8 shows the eigenfunctions for k = 10. There are three eigenvalues for each
value of m, which correspond, from larger to smaller ℜω, to SM, BM1, and BM2. For large
k, all m give approximately the same result (eigenvalues and eigenfunctions). Counting
seems to work well since more oscillations appear as we move to the next body mode. The
general characteristics of the eigenfunctions, which are verified for even larger k as well,
are as follows: a region near the axis that is controlled by the boundary condition; then a
region with oscillations, the number of which depends on the number of the mode; and
then the region near the interface controlled by the boundary condition.

The corresponding eigenfunctions y1 and y2 are shown in Figure 9 (the case m = −1
is shown, the others do not differ significantly due to the relatively large value of k). The



Universe 2024, 10, 183 12 of 18

numbers of oscillations are not as clear as in Y. They show, however, that the perturbations
are more important near the interface.
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Figure 8. Similarly to Figure 6 but for k = 10.
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Figure 9. The eigenfunctions y1 and y2 for k = 10 and m = −1.

Clearly, the Y on one hand and the y1 and y2 on the other give complementary
information for the physics of the various unstable modes. However, the fact that the
eigenvalues can be found in relation to Y alone means that this function needs to be more
carefully analyzed in the various cases. Its relation to the number of oscillations was already
shown. Another way to see it is through the trajectory that the eigenfunction Y follows in
the complex Y plane as ϖ increases. For sufficiently large k, the number of windings equals
the number of the mode. An example is shown in Figure 10.

Figure 10. The trajectory in the Y plane for the BM2 for k = 10 and m = −1.
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6. Discussion

The minimalist approach presented in this paper offers a more economic way to find
the eigenvalues of a linear stability problem by solving a single first-order differential
equation for the complex function Y. Needless to say that although the presented examples
are related to relativistic magnetohydrodynamic jets because this is perhaps the most
challenging and unexplored area of stability, the minimalist approach can be applied in all
kinds of fluid dynamic settings, simply by choosing the appropriate forms of the functions
Fij/D and boundary conditions. For problems in cylindrical geometry, the formulas
are given in [16] (these cover the nonrelativistic and the hydrodynamic limits). In other
geometries, one can find these functions by linearizing the full equations. The method
can also be applied to any other system that concerns the growth of perturbations in the
linear regime.

A method to solve a complex boundary condition equation was developed by taking
advantage of the fact that the function Y is an analytic function of the complex eigenvalue;
using an analogy with electrostatics; and, in essence, generalizing the “Spectral Web”
method presented in [2] by using only Arg[Y] and finding a way to distinguish roots and
poles. It is interesting that the minimalist process of finding the eigenvalues depends
only on the phase difference between y1 and y2—which is the Arg[Y]—and not the phases
themselves nor the energies, although a connection is discussed in Section 4.

The problem always leads to a complex equation Y − YBC = 0, but there are many
variations of this equation. For example, in the case presented in [16], the mathematical
expression of the equation is different if we apply it to the wall interface ϖ = 1 (having
integrated the equation from the axis to this interface), or in the interface ϖ = 0.5 (having
integrated the equation from the axis to this interface and from the wall to this interface
separately). Although the poles are different, the roots are always the same and equal to
the eigenvalues of the problem.

To obtain the full picture of an instability, we of course also need y1 or y2 (in addition
to their ratio Y). For example, for the energy consideration, we saw that by knowing Y,
we find the direction of the energy flux but not the magnitude and its radial dependence.
Also, the eigenfunction Y cannot say whether, e.g., there is a common dropping factor
in both y1 and y2 since it is their ratio and the factor cancels out. We provide such an
example in Appendix A. In addition, some connection with y1 and y2 is hidden inside the
boundary conditions on the axis and at large distances. When we derived these conditions,
we used information for y1 and y2 (to not diverge on the axis and to vanish at infinity,
representing outgoing waves). However, this was done once, and since we know the
boundary conditions, we are set to use the minimalist approach and the rest of the process
uses only Y. This is advantageous because it more efficiently solves the most difficult part
of the problem, which is to find the eigenvalues. Once we know an eigenvalue, it is trivial
to return to the full system and calculate the perturbations of all quantities to obtain an
overall picture of the eigenstate.

The fact that Y does not contain common factors of y1 and y2 also has its advantages.
By dropping the common factors that affect the amplitudes, we concentrate on the phase
of the oscillations, and this is why Y is apparently the function more closely related to
the characterization of the body modes through the number of their oscillations. The
oscillations are shown more clearly through Y, not only because the dropping factors are
missing but also because the wavelength is smaller compared with the wavelength of y1
and y2, as shown in the example in Appendix A.

