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Abstract: A simple Lévy α-stable (SL) model is used to describe the data on elastic pp and pp̄
scattering at low-|t| from SPS energies up to LHC energies. The SL model is demonstrated to describe
the data with a strong non-exponential feature in a statistically acceptable manner. The energy
dependence of the parameters of the model is determined and analyzed. The Lévy α parameter of the
model has an energy-independent value of 1.959 ± 0.002 following from the strong non-exponential
behavior of the data. We strengthen the conclusion that the discrepancy between TOTEM and ATLAS
elastic pp differential cross section measurements arises only in the normalization and not in the shape
of the distribution of the data as a function of t. We find that the slope parameter has different values
for pp and pp̄ elastic scattering at LHC energies. This may be the effect of the odderon exchange or the
jump in the energy dependence of the slope parameter in the energy interval 3 GeV ≲

√
s ≲ 4 GeV.

Keywords: elastic scattering; proton–proton; proton–antiproton; Lévy-α stable model

1. Introduction

The physics of elastic proton–proton (pp) and proton–antiproton (pp̄) scattering can be
studied by measuring the differential cross section dσel/dt at a given center of mass (cm) en-
ergy

√
s as a function of the squared four-momentum transfer t. The characteristic structure

of the t-distribution of elastic pp scattering was revealed in the 1970s by experiments per-
formed with the ISR accelerator at CERN [1,2] in the energy range 23 GeV ≲

√
s ≲ 63 GeV.

It was found that after the Coulomb-nuclear interference region at very small |t| values,
the dσel/dt is nearly exponentially decreasing in the range of 0.01 GeV2 ≲ |t| ≲ 1 GeV2

and has a characteristic diffractive minimum–maximum (dip-bump) structure in the do-
main 1 GeV2 ≲ |t| ≲ 2.5 GeV2. Beyond the bump, |t| ≳ 3 GeV2, the dσel/dt was found
to be decreasing according to a power law |t|−n with n ≈ 8 [3]. Measurements on pp
elastic scattering at LHC by TOTEM and ATLAS Collaborations at

√
s = 2.76, 7, 8, and

13 TeV [4–13] confirm the structure of the t distribution of elastic pp scattering as observed
at ISR and allow for more detailed studies. As the energy rises, the dip-bump structure goes
to lower |t| values: at LHC energies, it appears in the range of 0.3 GeV2 ≲ |t| ≲ 1 GeV2.
Remarkably, in elastic pp̄ scattering, only a shoulder-like structure is observed, and no dip
is seen [14–17]. Otherwise, the t-distribution of elastic pp̄ scattering is very similar to that
of elastic pp scattering.

In this work, we analyze the low-|t| nearly exponential dσel/dt. It was first observed
at ISR [1] and later confirmed at LHC by TOTEM [6,9,10] that the pp dσel/dt at low-|t|
values does not show a purely exponential Ae−B0|t| structure: there is a change in the slope
B0 at around |t| = 0.1 GeV2. At

√
s = 8 TeV, TOTEM excluded a purely exponential pp

dσel/dt in the range of 0.027 GeV2 ≲ |t| ≲ 0.2 GeV2 with a significance greater than 7σ [6].
In pp̄ scattering, a change in the slope was observed at SPS at

√
s = 540 GeV and 546 GeV

around |t| = 0.15 GeV2 [18,19].

Universe 2024, 10, 127. https://doi.org/10.3390/universe10030127 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe10030127
https://doi.org/10.3390/universe10030127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-9110-9663
https://orcid.org/000-0002-2596-2228
https://doi.org/10.3390/universe10030127
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe10030127?type=check_update&version=1


Universe 2024, 10, 127 2 of 21

In the framework of the Regge approach, the non-exponential behavior of the elas-
tic differential cross section was related to the 4m2

π branch point of t-channel scattering
amplitude and, hence, is explained as the manifestation of t-channel unitarity [20–26].
According to the findings of Refs. [27,28], the low-|t| non-exponential behavior of the elastic
pp differential cross section can be a consequence of an interplay between the real parts of
the Coulomb and nuclear amplitudes.

In order to describe the low-|t| pp dσel/dt, the TOTEM Collaboration used the
parametrization [6]:

dσ

dt
(s,−t) = a(s)e−b1(s)t+b2(s)t2

, (1)

where a, b1, and b2 are free parameters to be determined at a given cm energy. In this study,
we analyze the low-|t| pp and pp̄ dσel/dt in the energy range 546 GeV <

√
s < 13 TeV

using a simple Lévy α-stable (SL) model, as introduced in [29]. In the SL model, the low-|t|
elastic differential cross section has the form:

dσ

dt
(s,−t) = aL(s)e−|tbL(s)|αL(s)/2

, (2)

where the Levy index of stability αL(s), the optical point parameter aL(s), and the slope
parameter bL(s) are fit parameters to be determined at a given cm energy.

Lévy distributions were introduced to high-energy physics in several papers. The
common theme of these papers is the application of generalized central limit theorems for
the convolution of elementary processes that may have infinite first or second moments (a
trivial example of this is the Lorentzian distribution). Due to this property of the elementary
processes, the conditions of validity for the classical central limit theorems that lead to
Gaussian limiting distributions are not satisfied. However, in certain cases, generalized
central limit theorems are still valid when the addition of one more elementary process
does not modify the shape of the limiting distribution and only modifies the parameters of
it. The mathematical theory of generalized central limit theorems were worked out in the
1920s by the French mathematician Paul Lévy, and the resulting limiting distributions are
named after him as Lévy or Lévy stable distributions.

The book of Uchaikin and Zolotarev [30] lists several examples of their applications in
probabilistic models, related to anomalous diffusion, astrophysics, biology, chaos, correlated
systems and fractals, financial applications, geology, physics, radiophysics, and stochastic
algorithms, among others. Stable distributions provide solutions to certain ordinary and
fractional differential equations, and the extremely broad range of their applications indicate
that Lévy stable distributions are ubiquitous in nature, as noted and explained by Tsallis and
collaborators in Refs. [31,32]. A recent book of J. P. Nolan discussed and also standardized
the notation for the theory, numerical algorithms, and statistical methods associated with
stable distributions using an accessible, non-technical approach and also highlights many
practical applications of Lévy stable distributions, including their applications in finance,
statistics, engineering, physics, and, in particular, high-energy physics [33].

Lévy stable distributions were utilized in high-energy physics to explain the applicabil-
ity of Tsallis distributions [31] and, in general, power-law tails in the transverse momentum
spectra of particles by Wilk and Wlodarczyk in Ref. [34]. They were applied to describe an
intermittent behavior in the quark-gluon plasma–hadron gas phase transition in Ref. [35]
and to describe anisotropic dynamical fluctuations in multiparticle production dynamics
by Zhang, Lianshou, and Fang [36].

