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Abstract: This paper is a plea for diagonals and telescopers of rational or algebraic functions
using creative telescoping, using a computer algebra experimental mathematics learn-by-examples
approach. We show that diagonals of rational functions (and this is also the case with diagonals of
algebraic functions) are left-invariant when one performs an infinite set of birational transformations
on the rational functions. These invariance results generalize to telescopers. We cast light on the
almost systematic property of homomorphism to their adjoint of the telescopers of rational or
algebraic functions. We shed some light on the reason why the telescopers, annihilating the diagonals
of rational functions of the form P/Qk and 1/Q, are homomorphic. For telescopers with solutions
(periods) corresponding to integration over non-vanishing cycles, we have a slight generalization of
this result. We introduce some challenging examples of the generalization of diagonals of rational
functions, like diagonals of transcendental functions, yielding simple 2F1 hypergeometric functions
associated with elliptic curves, or the (differentially algebraic) lambda-extension of correlation of the
Ising model.

Keywords: diagonals of rational and algebraic functions; creative telescoping; globally bounded
series; modular forms; multi-Taylor expansions; multivariate series expansions; magnetic susceptibility
of the Ising model; lattice Green functions; fuchsian linear differential equations; homomorphisms of
differential operators; self-adjoint operators; Poincaré duality; differential Galois groups

PACS: 05.50.+q; 05.10.-a; 02.10.De; 02.10.Ox

1. Introduction: Plea for a Computer Algebra Experimental Mathematics Learn by
Example Approach

A paper in honor of Professor Richard Kerner must be a paper on theoretical physics,
mathematical physics, physical mathematics, applied mathematics, applicable mathemat-
ics or even experimental mathematics [1]. These different domains have large overlaps
and, quite often, their differences or shades are slightly irrelevant, only corresponding
to social membership to different “mathematical tribes”. This computer algebra paper
will actually be a plea for diagonals and telescopers of rational (or algebraic) functions and for
creative telescoping, with a computer algebra experimental mathematics learn-by-examples
approach.

1.1. Honor, Pride, and Prejudice

The “Journal of Mathematical Physics” defines mathematical physics as “the applica-
tion of mathematics to problems in physics and the development of mathematical methods
suitable for such applications and for the formulation of physical theories”. An alternative
definition would also include those mathematics that are inspired by physics (also known
as physical mathematics). Mathematical physics clearly raises the question of the watershed
between mathematics and physics (especially in France. . . ). Does “Mirror Symmetry” [2–5],
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which is a relationship between geometric objects called Calabi–Yau manifolds, belong
to algebraic geometry or theoretical physics? Does “Special Relativity” belong to physics
or mathematics, Einstein or Poincaré? “Einstein was reluctant to acknowledge that the
Michelson-Morley experiment had a significant influence on his road to special relativ-
ity” [6]. In fact, “once Maxwell’s equations are properly understood mathematically, special
relativity is an inevitable consequence” [6]. Physical mathematics is sometimes viewed with
suspicion by both physicists and mathematicians. On the one hand, mathematicians regard
it as deficient, for lack of proper mathematical rigor. In the years since this “mathematical
physics debate” erupted [7], there have been many spectacular successes scored by physical
mathematics, thanks to the “unreasonable effectiveness” of physics in the mathematical
sciences. Dyson famously proclaimed: “As a working physicist, I am actualy aware of the
fact that the marriage between mathematics and physics, which was so enormously fruitful
in past centuries, has recently ended in divorce”. This “divorce” is particularly serious in
France because of the overwhelmingly leading figure of Alexander Grothendieck and the
huge influence of the Bourbaki group, which raises the question of rigor versus creativity
(“We should not confuse rigor with rigor mortis”, Isadore Singer, see [6]). Recalling Pierre
Cartier [8], the Bourbaki group has been criticized by several mathematicians, including
its own former members, for a variety of reasons. “ Criticisms have included the choice
of presentation of certain topics within the Éléments [9] at the expense of others, dislike
of the method of presentation for given topics, dislike of the group’s working style, and a
perceived elitist mentality around Bourbaki’s project and its books, especially during the
collective’s most productive years in the 1950s and 1960s. There is essentially no analysis
beyond the foundations: nothing about partial differential equations, nothing about probability.
There is also nothing about combinatorics, nothing about algebraic topology [10], nothing
about concrete geometry. Anything connected with mathematical physics is totally absent from
Bourbaki’s text.” Dieudonné (founding member), later, regretted that Bourbaki’s success
had contributed to snobbery regarding pure mathematics in France, at the expense of applied
mathematics [11,12]. In an interview (to Marian Schmidt in 1990), he said: "It is possible to
say that there was no serious applied mathematics in France for forty years after Poincaré.
There was even a snobbery for pure mathematics. When one noticed a talented student,
one would tell him “You should do pure math”. On the other hand, one would advise
a mediocre student to do applied mathematics while thinking, “It’s all that he can do! ”.
Apart from french mathematicians (when in doubt, blame the French), this snobbery re-
garding pure mathematics met with harsh criticism from Vladimir Arnold in his deliciously
polemical paper [13] “Sur l’éducation mathématique”.