Note also that the oscillatory behavior is expected in general for large k and for Kelvin–
Helmholtz instability modes, but not necessarily in current-driven instability modes. There
are interesting topics to be explored further, e.g., the connection between the solutions for
Y and the function κ̃, and the phase difference between y1 and y2 in relation to the phase
of each function separately, but we leave these for future studies. Although we already
commented about the physics of the perturbations in various aspects, the goal of this paper
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was mainly to present the minimalist approach and the way to find the eigenvalues using
it, which can be seen as the starting point for the rest.

We recall that the functions y1 and y2 are solutions of the linear problem, and thus,
they can be freely multiplied with a complex constant (the same for both). Thus, we can
freely multiply their amplitudes with a constant number and shift their phases with a
constant angle. Their ratio, namely, the eigenfunction Y, is uniquely defined.

In case we need to recover the units, y1 has units of length squared, and thus, we
should multiply it by ϖ2

j , and y2 has units of pressure, and thus, we should multiply it by

B2
a (which includes a factor of 4π, and thus, it is twice the magnetic pressure on the axis).
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Appendix A. Typical Behavior of Y

Noting the dominant dependences in Fij/D, as given by Equations (54)–(57) in [16], and

assuming
F11

D =
A
ϖ

,
F12

D = Bϖ,
F21

D = − κ̃2

Bϖ
− C

Bϖ3 , and
F22

D = −A
ϖ

with constant A, B,

C, and κ̃, we obtain the analytical solution Y =
−ϖF12/D

A + 1− ν + κ̃ϖ
C1 Jν−1(κ̃ϖ) + C2Yν−1(κ̃ϖ)

C1 Jν(κ̃ϖ) + C2Yν(κ̃ϖ)

with ν =
√
(A + 1)2 − C. The corresponding y1 is y1 = C1ϖJν(κ̃ϖ) + C2ϖYν(κ̃ϖ).

For large |κ̃|ϖ, we can further simplify the expressions
F11

D = 0,
F12

D = Bϖ,
F21

D = − κ̃2

Bϖ
,

and
F22

D = 0, and obtain the solution Y = −F12

κ̃D
C1 J1(κ̃ϖ) + C2Y1(κ̃ϖ)

C1 J0(κ̃ϖ) + C2Y0(κ̃ϖ)
≈ F12

κ̃D cot(κ̃ϖ + ϕ0),

with ϕ0 =
π

4
+arctan

C2

C1
using the Bessel asymptotics, essentially corresponding to a harmonic

oscillator with a complex frequency. For y1 and y2, we obtain y1 = C1ϖJ1(κ̃ϖ)+C2ϖY1(κ̃ϖ) ≈

−
√

2(C2
1 + C2

2)

πκ̃

√
ϖ cos(κ̃ϖ + ϕ0) and y2 =

y1

Y
= −

√
2(C2

1 + C2
2)

πκ̃

κ̃

B
√

ϖ
sin(κ̃ϖ + ϕ0).

The function Y is proportional to
cot(κ̃ϖ + ϕ0)

κ̃
, which can be written as

cot(κ̃ϖ + ϕ0)

κ̃
=

1
|κ̃|2

ℜκ̃ sin(2ℜκ̃ϖ + 2ℜϕ0)−ℑκ̃ sinh(2ℑκ̃ϖ + 2ℑϕ0)

cosh(2ℑκ̃ϖ + 2ℑϕ0)− cos(2ℜκ̃ϖ + 2ℜϕ0)

−i
ℜκ̃ ℑκ̃

|κ̃|2

sinh(2ℑκ̃ϖ + 2ℑϕ0)

ℑκ̃
+

sin(2ℜκ̃ϖ + 2ℜϕ0)

ℜκ̃
cosh(2ℑκ̃ϖ + 2ℑϕ0)− cos(2ℜκ̃ϖ + 2ℜϕ0)

. (A1)

We can see that the ℜκ̃ϖ dependence creates oscillations in Y with wavelength π/ℜκ̃

and the ℑκ̃ϖ dependence affects their amplitude. The imaginary part of
cot(κ̃ϖ + ϕ0)

κ̃
has a sign that is controlled by the sign of ℑ

[
κ̃2], and its absolute value peaks whenever

2κ̃ϖ + 2ϕ0 approaches even multiples of π.
The functions y1 and y2 have an additional common factor 1/

√
ϖ in their amplitudes

and they oscillate with wavelength 2π/ℜκ̃ and some difference in their phases.
An example can be seen in Figure A1. This behavior turns out to be a very good

approximation of exact solutions with |κ̃|ϖ larger than unity. Actually, the parameters for
the solution in Figure A1 were chosen to fit an exact solution of the problem from [16], as
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shown in the bottom-right panel of Figure 1 (the bottom-left panel of Figure A1 and the
bottom-right panel of Figure 1 are practically indistinguishable in the region ϖ < 0.5).