Another wave of applications of Lévy stable distributions in high-energy physics was
opened in Ref. [37], where univariate and multivariate Bose–Einstein correlation functions
were carefully analyzed, and the structure of the peak of these correlation functions was
investigated without using the assumption of analyticity at zero relative momentum. In
this case, both symmetric and asymmetric, univariate and multivariate Lévy stable data
analysis becomes possible.
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Univariate and asymmetric Lévy distributions were subsequently found to character-
ize two-particle Bose–Einstein correlation functions in electron–positron collisions at LEP,
first using simulated data [38] and subsequently L3 measurements [39]. This univariate
Lévy analysis has been extended to a three-dimensional Lévy analysis of Bose–Einstein
correlation functions on PHENIX preliminary data in Ref. [40]. Univariate and symmetric
Lévy distributions were found to describe precisely the experimental data of the PHENIX
Collaboration of Au+Au collisions at

√
sNN = 200 GeV in the 0–30% centrality class [41].

By now, several experiments in high-energy particle and nuclear physics analyze their data
with the help of Lévy distributions, for example, the ATLAS [42] and CMS [43] experi-
ments at the Large Hadron Collider (LHC), the PHENIX [44] and STAR [45] experiments at
the Relativistic Heavy Ion Collider (RHIC), and the NA61/SHINE experiment at CERN
SPS [46,47]. The application of Lévy stable source distributions to high-energy heavy ion
physics has been recently reviewed by Csanád and Kincses in Ref. [48].

A model-independent expansion technique was proposed by Novák and colleagues
in Ref. [49] to allow for a test of a possible deviation from the Lévy shape. So far, no such
deviations were found in the field of Bose–Einstein correlations as far as we know. However,
important deviations were found in a related femtoscopic area called elastic scattering and
diffraction, where a quantum interference between the scattered wave and the unscattered
incoming plane wave creates a well-measured diffractive interference pattern. The model-
independent Lévy expansion technique was successfully applied to these data and has
been utilized to identify hollowness and odderon effects in elastic proton–proton collisions
in Refs. [50,51], respectively.

In the present study, we apply a simple Lévy α-stable model of Equation (2) to describe
low-|t| elastic pp and pp̄ data. The paper is organized as follows. In Section 2, we recapitu-
late the basic formulae for describing high-energy elastic scattering. In Section 3, we detail
the emergence of Lévy α-stable distribution in elastic hadron–hadron scattering that leads
to the SL model. In Section 4, we analyze the low-|t| pp and pp̄ dσel/dt in the energy range
546 GeV <

√
s < 13 TeV using the SL model; we present the fits to the data and determine

the energy dependencies of the SL model parameters. The results are discussed in Section 5
and summarized in Section 6. Simple models of elastic scattering are shortly reviewed in
Appendix A.

2. Basic Formalism of High-Energy Elastic Scattering

The formulas that describe high-energy, small-angle scattering of particles are anal-
ogous to those describing Fraunhofer diffraction of light by absorbing and refracting
obstacles [52–54]. The characteristics of the “obstacle” at a given cm energy and impact
parameter b are specified by the profile function,

Γ(s, b) = 1 − e−Ω(s,b), (3)

where Ω(s, b) is called the opacity function, which is, in general, a complex quantity [55].
We can define the impact parameter representation of the elastic scattering amplitude

t̃el(s, b) as
t̃el(s, b) = iΓ(s, b). (4)

In the general case, one has an impact parameter vector b⃗. However, here, we assume
azimuthally symmetric interactions, allowing us to fully describe the scattering process
using the absolute value of the impact parameter vector b = |⃗b|.

The high-energy, small-angle scattering amplitude in the momentum representation
T(s, t) is given as the Fourier transform of t̃el(s, b):

Tel(s, t) =
∫

d2⃗be−i⃗∆·⃗b t̃el(s, b), (5)
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where ∆⃗ is the momentum transfer vector. In the high-energy limit applicable in our case,
∆ = |⃗∆| =

√
−t. Taking advantage of the azimuthal symmetry, one can integrate out for

the azimuthal angle and rewrite Equation (5) as

Tel(s, t) = 2π
∫

dbbJ0(∆b)t̃el(s, b), (6)

where J0 is the zeroth order Bessel function of the first kind. By inverting Equation (5),
we can express the amplitude in the impact parameter representation as the integral
transformed of the amplitude in the momentum representation:

t̃el(s, b) =
1

(2π)2

∫
d2∆⃗ei⃗∆·⃗bTel(s, ∆). (7)

Our basic measurable quantity, the differential cross section, is determined by the
absolute value squared of the scattering amplitude in momentum representation:

dσ

dt
(s, t) =

1
4π

|Tel(s, t)|2. (8)

When describing scattering processes, we require the unitarity of the scattering matrix.
At high energies, this unitarity constraint can be expressed as

2ReΓ(s, b⃗) =
∣∣Γ(s, b⃗)

∣∣2 + σ̃in(s, b), (9)

where σ̃in(s, b) is called the shadow profile or inelastic overlap function. Utilizing Equa-
tion (4), Equation (9) can be rewritten as

2Imt̃el(s, b) =
∣∣t̃el(s, b)

∣∣2 + σ̃in(s, b). (10)

Although elastic scattering corresponds to a genuine quantum interference between the
elastically scattered wave and the unscattered incoming wave, so it has no probabilistic in-
terpretation, the quantity that describes the inelastic scattering, σ̃in(s, b), has a probabilistic
interpretation, and it can be interpreted as the probability of inelastic scattering at a given
energy and impact parameter, as detailed, e.g., in Ref. [56].

3. Emergence of Lévy α-Stable Distribution in Elastic Scattering

Realistic models of elastic pp (or pp̄) scattering try to deal simultaneously with the
large and small |t| behavior of elastic scattering. One of the key qualitative features of the
experimental data is the existence of a unique diffractive minimum and maximum in elastic
proton–proton collisions at the TeV energy scale. Glauber’s multiple diffractive theory,
as implemented in the Bialas–Bzdak (BB) model [57], relates the number of diffractive
minima to the basic structure of the proton in elastic scattering. Namely, if the proton
behaves as a weakly bound quark–diquark state, denoted as p = (q, d), it corresponds
to one-hole on one-hole scattering and has only a unique diffractive minimum in the
experimentally available four-momentum transfer range. On the other hand, if the diquark
can be decomposed as a weakly bound quark–quark state, this leads to the p = (q, (q, q))
structure of the proton, and in this case, several diffractive minima are predicted. The
BB model thus comes in two variants: the proton can be modeled either as a weakly
bound quark–diquark state, p = (q, d), or the diquark can be resolved as a weakly bound
quark–diquark state, p = (q, (q, q)).