Quantum groups emerged from one (Yang–Baxter integrable) explicit example, namely,
Quantum Toda, and not from an ex-nihilo abstract, formal construction of a noncommu-
tative algebra formalism, and other C⋆-algebras, dressed with coassociative coproducts.
In theoretical physics, we get used to the emergence of modular forms [14] and sometimes
automorphic forms [15] like Shimura forms [16]. If a physicist asks a mathematician for
more information on these structures he will probably only receive the academical Poincaré
upper half-plane definition and formalism, which will be totally and utterly useless to him,
and he will not recognize the representation of modular forms and Shimura forms, which
naturally emerges in physics [16,17] in terms of pullbacked 2F1 hypergeometric functions.
In theoretical physics, we are flooded by elliptic curves, K3 surfaces, and Calabi–Yau man-
ifolds [3,18–23]. If a physicist tries to discuss with a mathematician the elliptic curve he
has just discovered (when he has even calculated the j-invariant, or the Hauptmodul, of
this elliptic curve . . . ), he might be severely rebuked that he has absolutely no right to
talk of an elliptic curve because an elliptic curve must have a “specified point”, or will
be seen with suspicion because his elliptic curve does not correspond to the complete
intersection of quadrics [24] framework mathematicians like to consider in their theorems.
Along this (slightly polemical . . . ) line, pure mathematicians will, often, refuse to provide
a representation of their formalism; in particular, they will refuse to provide examples. If a
physicist, eager to understand a mathematical concept, asks for an example of an algebraic
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variety, an example of a holonomic function, or an example of functor, some mathematicians
will, maliciously, reply: a point, the constant function and the oblivion functor. In such a
frustrating “dialogue of the deaf” between physicists and mathematicians, mathematical
physics is probably the perfect for being criticized by physicists as too abstract, or too
mathematical, and also by mathematicians for a lack of rigor and a lack of mathematical
proofs.

Jean-Louis Verdier performed his thesis under the direction of Alexandre Grothendieck.
He was a member of the Bourbaki group. He passed away in August 1989. At this stage,
one of us (JMM) would like to seize the opportunity of this experimental mathematics paper
in honor of Professor Richard Kerner, to express his deep regrets for the numerous fruitful
conversations with Jean-Louis Verdier and his very generous pedagogical explanations. A
discussion with him was not flooded with “Derived Categories” or “p-adic cohomology”
but with simple examples and representations of the mathematical concepts. A really good
mathematician can provide examples; he is not afraid, or ashamed, to provide examples
and representations. For Jean-Louis Verdier, mathematics was not an obfuscation contest.

This paper is an experimental mathematics [1] paper with a learn-by-example ap-
proach: we obtain puzzling exact results from computer algebra (Maple, Mathematica), and
we hope mathematicians will be interested to provide proofs of these results, in a proper
framework. Furthermore, these exact results, which are useful for physics, raise a lot of
fascinating new questions at the crossroad of different domains of mathematics.

