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Whaat? You work on the top quark?
Stiill?

Jack Steinberger to E.Y.
in Moriond QCD, La Thuile, March 2013

This Special Issue of Universe is devoted to the most massive fundamental elementary
particle known, the top quark. The aim is to provide a comprehensive review of the
current status and prospects of top quark physics at the Large Hadron Collider (LHC) and
future colliders. We included articles that emphasize where the present understanding
is incomplete and suggest new directions for research in this area. We trust that it will
benefit both those seeking to learn and those seeking to review recent developments in top
quark physics.

The search for top quarks began half a century ago, with the prediction of the existence
of the top quark through the six-quark model by Kobayashi and Maskawa [1]. In 1977, the
Υ meson was discovered by the E288 experiment at Fermilab, providing the first evidence
for the existence of three families of elementary particles [2,3]. The existence of the b quark
(the fifth quark) was inferred from interpreting the Υ meson as a bound state of a new
heavy quark (b) and its anti-quark (b) (see ref. [3] and references therein). When interpreted
in a quarkonium model, the measurements of the Υ decay width to e+e− favored a b-quark
charge of -1/3 instead of 2/3 [4,5]. With this discovery, the down-type family of quarks
(d, s, and b) was established, but only two up-type quarks were observed, the u and the c
quark. The measurements of Z → bb̄, including the forward–backward asymmetry of b
quarks and the bb̄ cross section at e+e− colliders, demonstrated the weak isopsin properties
of the b quark [6]. With such properties, the b quark surely had to be accompanied by
an upper isospin partner if the multiplet structure was present for the third quark family.
Moreover, the anomaly cancellation of the electroweak (EWK) gauge theory requires that
the sum of the electric charges in a family is zero. This implies that another quark with a
charge of +2/3 should exist. An extra indication suggesting the existence of the top quark
was the observation of fast oscillations of B–B [7,8].

Before the discovery of the top quark, using radiative corrections indirectly affect-
ing the top quark and the measurements of EWK observables at a collision energy of√

s = 100 GeV, LEP1 predicted the top quark mass (mt) to be 173+13
−10 GeV [9]. Eventu-

ally, the top quark was discovered in 1995 at the Fermilab Tevatron with O(10) signal
events, independently by the CDF [10] and D0 [11] experiments, using events from proton–
antiproton (pp) collisions at a center of mass energy of

√
s = 1.8 TeV. Both experiments

found a signal consistent with tt → W+bW−b events and inconsistent with the background
prediction, and both were also able to reconstruct mass distributions with a clear peak.
The measured mass values in each experiment with central values of 176 GeV (with 7%
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relative uncertainty) and 199 GeV (with 14% relative uncertainty) were consistent with
LEP1 predictions within uncertainties. This provided a critical test of the Standard Model
(SM). Since then, many measurements of the top quark have been made both at the Tevatron
and the LHC. Ten years before the discovery of the top quark, Lev B. Okun outlined the
conditions for reliable experimental results [12]:

The physics of elementary particles is done by people. It is characteristic of man to
err. . . Why then do physicists regard a multitude of phenomena as experimentally es-
tablished, despite such mistakes?. . . How can it be guaranteed that these experiments
are correct if so many incorrect results occurred in the past? The only guarantee is to
accept a result as reliable only if it is obtained independently by several different groups
employing different experimental methods. This condition is absolutely necessary but
may not be sufficient, and does not provide a 100 percent guarantee. The 100 percent
guarantee appears when the phenomenon recedes from the frontline of the science, when
it is reproduced routinely, with the statistics of events exceeding by thousands or millions
that with which the discovery was made, and when the quantities characterizing the
phenomenon become known to an accuracy of several decimal places. Another way is not
so much quantitative as it is qualitative: the search and discovery of a number of related
phenomena that often follow the original discovery.

It is fair to state that in present day, nearly 29 years after its discovery, the top quark
satisfies the “absolute condition” of a reliable result, because it has been experimentally
established by five different experiments in different production modes using different
methods and a variety of collision energies. Moreover, it is observed both in pp and pp
collisions. Although it would be unfair to say that the top quark has receded from the
frontline of science, its existence satisfies the “100 percent guarantee” proposed by Okun.
Now, at the CERN LHC, top quark–antiquark pairs are routinely produced at a rate of about
six per minute, enabling experiments to make detailed measurements of the properties of
top quarks. Percent-level precision in several measurements has been possible thanks to
the excellent performance of the Tevatron and LHC accelerators and experiments1. For the
top quark, the “qualitative condition” that was listed by Okun is also met. The top quark
and the Higgs boson modify the tree-level SM processes through radiative corrections.
Therefore, as was the case before the top quark discovery, the Higgs boson mass was
predicted via an EWK fit. It was determined to be 94+25

−22 GeV, which turned out to be
consistent with the measured value of the Higgs boson mass within 1.3σ [13]. This test
provides a high-precision consistency check of the SM.