The original p = (q, d) and p = (q, (q, q)) BB models [57] were formulated by neglect-
ing the real part of the elastic scattering amplitude. The real part was added in a unitary
manner in Refs. [56,58], leading to the so-called Real-extended Bialas–Bzdak model (ReBB).
In the quark–diquark model of elastic pp scattering, the p = (q, d) variant has only a single
diffractive minimum, and this variation of the ReBB model gives a statistically acceptable
description to the proton–proton (pp) and proton–antiproton (pp̄) elastic scattering data in
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a limited kinematic range [56,59] that includes the diffractive interference (minimum and
maximum) region but does not include the low-|t| domain, where a strong non-exponential
shape characterizes the experimental data. Although the ReBB model also featured a
non-exponential behavior at low −t values, this was obtained as a small violation of a
nearly exponential behavior of elastic pp scattering that was not strong enough to describe
the experimental observations [56,58]. This can be attributed to the assumption of BB
models that all relative distance scales are Gaussian random variables. As detailed below,
if we assume Gaussian distributions and apply a central limit theorem to the tail of the
inelastic collision b-distribution, σin(s, b), a Gaussian model is obtained with an exponential
behavior in the diffractive cone region.

For elastic scattering at high energies, we know from experimental data that the elastic
scattering amplitude is dominantly imaginary at small values of |t|; see, for example,
Ref. [9] for a recent summary of measurements of ρ(s), the ratio of the real to imaginary
part of the elastic scattering amplitude at a vanishing four-momentum transfer. In this case,
as it follows from Equation (4), the profile function Γ(s, b⃗) is dominantly real. Neglecting
its imaginary part, one can write Γ(s, b⃗) as a particular solution of Equation (9) in the form

Γ(s, b⃗) = 1 −
√

1 − σ̃in(s, b). (11)

At large b, both σ̃in(s, b⃗) as well as Γ(s, b⃗), are expected to be small. This selects the negative
sign in the right-hand side of the above equation. If the elastic scattering is described in
the impact parameter space by the small but analytic function of σ̃in(s, b) ≪ 1, a large b
approximation of Equation (11) is given as

Γ(s, b⃗) ≃
large b

1
2

σ̃in(s, b). (12)

In this work, we limit our studies to elastic pp scattering at small −t, where a nearly
exponential behavior, the so-called diffractive cone phenomena, is observed. This can be
obtained from several different approaches (see Appendix A for a short review of simple
models of elastic scattering). Let us now consider a derivation that is based on the validity
of the central limit theorem of probability distributions.

In a nearly exponential −t region, it is customary to use a Gaussian approximation for
the shadow profile function, σ̃in. Such a behavior can be obtained from the fact that inelastic
scattering may have a probabilistic interpretation, and if these scatterings are obtained as
convolutions of elementary scattering processes, where each of the convoluted elementary
distributions has a finite mean and a finite variance, then, in the limit of a large number of
convolutions, the resulting net distribution for inelastic scattering has an asymptotically
Gaussian form, according to the central limit theorem of probability distributions:

σ̃in(s, b) = 2Γ(s, b) = 2cG(s) exp
(
− b2

2bG(s)

)
, (13)

where cG(s) is an s-dependent factor, and bG(s) is an s-dependent slope parameter (for
more details, see Appendix A.4).

In the small −t approximation, corresponding to large values of the impact parameter
b, the Gaussian model yields the following elastic scattering amplitudes:

t̃el(s, b) = icG(s) exp
(
− b2

2bG(s)

)
, (14)

Tel(s, t) = 2πicG(s)bG(s) exp
(

tbG(s)
2

)
. (15)

Given that small-|t| scattering corresponds to large b scattering, the Gaussian approx-
imation of Equation (13) corresponds to the assumption of the validity of a central limit
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theorem for scattering at large impact parameters: if many small random scatterings with
finite means and root mean squares are convoluted to describe the inelastic scattering
at large impact parameters, a Gaussian source emerges due to the validity of the central
limit theorem of probability distributions, without reference to the particular details of the
elementary inelastic scattering processes.

This so-called gray Gaussian model, together with Equations (4), (5), (8), and (12),
leads to an exponential small-|t| differential cross section

dσ

dt
(s, t) = aG(s) etbG(s), (16)

where the fit parameter aG(s) = πc2
G(s)b

2
G(s) is the optical point parameter, as this is the

value of the differential cross section at the optical point, corresponding to an extrapolation
to t = 0.

The above-given Gaussian model has two shortcomings. One of them is obvious:
given that the experimental data on elastic pp scattering have a single diffractive minimum
and the Gaussian model has no diffractive minimum, it is clear that the domain of validity
of this model does not extend to the vicinity of the diffractive minimum. Furthermore,
a nearly exponential cone is observed experimentally at low values of the squared four-
momentum transfer −t. This leads to the second, more subtle shortcoming of this Gaussian
source model: as long as the experimental data are not precise enough to see deviations
from an exponentially falling diffractive cone, the Gaussian model remains adequate.
However, as we have already entered the domain of high statistic and precise elastic pp
scattering at LHC energies of 8 and 13 TeV, a subtle but statistically significant deviation
from an exponential behavior has been discovered by the TOTEM Collaboration [6,9,10].
This experimental discovery rules out, with a statistical significance much greater than 5σ,
models that rely on the existence of an exactly exponential diffractive cone in elastic pp
scattering. Thus, models with a nearly Gaussian tail in their probability distribution of
inelastic pp scattering are ruled out by TOTEM data at

√
s = 8 TeV.

In the ReBB model, the assumed quark and diquark constituents of the proton have
Gaussian parton distributions, and also, the distance between these constituents has a
Gaussian shape. Consequently, in the ReBB model, σin is a sum of convolutions of Gaussian-
shaped terms; hence, this model leads to a nearly exponential differential cross section in
the diffractive cone: to the leading order, the shape is exponential, which is modified by
weakly non-exponential correction terms, as detailed in Refs. [56,58].

In a recent work [29], we have formulated Glauber’s multiple diffractive theory for a
case where the elementary distributions in proton–proton collisions have a power-law type,
Lévy tail. In particular, we have formulated the real extended Lévy α-stable generalized
Bialas–Bzdak (LBB) model as the generalization of the ReBB model [56,58] of elastic pp
and pp̄ scattering. However, to apply the full LBB model to analyze the data, one needs to
solve the problem of integrating products of two-dimensional Lévy α-stable distributions,
and access to relatively high computing resources is necessary. As a temporal solution, we
introduced approximations that are valid at the low-|t| domain of elastic scattering. This
led [29] to the to the SL model, as given by Equation (2). In Ref. [29], we have demonstrated
that the SL model describes the non-exponential low-|t| differential cross section of pp
scattering at 8 TeV in a statistically acceptable manner. In contrast, the original form
of the ReBB model with Gaussan-shaped terms in σ̃in could not reproduce this strong
non-exponential feature of the data.