1.2. Diagonal of Rational Functions, Creative Telescoping, Birational Transformations, and
Effective Algebtraic Geometry

Diagonals of rational functions (or diagonals of algebraic functions) have been shown to
emerge naturally [25] for n-fold integrals in physics (corresponding to solutions of linear differ-
ential operators of quite high order [26]); field theory; and enumerative combinatorics [27,28],
and have been seen as “Periods” [29–31] of algebraic varieties (corresponding to the de-
nominators of these rational functions). The fact that diagonals of rational or algebraic
functions occur frequently in physics explains many unexpected mathematical properties
encountered in physics that are far more obvious from a physics viewpoint. Physicists are
clearly very interested to see if the critical exponents of the three-dimensional Ising model
are or are not rational numbers. In contrast, since many lattice Green functions in any
dimension [32] are diagonals of rational functions, their critical exponents are necessarily
rational numbers in any dimension. Accordingly, the linear differential operators, annihi-
lating these “Periods”, are globally nilpotent [33], and, consequently, the critical exponents
of all the (regular) singular points of these operators are necessarily rational numbers (Katz
theorem states that globally nilpotent linear differential operators are fuchsian with rational
exponents; see, for instance, [34]). These n-fold integrals are also a globally bounded [25,35]
series, which means that they can be recast into a (finite radius of convergence) series with
integer coefficients. Furthermore, these series, with integer coefficients, reduce modulo every
prime to algebraic functions. The calculation of the linear differential operators annihilating
these n-fold integrals of algebraic functions can be systematically performed using the
creative telescoping method [36–38], which corresponds, essentially, to successive differential
algebra eliminations, which are blind to the cycles over which one performs the n-fold integrals.
At first sight one expects the analysis of these n-fold integrals to require, as in the S-matrix
theory [39], a lot of complex analysis of several complex variables, but one quickly discovers,
with creative telescoping, that one needs differential algebra, possibly algebraic geometry [40],
because of the crucial role of an algebraic variety, and, surprisingly, one finds out almost
“arithmetical” properties (like in the Grothendieck–Katz p-curvature conjecture, which is a
local–global principle for linear ordinary differential equations, related to differential Galois
theory). More experimentally, this time, one finds out that almost all the diagonals of rational
or algebraic functions, corresponding or not to physics, are annihilated by linear differential
operators that are homomorphic to their adjoint, and, consequently, their differential Galois
groups are (or are a subgroup of) selected Sp(n, C) symplectic or SO(n, C) orthogonal
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groups [41,42]. More generally, one finds out that the telescopers of almost all the rational
or algebraic functions are also homomorphic to their adjoint [41]. A physicist, already
surprised to see the emergence of all these mathematical concepts in his backyard, will have
the prejudice that these selected differential Galois groups are probably a consequence of some
“sampling bias”, these diagonals and telescopers being, in fact, related to (Yang–Baxter)
integrable models, like the χ(n) components of the susceptibility of the Ising model [26],
or beyond, Calabi–Yau manifolds, Mirror Symmetries, Picard–Fuchs systems, and other
theory “integrable” in some way (Yang-Mills . . . ). In contrast, a mathematician will have
the prejudice that this is nothing but the Poincaré duality [43] since we have a canonical
algebraic variety for all these diagonals or telescopers [40]. Experimentally, it is quite hard
to find telescopers or linear differential operators that are not homomorphic to their adjoint,
i.e., that do not have selected symplectic, or orthogonal, differential Galois groups [41,42].
Christol conjectured [44,45] that every D-finite globally bounded series is the diagonal of a
rational function. If one considers Christol’s conjecture [44–48], one can seek for nFn−1 hy-
pergeometric series with integer coefficients that are candidates to be counter-examples to
Christol’s conjecture [44–47]. Among these candidates a sub-set has actually been seen [48]
to be diagonals of rational or algebraic functions like 3F2([2/9, 5/9, 8/9], [2/3, 1], x) or
3F2([1/9, 4/9, 7/9], [1/3, 1], x). The fact that the others, like the original example of G.
Christol, 3F2([1/9, 4/9, 5/9], [1/3, 1], 36 x), are or are not diagonals of rational or algebraic
functions remains an open question. It turns out that the linear differential operators of
these nFn−1 candidates precisely provide such rare examples of linear differential operators
(annihilating diagonals of rational or algebraic functions) that are not homomorphic to their
adjoint. The existence of such examples (curiously related to Christol’s conjecture . . . )
shows that seeing the emergence of such selected differential Galois groups [41] for diago-
nals of rational or algebraic functions cannot simply be seen as some consequence of the
Poincaré duality. The Poincaré duality works for any algebraic variety: the diagonal of any
rational or algebraic function should always yield “self-dual” linear differential operators
in the sense that they are homomorphic to their adjoint. This is not the case. Could it be
that the physicist’s prejudice is right and that, trying to be generic in our computer algebra
experiments, we were, in fact, just exploring diagonals of selected subsets of rational or
algebraic functions related to some kind of “integrable” physics?