Of course in the general case, κ̃ is a function of ϖ and the wavelength of the oscillations
is variable. In this case, the basic characteristics of the solution can be understood by

replacing the argument of the tan with
∫

κ̃ dϖ.

If |κ̃|ϖ is smaller than unity, the above approximations are not valid. This is the case
at least in a small region near the axis, in which we know the behavior of the solution from
the analysis of the boundary condition in Appendix B.1.
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Figure A1. A solution typical for cases with |κ̃|ϖ larger than unity. Approximations are shown for Y
(left), y1 (middle), and y2 (right).

Appendix B. Details on the Boundary Conditions

Appendix B.1. Boundary Conditions on the Axis

• For m ̸= 0, the boundary condition at the symmetry axis is Y(ϖ = 0) =
λ1

λ2
; see

Equation (34) of [16].
This is enough information for practical purposes; nevertheless, it is worth examining
the behavior of Y near the axis.

For m ̸= 0, all limits dij = lim
ϖ→0

ϖFij

D are constants (given in Appendix B of [16]),

and the relations d22 = −d11 and d2
11 + d12d21 = m2 hold; thus, the equation for

Y becomes
ϖ

|m|
dF
dϖ

= F2 − 1, with F =
d21Y − d11

|m| or
d12/Y + d11

|m| . The acceptable

solution is F = −1 ⇔ ϖF21

D Y − ϖF11

D = −|m| ⇔ ϖF12

DY
+

ϖF11

D = −|m| because,
according to Equation (4), only this corresponds to finite y1 and y2 on the axis. There

is also the unacceptable solution F = 1 ⇔ ϖF12

DY
+

ϖF11

D = +|m| corresponding to

y1 ∝ ϖ−|m| and y2 ∝ ϖ−|m|. The boundary can be seen as a regularity condition to

choose the acceptable solution Y = − d12

d11 + |m| =
d11 − |m|

d21
(and not the unacceptable

Y =
d12

|m| − d11
=

|m|+ d11

d21
).

Actually, the general solution of
ϖ

|m|
dF
dϖ

= F2 − 1 is F =
1 + (ϖ/ϖ0)

2|m|

1 − (ϖ/ϖ0)2|m| = coth x and

x = −|m| ln
ϖ

ϖ0
, and thus, the acceptable solution F = −1 corresponds to ϖ0 = 0.

Concluding, for m ̸= 0, the boundary condition at the symmetry axis is the one given
in Equation (5) of the main text.

• For m = 0, the boundary condition at the symmetry axis is Y(ϖ = 0) = − b12

2
ϖ2; see

Equation (35) of [16]. For practical purposes, it is enough to assume Y(ϖ = 0) = 0.

In more detail, for m = 0, the constant limits are b11 = lim
ϖ→0

F11

ϖD , b12 = lim
ϖ→0

F12

ϖD ,

b21 = lim
ϖ→0

ϖF21

D , and b22 = lim
ϖ→0

F22

ϖD (see Appendix B of [16]), and the equation

near the axis becomes
dY
dϖ

= b21
Y2

ϖ
+ (b22 − b11)ϖY − b12ϖ. This has the acceptable
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solution Y = − b12ϖ2

2
corresponding to y2 = constant and y1 = − b12ϖ2

2
y2, but also

the unacceptable Y = − 1
b21 ln ϖ

corresponding to y1 = constant and y2 = −y1b21 ln ϖ.

The boundary condition can be seen as a regularity to choose the acceptable solution

Y = − b12ϖ2

2
.

Actually, we can find the general solution by noting that the term with ϖY is always
negligible compared with the largest between the Y2/ϖ and ϖ, and thus, the differ-

ential equation can be approximated as b21ϖ
dY
dϖ

= b2
21Y2 + λ2ϖ2, with λ2 = −b12b21.

The exact solution is b21Y = λϖ
J1(λϖ) + CY1(λϖ)

J0(λϖ) + CY0(λϖ)
. The acceptable solution corre-

sponds to C = 0 and the unacceptable solution to C = ∞.
Concluding, for m = 0, the boundary condition at the symmetry axis is the one given
in Equation (6) of the main text.