The Gaussian distribution is the α = 2 special case of the Lévy α-stable distribution.
The LBB model with Lévy α-stable parton and distance distributions may reproduce the
strong non-exponential behavior seen in the low-|t| data. In the case of the LBB model, the
leading terms in σin are a sum of Lévy α-stable shaped terms. Based on generalized central
limit theorems, these scatterings correspond to power-law tailed probability distributions,
where the second and possibly even the first moment of the distributions is infinite. This
leads to a non-analytic, stretched exponential shape of the elastic scattering amplitude at
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small values of the four-momentum transfer and a strongly non-exponential behavior of
elastic proton–proton (pp) scattering at the TeV energy scale.

The SL model of Ref. [29] given in Equation (2) is obtained by choosing σ̃in to have a
Lévy α-stable shape,

σ̃in(s, b⃗) = 2Γ(s, b) = 2cL(s)
∫

d2∆⃗ei⃗∆·⃗xe−
1
2 |∆2bL(s)|αL(s)/2

, (17)

where cL(s) is an energy-dependent overall normalization factor, bL(s) is the Lévy slope
parameter, and αL(s) is the Lévy-α parameter. Equation (17) with Equation (12), and
Equations (4), (5), and (8) lead to the SL model, i.e., a non-exponential low-|t| differential
cross section of the form given in Equation (2). The αL = 2 case corresponds to a Gaussian
profile, as given by Equation (13), and an exponential differential cross section, as given
by Equation (16). In the case of 0 < αL < 2, the impact parameter profiles, σ̃in and Γ, are
Lévy α-stable distributed at high-b, having a long tail, and the differential cross section is
non-exponential as at low-|t|.

4. SL Model Analysis of Elastic pp and pp̄ Low-|t| Data

We present in this section the results of the SL model fits to the low-|t| pp and pp̄
dσel/dt in the energy range 546 GeV <

√
s < 13 TeV. First, we detail the fit method, then

we show the fit results and determine the energy dependencies of the fit parameters of the
SL model.

We performed the fitting procedure by using a χ2 definition, which relies on a method
developed by the PHENIX Collaboration [60]. This χ2 definition is equivalent to the
diagonalization of the covariance matrix of statistical and systematic uncertainties if the
experimental errors are separated into three different types:

• type a: point-to-point varying uncorrelated systematic and statistical errors;
• type b: point-to-point varying and 100% correlated systematic errors;
• type c: point-independent, overall correlated systematic uncertainties that scale all the

data points up and down by the same factor.

We categorized the available experimental uncertainties into these three types as
follows: horizontal and vertical t-dependent statistical errors (type a), horizontal and
vertical t-dependent systematic errors (type b), and overall normalization uncertainties
(type c). The χ2 function used in the fitting procedure is:

χ2 =

(
N

∑
i=1

(di + ϵbσ̃bi + ϵcσcdi − mi)
2

σ̃2
i

)
+ ϵ2

b + ϵ2
c , (18)

where

σ̃2
i = σ̃ai

(
di + ϵbσ̃bi + ϵcσcdi

di

)
, (19)

σ̃ki =
√

σ2
ki + (d′iδkti)2, k ∈ {a, b}, d′(ti) =

di+1 − di
ti+1 − ti

, (20)

N is the number of fitted data points, di is the ith measured data point, and mi is the
corresponding value calculated from the model; σki is the type k ∈ {a, b} error of the data
point i, σc is the type c overall error given in percents, d′ij denotes the numerical derivative
in point ti with errors of type k ∈ {a, b}, denoted as δkti; ϵl is the correlation coefficient
for a type l ∈ {b, c} error. These correlation coefficients are fitted to the data and must be
considered as both free parameters and data points not altering the number of degrees of
freedom. The χ2 definition, Equation (18), was utilized and further detailed in Ref. [56].

The SL model was fitted using the above detailed χ2 definition, Equation (18), to all
the available pp and pp̄ differential cross section data in the kinematic range of 0.54 TeV
≤

√
s ≤ 13 TeV and 0.02 GeV2 ≤ −t ≤ 0.15 GeV2. In total, eleven pp and pp̄ datasets were

included in the analysis. The values of the parameters of the model at different energies as



Universe 2024, 10, 127 8 of 21

well as the confidence levels of the fits and the data sources are shown in Table 1. We regard
a fit by a model to be a statistically acceptable description in the case of 0.1% ≤ CL ≤ 99.9%.
One can see that the confidence level (CL) values range from 8.8% to 96%, implying that
the SL model represents the data in a statistically acceptable manner.

Table 1. The values of the parameters of the SL model at different energies from half TeV up to 13 TeV
in the four-momentum transfer range 0.02 GeV2 ≤ −t ≤ 0.15 GeV2. The last column shows the
confidence level of the fit to the data at different energies.

√
s [GeV] Data From αL

aL
[mb/GeV2] bL [GeV−2] CL (%)

546 UA4 [19] 1.93 ± 0.09 209 ± 15 15.8 ± 0.9 18.1
1800 E-710 [61] 2.0 ± 1.5 270 ± 24 16.2 ± 0.2 77.1
2760 TOTEM [4] 1.6 ± 0.3 637 ± 25 28 ± 11 20.5
7000 TOTEM [5] 1.95 ± 0.01 535 ± 30 20.5 ± 0.2 8.8
7000 ATLAS [11] 1.97 ± 0.01 463 ± 13 19.8 ± 0.2 96.0
8000 TOTEM [6] 1.955 ± 0.005 566 ± 31 20.09 ± 0.08 43.9
8000 TOTEM [7] 1.90 ± 0.03 582 ± 33 20.9 ± 0.4 19.6
8000 ATLAS [12] 1.97 ± 0.01 480 ± 11 19.9 ± 0.1 55.8

13,000 TOTEM [9] 1.959 ± 0.006 677 ± 36 20.99 ± 0.08 76.5
13,000 TOTEM [10] 1.958 ± 0.003 648 ± 95 21.06 ± 0.05 89.1
13,000 ATLAS [13] 1.968 ± 0.006 569 ± 17 20.84 ± 0.07 29.7

Using the values of the parameters of the model at different energies given in Table 1,
we determined the energy dependence of these parameters.

Table 1 indicates that the TOTEM datasets at
√

s = 7, 8 and 13 TeV, as well as the ATLAS
dataset at

√
s = 13 TeV feature a strongly non-exponential shape, with αL significantly less

than 2. The other datasets provide a less precise value for this Lévy exponent.
The αL(s) parameters can be fitted with an energy-independent constant αL value, as

shown in Figure 1. This average, constant value of the αL parameter is consistent with
all the measurements, with αL = 1.959 ± 0.002. Although this average value is close to
the Gaussian αL = 2 case, which corresponds to an exponentially shaped cone of the
differential cross section of elastic scattering, its error is small, and thus, the constant value
of αL is significantly less than 2. This indicates that a strongly non-exponential SL model is
consistent with all the low-|t| datasets cited in Table 1.