Like Monsieur Jourdain (in “Le Bourgeois Gentilhomme”, Molière) speaking “prose”
without noticing himself, physicists often perform some fundamental mathematics when
they work on their n-fold integrals without noticing these n-fold integrals are, in fact,
diagonals of rational or algebraic functions. In fact, diagonals of rational or algebraic
functions, and more generally telescopers, are a perfect subject of analysis in mathematical
physics: they are, essentially, not well-known by mathematicians and by physicists (even
if physicists speak “diagonal” without noticing . . . ), and even when these concepts are
superficially known, they are not taken seriously by mathematicians, probably because
the definition is so simple, and the calculations are just “computer algebra”, which is not
highly regarded in the “mathematical food chain”. This is in contrast to the fact that almost
every calculation of a diagonal of a rational or algebraic function or of the calculation of
a telescoper yields interesting, remarkable, and sometimes even puzzling exact results,
providing answers in physics and mathematics but also raising new interesting questions
that could be called “speculative mathematics”.

In a learn-by-example approach, we are going to address the previous questions of
“duality-breaking” of some telescopers of rational or algebraic functions, and we will also
sketch some remarkable birational symmetries [24,49] of the diagonals and telescopers of
rational or algebraic functions.

2. Definition of the Diagonals of Rational or Algebraic functions: Definition
of Telescopers

The purpose of this paper is not to provide an introduction to creative
telescoping [36–38,50–53]. The purpose of this paper is, rather, to provide many (non-trivial)
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pedagogical examples of “telescopers” by extensively using Chyzak’s algorithm [53] or
Koutschan’s semi-algorithm [54] “HolonomicFunctions” package [54]. Koutschan’s pack-
age [54] corresponds to a semi-algorithm because the termination is not proven. For the
examples displayed in this paper, Koutschan’s package [54] turns out to be more user-
friendly and also more efficient.

Creative telescoping [36–38,50–53] has become popular in computer algebra in the
last twenty years. It is a methodology to deal with (parametrized) n-fold integrals, or with
symbolic sums, yielding linear differential/recurrence equations. By the “telescoper” of a
rational function, say R(x, y, z), we here refer to one of the output of the creative telescoping
program [54] (the other outputs being the so-called “certificates”). The telescoper T is
a linear differential operator that is satisfied by the diagonal Diag(R), as well as other
solutions. These other solutions correspond to “periods” [29–31] of algebraic varieties over
non-vanishing cycles [55].

The reader interested in the connection between all these notions can read the thesis
of Pierre Lairez [56] (see also [31]).

2.1. Definition

The diagonal of the rational function R dependent on (for example) three variables is
obtained by expanding R around the origin

R(x, y, z) = ∑
m

∑
n

∑
l

am,n,l · xm yn zl , (1)

and keeping only the terms such that m = n = l. The diagonal reads, with p = xyz,

Diag
(

R(x, y, z)
)

= ∑
m

am,m,m · pm. (2)

In order to avoid a proliferation of variables, the variable p, which the diagonal (2) depends
on, is, in the following, simply denoted as x (see below (3)). Extracting these diagonal terms
essentially amounts to finding constant terms [57] in several complex variable expansions,
i.e., it amounts to performing a residue calculation in several complex variable expansions