Appendix B.2. Boundary Conditions at Infinity

At large distances from the axis, assuming zero velocity and homogeneous medium
with zero B0ϕ, we have the case of Section 5.1 of [16]. The solution is

Y =
D

ϖF21

λϖ H(1)
|m|+1(λϖ)

H(1)
|m|(λϖ)

− |m|

 , (A2)

with constant
D

ϖF21
and λ. It is acceptable if ℑλ ≥ 0 (such that the amplitude of y2 does not

diverge for ϖ → ∞) and ℜλ has the sign of ℜω, corresponding to outgoing waves. Note
that asymptotically, the ratio of the Hankel functions in the above equations approaches −i;
thus, for |λ|ϖ ≫ 1, we have

Y ≈ D
ϖF21

(−iλϖ − |m|) . (A3)

More generally, whatever is the unperturbed state of the jet environment, the per-
turbation should vanish at infinity, and if it is oscillating, it should correspond to waves
propagating toward larger ϖ.

Appendix C. Integration through Infinities of Y

Infinities of Y are rare since they correspond to the vanishing of ℜy2 and ℑy2 simul-
taneously, but in general, it is possible at any distance ϖ for particular values of ω. They
correspond to poles in the ω plane, and require fine tuning to find them, similar to the
process we follow at the distance ϖj for the function Y − YBC. The needed perfect accuracy
means that Y never becomes infinity and the numerical integration passes through such
points without a problem.

Figure A2 shows an example. It corresponds to the case of Figure 1. As seen in the
top-left panel of that figure, by integrating from the axis, we find a pole at ϖ = 1 for
ω ≈ 8.1 + 0.1i. To explore how the numerical integration behaved around the pole, we
continued the integration for ϖ > 1. The resulting Y is shown in Figure A2. Even when
we fine tuned the value of ω, approaching as much as possible to the value corresponding
to the pole, the integration continued without a problem. The ln |Y| became large, but
not infinity, and the Arg[Y] approached a step function, but its variation was smooth, as
can be seen by zooming close to the point ϖ = 1. Comparing the result of the integration
with the integration of the linear system (1)—or with the analytical expressions that exist
for this particular model, see Ref. [16]—we found indistinguishable results (shown in the
Figure A2 as dotted gray lines).
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This example shows that even if the integration encounters a pole at some distance,
it is capable of resolving the differential equation for Y around this point and gives the
correct solution at larger distances.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ϖ

-8

-6

-4

-2

2

4

6

ln[Y]
ω≈8.0767+0.1052i

ln|Y|

Arg[Y]

Figure A2. Integration through a pole at the distance ϖ = 1. The two parts of the function Y are
shown: the ln|Y|, which becomes infinity at the pole, and the Arg[Y], whose π jump corresponds to
the change in sign of y2. The solid (orange and blue) lines correspond to the integration of Equation (3)
and the dotted gray lines (that are practically on top of the solid lines) to the integration of the linear
system (1).

Notes
1 There are other ways to make connections with other physical settings. We can think of the roots as line sources of incompressible

fluid and the poles as line sinks. In another analogy, we can think of the roots/poles as line vortices with positive/negative
circulation, respectively. Another possibility is to treat the real/imaginary parts of Y − YBC as a potential/stream function. In
this picture, there is an electric cylindrical dipole at the location of each pole and the potential/stream function vanishes at the
positions of the roots.

2 The proof can be performed by writing the equations of motion as Tµν
;ν = 0 and elaborating the energy momentum tensor, whose

components in Cartesian coordinates are T00 = γ2ξρ0 − P +
E2 + B2

2
, T0j = T j0 =

(
ξρ0γ2V + E × B

)
· x̂j,

Tij = ξρ0γ2ViVj − EiEj + BiBj +

(
P +

E2 + B2

2

)
δij, with i, j = 1, 2, 3. The equation for the energy is

∂T00

∂t
+∇ ·

(
T0i x̂i

)
= 0.

Its integral form in a volume whose boundary is moving with velocity Vs (and thus, each part of the boundary creates a

volume Vsdt · da in the time interval dt) is
d
dt

y
T00dτ +

{ (
T j0 x̂j − T00Vs

)
· da = 0. Following the volume of a given

mass, each point of the boundary moves with Vs = V , and substituting the components of the tensor, we obtain
dE
dt

+
{ (

E × B + PV − E2 + B2

2
V
)
· da = 0. Substituting E = −V × B, we arrive at

dE
dt

= −
{

[ΠV − (V · B)B] · da, with

Π = P +
B2 − E2

2
.

3 For two complex functions A and B that are proportional to exp(iψ), the mean value of the product ⟨ℜAℜB⟩ in an interval

ℜψ ∈ (0, 2π) is
1
2
ℜ[A∗B].
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