We know that the optical point parameter is proportional to the square of the total
cross section [29,54], a(s) ∼ σ2

tot(s), and the total cross section is related to the square of
the size parameter [29], σtot(s) ∼ R2(s). This leads to the relation a(s) ∼ R4(s) (see more
details also in Appendix A).

The “geometric picture”, based on a series of studies [62–67], motivates the ln2(s/s0)
behavior of the total cross section and the ln(s/s0) behavior of the size parameter. In
addition, the leading ln2(s/s0) term of hadronic total cross sections was obtained from
lattice QCD calculations [68,69]. In the Donnachie–Landshoff approach of hadronic cross
sections [70], the energy dependence is described by a sum of powers of s, ∑i ci(s/s0)

δi .
However, it was discussed in Refs. [71–76] that models with a ln2(s/s0) asymptotic term
work much better than those with ln(s/s0) or (s/s0)

δ asymptotic terms.
In Ref. [56], the size parameter was successfully parameterized by a ∑1

i=0 pi lni(s/s0)
functional form in the energy range of 546 GeV ≤

√
s ≤ 8 TeV. This would suggest a

∑4
i=0 pi lni(s/s0) functional form for the energy dependence of the optical point parameter.

However, in our analysis with the SL model, we find that the energy dependence of the
optical point aL(s) for pp̄ and ATLAS or for pp̄ and TOTEM data in the energy range
0.54 TeV ≤

√
s ≤ 13 TeV is compatible with a quadratically logarithmic shape,

a(s) = p0 + p1 ln
( s

1 GeV2

)
+ p2 ln2

( s
1 GeV2

)
, (21)
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i.e., the corrections of the ln3(s/s0) and ln4(s/s0) terms are smaller than the current experi-
mental precision. Our result for the energy dependence of the optical point aL(s) is shown
in Figure 2.

310 410
 [GeV]s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0L
α

 0.002± = 1.959 
0

p

/NDF = 13.75 / 10 2χ

CL = 18.48 %

pp pp TOTEM

pp ATLAS fit to all data

Figure 1. The values of the αL parameter of the SL model at different energies from half TeV up to 13
TeV. The αL parameter of the model is energy-independent: its values at different energies can be
fitted with a constant, 1.959 ± 0.002.

For pp̄ and ATLAS data, the values of the parameters in Equation (21) are p0 =
1213 ± 604 mb/GeV2, p1 = −180 ± 79 mb/GeV2, and p2 = 8 ± 2 mb/GeV2, resulting in
a confidence level of 33.22%. For pp̄ and TOTEM data, the parameter values are p0 =
1133 ± 523 mb/GeV2, p1 = −161 ± 69 mb/GeV2, and p2 = 7 ± 2 mb/GeV2, resulting in
a confidence level of 82.30 %. A fit by the parametrization Equation (21) that includes a
parameter values for all data—pp̄, ATLAS, and TOTEM—is statistically not acceptable
since its confidence level is 6.06 × 10−4%.
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2
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 & pp TOTEMp      p
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CL = 33.22 %

 & pp ATLASp       p

0
p

1
p

 = 1133 ± 523 [mb/GeV2]  
= −161 ± 69 [mb/GeV2]  
= 7 ± 2 [mb/GeV2]

2
p

/NDF = 0.39 / 22χ

CL = 82.30 %

pp
pp TOTEM
pp ATLAS
fit to all data

 & pp ATLASpfit to p
 & pp TOTEMpfit to pa L
 [m

b/
G

eV
2 ]

6.06 × 10−4 %

Figure 2. The values of the optical point parameter of the SL model at different energies from half
TeV up to 13 TeV.
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As discussed in Appendix A, the slope parameter is related to the size parameter as
b(s) = R2(s). This would suggest a ∑2

i=0 = pi lni(s/s0) functional form for the energy de-
pendence of the optical point parameter. However, we find that for ATLAS and TOTEM pp
data, the energy dependence of the bL parameter is compatible with a linearly logarithmic
shape,

b(s) = p0 + p1 ln
( s

1 GeV2

)
, (22)

with p0 = 4± 1 GeV−2 and p1 = 0.88± 0.07 GeV−2, resulting in a confidence level of 0.36%,
as illustrated in Figure 3. This result, when taken together with the results of Figures 1
and 2, suggests that ATLAS and TOTEM data in the low −t region have a consistent non-
exponential shape but differ in their overall normalization. A linearly logarithmic shape
for the slope parameter also follows form the one-pomeron exchange Regge model [54].

The values of the bL parameter for pp̄ data lie on the line given by Equation (22)
with the parameters p0 = 14 ± 6 GeV−2 and p1 = 0.2 ± 0.4 GeV−2. These values are
significantly different from the values of linearity for elastic pp collisions, p0 = 4 ± 1
GeV−2 and p1 = 0.88 ± 0.07 GeV−2. The fit for the bL parameter values of all data—pp̄,
ATLAS, and TOTEM—even by the quadratic parametrization Equation (21) is statistically
not acceptable, as it has too small of a confidence level of 1.45 × 10−3%.

310 410
 [GeV]s

15

20

25

30

35

40 pp
pp TOTEM
pp ATLAS
fit to pp TOTEM & pp ATLAS

pfit to p
fit to all

p       p

0
p  = 14 ± 6 [GeV-2]  

= 0.2 ± 0.4 [GeV-2]
1

p

      pp TOTEM & pp ATLAS

0
p  = 4 ± 1 [GeV-2]

 = 0.88 ± 0.07 [GeV-2]
1

p
/NDF = 21.09 / 72χ

CL = 0.36 %

 & pp TOTEM & pp ATLASp      p

0
p

1
p

 = −16 ± 7 [GeV-2]
 = 3.0 ± 0.8 [GeV-2]  
= −0.05 ± 0.02 [GeV-2]

2
p

/NDF = 36.46 / 82χ
CL = 1.45e-03 %

b L
 [G

eV
-2

]

× 10−3 %

Figure 3. The values of the slope parameter of the SL model at different energies from half TeV up to
13 TeV.

5. Discussion

In this work, we fitted the low-|t| elastic pp and pp̄ differential cross section in the
center of mass energy range of 0.54 TeV ≤

√
s ≤ 13 TeV. To do this, we used the SL model

as defined by Equation (2). Another popular empirical parametrization for the low-|t|
non-exponential differential cross section is Equation (1). The effect of the quadratic term
in the exponent of Equation (1) is reproduced in our model by an αL parameter value less
than 2.

An exponential differential cross section corresponds to a Gaussian impact parameter
profile. The Gaussian distribution is the αL = 2 special case of the more general Lévy
α-stable distributions. The experimentally observed non-exponential differential cross
section at low-|t| indicates that the impact parameter profiles, σ̃in and Γ, rather have Lévy
α-stable shapes at high-b, resulting in the SL model given by Equation (2). Accordingly, it
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may be more natural to use Equation (2) instead of Equation (1) to model the experimental
data. Lévy-α-stable-shaped source functions are extensively used in the analysis of data
on heavy ion collisions, as detailed in the Introduction.