Diag
(

R(x, y, z)
)

=
∫
C

1
y z

· R
( x

y z
, y, z

)
· dy dz (3)

=
1

2 i π

∫ 1
2 i π

∫
∑
m

∑
n

∑
l

am,n,l · xm yn−m zl−m · dy
y

dz
z

= ∑
m

am,m,m · xm,

or equivalently

Diag
(

R(x, y, z)
)

=
∫
C

1
y z

· R
( x

y
,

y
z

, z
)
· dy dz, (4)

where C denotes a vanishing cycle [55], where
∫
C is a symbolic notation for the n-fold

integral with the well-suited pre-factors and where the diagonal (4) is seen as a function of
the remaining variable x. This is the very reason why diagonals of rational or algebraic
functions can be interpreted as n-fold integrals [25]. More generally, with n variables, one
can write the diagonal of a rational function of n-variables as the residue in n − 1 variables
x2, · · · , xn:

Diag
(

R(x1, x2, · · · , xn)
)

(5)

=
1

2 i π

∫
· · · 1

2 i π

∫ 1
x2 · · · xn

· R
( x1

x2 · · · xn
, x2, · · · , xn

)
· dx2 · · · dxn.

If the definition of the diagonal of a rational or algebraic function is very simple, it does
not mean that calculating such a diagonal is simple. By “calculating”, we mean finding that
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the series, corresponding to the diagonal, is the series expansion of some known special
function [58–61] (an algebraic function [62], a pullbacked 2F1 hypergeometric function
that turns out to be a modular form [16,63], a nFn−1 hypergeometric function, a Heun
function [64], etc.). Most of the time, this involves, since diagonals of rational or algebraic
functions are selected (Fuchsian [26], G-nilpotent operators, globally bounded series [35])
D-finite functions, finding the linear differential operator annihilating the diagonal series,
even if we are not able to “solve” this linear differential equation. Finding this linear
differential operator can be performed by first obtaining the large series expansion of the
diagonal and then finding, by a “guessing” approach, the linear differential operator or
obtaining the linear differential operator from a more global differential algebra approach,
called creative telescoping.

2.2. Telescopers

For pedagogical reasons, let us sketch creative telescoping [36–38,50–53] in the case of
a rational function of three variables. The “telescoper” of a rational function, say R(x, y, z),
applied not to the rational function R(x, y, z) but to the transformed rational function
R̂ = R(x/y, y/z, z)/(yz), is a linear differential operator T in x and ∂x, such that

T ·
( 1

y z
· R

( x
y

,
y
z

, z
))

+
∂U
∂y

+
∂V
∂z

= 0, (6)

where U, V are rational functions in x, y, z called “certificates”. These rational functions
are often quite large rational functions. This equation is called the telescoping equation.
Extracting the diagonal of a rational function amounts to calculating residues in several
complex variables, namely,

Diag
(

R(x, y, z)
)

=
∫
C

1
y z

· R
( x

y
,

y
z

, z
)

, (7)

where the cycle C is a vanishing cycle [55]. By performing the previous integration over a
cycle C on the LHS of the telescoping Equation (6), one will obtain (with the reasonable
assumption that the linear differential operator T commutes with the integration)

T · Diag
(

R(x, y, z)
)

+
∫
C

(∂U
∂y

+
∂V
∂z

)
= 0. (8)

Again, (with reasonable assumptions) one can expect the second term in (8) to be equal to
zero, thus yielding the equation

T · Diag
(

R(x, y, z)
)

= T ·
∫
C

1
y z

· R
( x

y
,

y
z

, z
)

= 0. (9)

In other words, the telescoper T represents a linear differential operator annihilating the
diagonal Diag(R). For the calculation of a diagonal, the cycle C has to be a vanishing cycle
(residue calculation). Note that the creative telescoping calculations giving as an output
the telescoper T and the two “certificates” U and V essentially amount to performing
differential algebra calculations (similar to integration by part for several complex variables).
Since these creative telescoping calculations are differential algebra eliminations, they are
totally and utterly blind to the cycle C. Consequently, even if one performs an integration
over a non-vanishing cycle, the telescoper T will also be such that