Significant progress has been made during the past years in improving experimental
measurements and computation techniques to achieve more accurate and precise quantum
chromodynamics (QCD) calculations, EWK theory calculations, and Monte Carlo simula-
tions. The reader will comprehend that a detailed review of all these developments would
require extending this Special Issue to several journal issues. Therefore, our choice, as
editors, was to emphasize recent LHC results and discuss future prospects in the field, and
where relevant discuss the relation to cosmology (e.g., EWK baryogenesis, stability of the
vacuum, dark matter, and axion-like particles) in the respective contributions.

The top quark is an extraordinary elementary particle. It is the most massive ele-
mentary particle identified to date; not only does it have a privileged Yukawa coupling
to the Higgs boson, it also has a mass that is significantly higher than that of the Higgs
boson. At hadron colliders, top quarks are predominantly produced via QCD interactions.
They are also produced “alone” through EWK interactions and are observed in single top
quark channels. Owing to its large mass, the top quark decays before it can form a bound
state, e.g., it can not form a tt meson (toponium). However, it may still be possible to
observe some toponium effects in the phase space where the invariant mass of the tt pair
is 2mt ≈ 345 GeV (e.g., ref. [14]). The top quark decays before hadronization, making
the study of “bare” quark properties possible in experimental settings. Moreover, the
spin-decorrelation timescale for tt pairs is larger than that of the hadronization time scale.
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This leaves the top and anti-top quark spins correlated and allows them to stay entangled.
This may allow for tests of the foundations of quantum theory at high energy scales.

Top quark physics simultaneously pushes the frontier of QCD, EWK, and flavor
physics. Through top quark measurements in tt and single-top quark processes, the
existence of many (new) physics phenomena is verified through top quark measurements.
Some of these phenomena are discussed in this issue: tests of charge-parity symmetry,
lepton-flavor conservation, Lorentz-invariance violation and through that a precise test of
special relativity, top quark Yukawa couplings via four-top quark production or via same-
sign top quark plus a c jet, triple top quark, or single-top quark plus b jets to probe low-mass
extra scalar particles, dark matter, axion-like particles, additional new particles such as
color-octed vector G, neutral Z′ boson, or a charged W ′ boson through tt asymmetries,
and flavor-changing neutral currents of the top quark that connect the top quark with new
scalar bosons. However, the analysis of the data collected by the first three LHC runs has
revealed good agreement with the SM predictions. Currently, we do not have even a single
direct or indirect indication of the existence of a new particle or interaction. Therefore, we
are not in the same situation that we were in prior to the discoveries of the top quark and
the Higgs boson.

Now, without any direct or indirect indication of new physics from the LHC, the scale
of new physics is assumed to be above the TeV scale. Therefore, our focus has shifted to
quantifying the effects of heavier hypothetical particles on our measurements at the LHC
using the effective field theory (EFT) approach to identify dimension 6 operators that may
affect our measurements, ensuring that kinematic distributions and cross sections align with
observed data. Along with the measurements of the top quark within the SM and direct
model-dependent searches for new physics, results or calculations using the EFT approach
are discussed in all contributions of this Special Issue, except one contribution that does not
adopt this approach; instead, this contribution promotes the general two-Higgs-doublet
model (g2HDM), which offers two sets of dimension 4 operators to be investigated at the
LHC and flavor experiments, specifically, new Yukawa and Higgs quartic couplings [15].
We embrace both approaches, however, we would have also welcomed a completely
new revolutionary approach with no event generator, EFT, model-dependent search, or
a Lagrangian. In any approach, precision measurements and open discussion are greatly
needed, as emphasized by Robert B. Laughlin [16]:

A measurement that cannot be done accurately can never be divorced from politics and
must therefore generate mythologies. The more such shades of meaning there are, the
less scientific the discussion becomes. Accurate measurement in this sense is scientific
law, and a milieu in which accurate measurement is impossible is lawless. The need for
precision, in turn, redoubles the need for that other great Greek tradition, open discussion
for ideas and ruthless separation of meaningful things from meaningless ones. Precision
alone does not guarantee good law. . .

We can better understand what is meant by this quotation with the difficulties en-
countered in the interpretation of the precise measurements of the top quark mass (see,
e.g., ref. [17]). Using the measured values of the top quark and Higgs boson masses, one
can say something about the stability of the EWK vacuum [18–20]. Current values of the
top quark and Higgs boson masses indicate that the EWK vacuum may be meta-stable and
that the SM is consistent and could be valid up to the Planck scale [21]. However, to be able
to understand the stability of the EWK vacuum, we need a few times better precision in
top quark pole mass measurements. This requires an electron–positron collider or a much
better understanding of the meaning of the Monte Carlo mass, especially its relation to the
so-called pole mass [17], or most probably the combination of both.

In this Special Issue, you will find contributions covering all these topics, although
often briefly, and in most cases without going into deep detail in the theoretical aspects.
Where appropriate, the contributions include the prospects for top quark measurements
and related new physics searches in experiments at future colliders, such as HL-LHC,
HE-LHC, FCC, ILC, CLIC, and CEPC.
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