As an illustrative example, the SL model fit to the most precise TOTEM data measured
at

√
s = 13 TeV [10] is shown in Figure 4, and the case with αL = 2 fixed is shown in

Figure 5. The SL model with αL = 1.958 ± 0.003 describes the 13 TeV TOTEM data with
CL = 89.12%, while the αL = 2 fixed case fit has a confidence level of 3.6 × 10−27%. These
values are not surprising if one compares the bottom panel of Figure 4 to the bottom panel
of Figure 5. This result clearly shows the success of the non-exponential SL model with
αL < 2.

0.00 0.020.04 0.06 0.08 0.10 0.120.14 0.16 0.18 0.20
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2
G

eVm
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d

tσd

 = 13 TeV, pps

data TOTEM, stat. unc.

syst. unc. of the data
/2

L
α

−|bt|
/dt = aeσd

MINOS: successful
ERROR MATRIX ACCURATE 
Range: 0.020 ≤ −t ≤ 0.150 [GeV2]

/NDF = 50.47/64 = 0.792χ
CL = 89.12 %

αL= 1.958 ± 0.003
a = 648 ± 10
b = 21.058 ± 0.051 [GeV-2]
εb =  −0.13 ± 0.01
εc  = −0.001 ± 0.264

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
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−t [GeV2]

−0.005

0.000
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i
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i
−m id cσ c∈+

b
i

σ
b∈+ id

Figure 4. Fit to the low-|t| pp differential cross section data measured by TOTEM at
√

s = 13 TeV [10],
with the SL model defined by Equation (2). The differential cross section data with the fitted model
curve as well as the values of the fit parameters and the fit statistics are shown in the top panel. The
middle panel shows the {χi} values corresponding to the data points {di}. The bottom panel shows
the relative deviation between di + ϵbσbi + ϵcσcdi, the dσ/dt data points di shifted within errors by
the correlation parameters of the χ2 definition Equation (18), and mi, the dσ/dt values calculated
from the model.
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L
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ERROR MATRIX ACCURATE 
Range: 0.020 ≤ −t ≤ 0.150 [GeV2]

/NDF = 284.08/65 = 4.372χ
CL = 3.589 × 10−27 %
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a = 621 ± 8
b = 20.308 ± 0.004 [GeV−2] 
εb = −0.28 ± 0.01
εc  = −0.004 ± 0.241

αL = 2.0 (fixed)

Figure 5. Same as Figure 1 but with αL = 2 fixed.

Looking at the bottom panel of Figure 4, one can observe some oscillations in the
data. This oscillation is a significant effect when only the statistical errors are considered. If
systematic errors are taken into account as well, this oscillation effect disappears. The SL
model has a monotonically decreasing shape and describes the data with a good confidence
level. This excludes the statistically significant oscillatory behavior of the data.

Let us now discuss the energy dependence of the SL model parameters. According to
our analysis, surprisingly, the αL parameter of the SL model is energy-independent, and its
value is 1.959 ± 0.002, indicating a Lévy-α-stable-shaped, power-law tail feature for impact
parameter profiles σ̃in and Γ in the energy range 546 GeV ≤

√
s ≤ 13 TeV.

We showed in Section 4 that the energy dependence of the optical point parameter
of the SL model is compatible with a quadratically logarithmic shape; however, the a
parameter values determined from ATLAS and TOTEM data on pp elastic scattering
disagree. This discrepancy is a well-known fact, and the interpretation is that the ATLAS
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and TOTEM experiments use different methods to obtain the absolute normalization of the
measurements [13].

We saw in Section 4 that pp and pp̄ b parameter values lie in different curves. There
are two alternative interpretations. The TOTEM Collaboration discussed in Ref. [77] that
there is a jump in the energy dependence of the slope parameter in the energy interval of
3 GeV ≲

√
s ≲ 4 GeV. One of the possibilities is that the same jump is seen in our analysis

as well, preventing the lower energy pp̄ data to lie in the same curve with the higher energy
LHC ATLAS and TOTEM data. The second possibility is that the difference between the
pp and pp̄ slope is the effect of the odderon [78]. New pp low-|t| measurements at LHC at√

s = 1.8 and/or 1.96 TeV may clarify this issue.

6. Summary

We fitted the pp and pp̄ elastic differential cross section with a simple Lévy α-stable
model in the center of mass energy range of 0.54 TeV ≤

√
s ≤ 13 TeV and in the four-

momentum transfer range of 0.02 GeV2 ≤ −t ≤ 0.15 GeV2. We determined the energy
dependence of the three parameters of the model. The Lévy index of stability, αL(s), results
are consistent with an energy-independent, constant value that is slightly but significantly
smaller than 2. The energy dependence of the optical point parameter is the same for pp and
pp̄ processes and has a quadratically logarithmic shape; however, because of normalization
differences, TOTEM and ATLAS optical point data are inconsistent within experimental
errors. Thus, they can be fitted separately from one another and, furthermore, both can be
fitted together with pp̄ data; however, the ATLAS and TOTEM optical points cannot be
fitted together, neither without nor with the pp̄ data.

In our Lévy analysis, we observe that the Lévy slope parameter b(s) has different
energy dependence for pp and pp̄ scattering. This may be an odderon signal [78] or the
“jumping” behavior in the energy interval of 3 GeV ≲

√
s ≲ 4 GeV as discussed by TOTEM

in Ref. [77]. New pp low-|t| measurements at LHC at
√

s = 1.8 and/or 1.96 TeV may decide
which interpretation is true. We also find that TOTEM and ATLAS slope parameter data
can be fitted together with a linearly logarithmic shape, indicating that TOTEM and ATLAS
data differ only in their normalization, while their shape is consistent. Similar conclusions
were drawn in Ref. [79] concerning the TOTEM–ATLAS discrepancy at 13 TeV.
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Appendix A. Simple Models of Elastic Scattering

In this Appendix, we first recapitulate the basic quantities that characterize elastic
scattering; then, we shortly review simple models of elastic scattering.
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The number one quantity that characterizes elastic scattering is the differential cross
section, as given by Equation (8). The elastic cross section is the integral of the elastic
differential cross section over the Mandelstam variable t,

σel(s) =
∫ 0

−∞
dt

dσ

dt
(s, t). (A1)

The optical point parameter, a(s), is determined as the extrapolated value of the differential
cross section to the optical point, t = 0,

a(s) = lim
t→0

dσ

dt
(s, t). (A2)

The elastic slope is, in general, an s- and t-dependent function, defined as the logarithmic
derivative of the differential cross section,

B(s, t) =
d
dt

ln
dσ

dt
(s, t). (A3)

The ratio of the real to the imaginary part of the scattering amplitude, ρ(s, t), is, in general,
also an s- and t-dependent function,

ρ(s, t) =
ReTel(s, t)
ImTel(s, t)

. (A4)

Both the (s, t)-dependent elastic slope and the real-to-imaginary ratio are frequently charac-
terized by their values extrapolated to the optical point that become quantities that depend
only on the Mandelstam variable s:

B0(s) ≡ B(s) = lim
t→0

B(s, t), (A5)

ρ0(s) ≡ ρ(s) = lim
t→0

ρ(s, t). (A6)

The optical theorem connects the total cross section, i.e., the sum of the elastic and inelastic
scattering cross sections, to the imaginary part of the elastic scattering amplitude at the
vanishing four-momentum transfer:

σtot(s) = σel(s) + σin(s) = 2ImTel(s, t = 0). (A7)

This optical theorem follows from the unitarity of the scattering or S-matrix. Taken together
with Equations (8), (A2), and (A6), the optical theorem of Equation (A7) implies a connection
between the differential cross section at the vanishing four-momentum transfer, the total
cross section, and the real-to-imaginary ratio as

a(s) =
1

16π
(1 + ρ2(s))σ2

tot(s). (A8)

Appendix A.1. Black Disc Model

At asymptotically high center of mass energies, in the limit of
√

s → ∞, many high-
energy scattering models approach the so-called black disc limit. As it is well known [54,80],
this choice corresponds to

Γ(s, b) = Θ(R(s)− b), (A9)

where R(s) stands for the radius of a black disc, Θ(x) = 1 for x ≥ 0, and Θ(x) = 0 for
x < 0. For a vanishing real part of the elastic scattering amplitude, Equations (4) and (5)
imply that

t̃el(s, b) = iΘ(R(s)− b) (A10)
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and

Tel(s, t) = 2πiR2(s)
J1(qR(s))

qR(s)
, (A11)

where J1(x) is the Bessel function of the first kind and −t = q2 relates the Mandelstam
variable t to the modulus of the transferred four-momentum, q. Thus, the cross sections
and the slope parameter are given as

dσ

dt
(s, t) = πR4(s)

(
J1(qR(s))

qR(s)

)2

, (A12)

σel(s) = πR2(s) , (A13)

σin(s) = πR2(s) , (A14)

σtot(s) = 2πR2(s) , (A15)

B0(s) =
R2(s)

4
. (A16)

In this black disc limit, half of the total cross section corresponds to elastic scattering:

σel(s)
σtot(s)

=
1
2

. (A17)

The black disc model obeys a nearly exponential shape at small values of the four-momentum
transfer −t.

One can re-express the black disc model amplitudes and the differential cross section
in terms of σtot and B0 as follows:

t̃el(s, b) = iΘ
(

2
√

B0(s)− b
)

, (A18)

Tel(s, t) = iσtot(s)
J1

(
2q
√

B0(s)
)

2q
√

B0(s)
, (A19)

dσ

dt
(s, t) =

1
4π

σ2
tot(s)

 J1

(
2q
√

B0(s)
)

2q
√

B0(s)

2

, (A20)

yielding

a(s) =
1

16π
σ2

tot(s). (A21)

Appendix A.2. Gray Disc Model

Although asymptotically expected, the elastic to total cross section ratio remains
significantly smaller from the black disc value, even at the currently highest colliding
energies of

√
s = 13 − 13.6 TeV at the LHC. As detailed in Figure 6 of Ref. [77], the elastic

to total cross section ratio is an increasing function of
√

s in the TeV energy range, and it
crosses the important limit [81] of σel(s)

σtot(s)
= 1

4 between 2.76 and 7 TeV. However, it is still

about a factor of two smaller as compared to the black disc limit of σel(s)
σtot(s)

= 1
2 . The gray

disc model improves on the black disc model by introducing a grayness parameter Gr(s) as

t̃el(s, b) = 2iGr(s)Θ(R(s)− b), (A22)

which yields

Tel(s, t) = 4πiR2(s)Gr(s)
J1(qR(s))

qR(s)
. (A23)
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Then,
dσ

dt
(s, t) = 4πG2

r (s)R4(s)
(

J1(qR(s))
qR(s)

)2

, (A24)

σel(s) = 4πG2
r (s)R2(s), (A25)

σin(s) = 4πGr(s)(1 − Gr(s))R2(s), (A26)

σtot(s) = 4πGr(s)R2(s), (A27)

B0(s) =
R2(s)

4
=

1
16π

σ2
tot(s)

σel(s)
, (A28)

and

Gr(s) =
σel(s)
σtot(s)

=
1

16π

σtot(s)
B0(s)

. (A29)

Given that the elastic cross section cannot be greater than the total cross section, it follows
that the grayness parameter Gr(s) is bound in the region of 0 ≤ Gr(s) ≤ 1 and the
conventional black disc limit corresponds to the Gr(s) = 1/2 case. With this grayness
parameter, the elastic to total cross section ratio can be tuned to the measured experimental
data. Two simple shortcomings of the model still remain. The first is the problem that the
real part of the scattering amplitude vanishes; hence, ρ0(s) = 0, which is at variance with
the experimental observations that indicate a small but non-vanishing real-to-imaginary
ratio ρ0(s), even at the TeV energy range [9].

One can re-express the gray disc model amplitudes and the differential cross section
in terms of B0 and σtot as follows:

t̃el(s, b) =
i

8π

σtot(s)
B0(s)

Θ
(

2
√

B0(s)− b
)

, (A30)

Tel(s, t) = iσtot(s)
J1

(
2q
√

B0(s)
)

2q
√

B0(s)
, (A31)

dσ

dt
(s, t) =

1
4π

σ2
tot(s)

 J1

(
2q
√

B0(s)
)

2q
√

B0(s)

2

. (A32)

Appendix A.3. Gray Disc Model with a Small Real Part

The shortcoming of the gray disc model amplitude of having only an imaginary part
can be easily fixed. A small, s-dependent real part can be trivially added to the gray disc
model as follows:

t̃el(s, b) = 2(i + ρ0(s))Gr(s)Θ(R(s)− b), (A33)

which yields the following cross section relations:

dσ

dt
(s, t) = 2π(1 + ρ2

0(s))G
2
r (s)R2(s)

(
J1(qR(s))

qR(s)

)2

, (A34)

σel(s) = 4π(1 + ρ2
0(s))G

2
r (s)R2(s) , (A35)

σin(s) = 4πGr(s)
(

1 − (1 + ρ2
0(s)) Gr(s)

)
R2(s) , (A36)

σtot(s) = 4πGr(s)R2(s) , (A37)

which implies

Gr(s) =
1

1 + ρ2
0(s)

σel(s)
σtot(s)

. (A38)
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This is the generalization of Equation (A29) for the case of a gray disc with a non-vanishing
real part. Thus, the ratio of elastic to total cross section of a gray disc with a non-vanishing
real part can be tuned to the measured values with the help of a grayness parameter Gr(s)
if a small correction to the real to imaginary ratio ρ0(s) is properly taken into account, as
given by Equation (A38) .

A more difficult-to-fix shortcoming of the black and gray disc models is that the
differential cross section of the black disc and the gray disc model are both proportional to
the Bessel function of the first kind, which has an infinite number of zeros that correspond to
an infinite number of minima of the differential cross section as a function of −t. However,
experimentally, only a single diffractive minimum is observed in elastic proton–proton
(pp) scattering in the TeV range. This alone excludes the validity of both the black disc and
the gray disc models.

One can re-express the gray disc model amplitudes and the differential cross section
in terms of B0, σtot, and ρ0 as follows:

t̃el(s, b) =
i + ρ0(s)

8π

σtot(s)
B0(s)

Θ
(

2
√

B0(s)− b
)

(A39)

Tel(s, t) = (i + ρ0(s))σtot(s)
J1

(
2q
√

B0(s)
)

2q
√

B0(s)
, (A40)

dσ

dt
(s, t) =

1 + ρ2
0(s)

4π
σ2

tot(s)

 J1

(
2q
√

B0(s)
)

2q
√

B0(s)

2

, (A41)

yielding

a(s) =
1 + ρ2

0(s)
16π

σ2
tot(s). (A42)

Appendix A.4. Gaussian Model

In the gray Gaussian model, the profile function is Gaussian, and hence, the amplitude
in the impact parameter representation has the form

t̃el(s, b) = 4iGr(s) exp

(
− b2

2R2
G(s)

)
, (A43)

where Gr(s) is an s-dependent grayness factor as before and RG(s) is an s-dependent
Gaussian radius parameter. A small and t-independent but s-dependent real part can
also be added at this point, similarly to how this was performed in the case of the gray
disc model. In the small −t approximation, corresponding to large values of the impact
parameter b, the gray Gaussian model assumption with an s-dependent real-to-imaginary
ratio yields the following elastic scattering amplitudes:

t̃el(s, b) = 4(i + ρ0(s)) Gr(s) exp

(
− b2

2R2
G(s)

)
, (A44)

Tel(s, t) = 8π(i + ρ0(s)) Gr(s)R2
G(s) exp

(
tR2

G(s)
2

)
. (A45)

The root mean square of this distribution, corresponding to RG(s), is usually identified
with the proton’s size, as resolved at a given energy.

This so-called gray Gaussian model yields

dσ

dt
(s, t) = 16π

(
1 + ρ2

0(s)
)

G2
r (s) R4

G(s) exp
(

tR2
G(s)

)
, (A46)
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σel(s) = 16π
(

1 + ρ2
0(s)

)
G2

r (s)R2
G(s), (A47)

σin(s) = 16πGr(s)
(

1 −
(

1 + ρ2
0(s)

)
Gr(s)

)
R2

G(s), (A48)

σtot(s) = 16πGr(s)R2
G(s), (A49)

B0(s) = R2
G(s). (A50)

The above formulae generalize the equivalent formulae obtained for a gray disc and are
valid in the diffractive cone only. This way, the problem of infinitely many diffractive
minima obtained for a sharply cut black or gray disc is eliminated. One can conclude that
the gray Gaussian model has two remaining shortcomings: (i) it does not describe the
single diffractive minimum seen in the data, and (ii) it gives a purely exponential low-|t|
differential cross section, contradicting the most precise measurements at LHC [6].

In this case, the grayness factor can also be expressed as

Gr(s) =
1

1 + ρ2
0(s)

σel(s)
σtot(s)

=
1

16π

σtot(s)
B0(s)

. (A51)

We can re-express the amplitudes and the differential cross section in terms of B0, ρ0,
and σtot as follows:

t̃el(s, b) =
i + ρ0(s)

4π

σtot(s)
B0(s)

exp
(
− b2

2B0(s)

)
, (A52)

Tel(s, t) =
i + ρ0(s)

2
σtot(s) exp

(
tB0(s)

2

)
, (A53)

dσ

dt
(s, t) =

1 + ρ2
0(s)

16π
σ2

tot(s) exp (tB0(s)), (A54)

yielding

a(s) =
1 + ρ2

0(s)
16π

σ2
tot(s). (A55)

Appendix A.5. Lévy α-Stable Model

The Lévy α-stable model describes a non-exponential low-|t| differential cross section.
In the gray Lévy α-stable model with a small real part, the profile function is Lévy α-stable
distributed, and hence, the amplitudes have the form:

t̃el(s, b) =
i + ρ0(s)

8π2 σtot(s)
∫

d2∆⃗ exp
(

∆⃗ · b⃗
)

exp
(
−1

2

∣∣∆2R2
L(s)

∣∣αL(s)/2
)

, (A56)

Tel(s, t) =
i + ρ0(s)

2
σtot(s) exp

(
−1

2

∣∣tR2
L(s)

∣∣αL(s)/2
)

. (A57)

This gray Lévy α-stable model yields

dσ

dt
(s, t) =

1 + ρ2
0(s)

16π
σ2

tot(s) exp
(
−
∣∣tR2

L(s)
∣∣αL(s)/2

)
, (A58)

σel(s) =
1 + ρ2

0(s)
8π αL(s)

Γ
(

2
αL(s)

)
σ2

tot(s)
R2

L(s)
, (A59)

and the inelastic cross section is given as the difference between the total and the elastic
cross sections,

σin(s) = σtot(s)

(
1 −

1 + ρ2
0(s)

8π αL(s)
Γ
(

2
αL(s)

)
σtot(s)
R2

L(s)

)
. (A60)
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The (nuclear) slope parameter B0(s) is divergent for a Lévy source, but a generalized
slope parameter can be introduced that takes into account the non-exponential nature of
the small −t shape of the differential cross section. This definition identifies a generalized
bL(s), with the Lévy scale parameter:

bL(s|αL) = R2
L(s), (A61)

which is, in general, a measure of the scale of the source even in the general 0 < αL(s) ≤ 2
case. In the special Gaussian case of αL = 2, the differential cross section becomes nearly
exponential and bL(s|αL = 2) = B0(s) becomes a measure of the root mean square of the
inelastic scattering distribution in the impact parameter space.

Finally, for a simple Lévy source model, the grayness factor is given by

Gr(s) =
1

1 + ρ2
0(s)

σel(s)
σtot(s)

=
1

8π αL(s)
Γ
(

2
αL(s)

)
σtot(s)
R2

L(s)
. (A62)

This formula generalizes Equation (A51) for Lévy stable source distributions. The Gaussian
result, Equation (A51), is recovered in the αL = 2 special case.
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