T · P = 0 where: P =
∫
C

1
y z

· R
( x

y
,

y
z

, z
)

, (10)

this integral being not necessarily equal to the diagonal Diag(R(x, y, z)) (which could be, for
instance, equal to zero). Equation (10) means that the telescoper annihilates all the periods
P .
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To sum-up: In order to calculate the diagonal of a rational function one can try, in a
very down-to-earth way, to obtain large enough series expansions of this diagonal from
multi-series expansion and then try a guessing approach to obtain the linear differential
operator annihilating the diagonal of a rational function, or one can perform the creative
telescoping approach that will provide this telescoper even if the diagonal is zero, or even
if it cannot be nicely defined because the rational function does not have a multi-Taylor
expansion: in this case, the telescoper annihilates periods corresponding to all the cycles, in
particular non-vanishing cycles.

2.3. Diagonals versus Telescopers: Vanishing Cycles versus Non-Vanishing Cycles
2.3.1. Diagonals versus Telescopers: A First Example

Let us first consider the following rational function of three variables:

R(x, y, z) =
1

−x − y − z2 . (11)

This rational function does not have a multi-Taylor expansion; thus, we cannot define the
diagonal of the rational function. This rational function has, however, a telescoper that is a
linear differential operator of order one, namely, 5 θ + 2, where θ = x Dx = x d/dx is the
homogeneous derivative. Let us now consider a slightly more general rational function

R(x, y, z) =
1

α − x − y − z2 . (12)

This rational function (12) has a multi-Taylor expansion, and one can, thus, obtain the first
terms of the diagonal of this rational function (12):

Diag
(

R(x, y, z)
)

=
1
α

+
30
α6 · x2 +

3150
α11 · x4 +

420420
α16 · x6 + · · · (13)

The α-dependent rational function (12) has an order-four α-dependent telescoper L4(α)

x2 · L4(α) = −5 · x2 · (5 θ + 2) · (5 θ + 4) · (5 θ + 6) · (5 θ + 8)

+16 · α5 · θ2 · (θ − 1)2, (14)

which has the following 4F3 hypergeometric function solution

1
α
· 4F3

(
[
1
5

,
2
5

,
3
5

,
4
5
], [

1
2

,
1
2

, 1],
3125
16 α5 · x2

)
. (15)

The series expansion of this 4F3 hypergeometric function (15) is in agreement with the
series expansion (13). In the α → 0 limit, the order-four α-dependent telescoper L4(α)
becomes the direct-sum:

−5 · x4 ·
(
(5 θ + 2)⊕ (5 θ + 4)⊕ (5 θ + 6)⊕ (5 θ + 8)

)
. (16)

We thus see, in this α → 0 limit, that one recovers, among the different factors in (16),
the order-one telescoper of the rational function (11), namely, 5 θ + 2. This first example is
a bit too simple, so let us consider another example.

2.3.2. Diagonals versus Telescopers: A Second Example

Let us now consider the rational function of three variables:

R(x, y, z) =
1

−x − y − z − x5 y
. (17)
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This rational function has a telescoper L4, which is a linear differential operator of order
four, which reads:

L4 = −(800000 x5 − 27) · x4 D4
x − (11200000 x5 + 27) · x3 D3

x

−15 · (2800000 x5 − 1) · x2 D2
x − 60 · (700000 x5 − 1) · x Dx

−12 · (437500 x5 + 9), (18)

or, introducing the homogeneous derivative θ = x Dx,

L4 = −50000 · x5 · (2 θ + 7) (2 θ + 5) (2 θ + 3) (2 θ + 1)

+3 · (3 θ + 1) (3 θ − 4) (θ − 3)2. (19)

The rational function (17) does not have a multi-Taylor expansion. We have a problem to
define the diagonal of the rational function (17). The analytic solutions of (18) or (19) are
thus just “Periods” of the rational function (17), i.e., integrals over a non-vanishing cycle
of the rational function (17). A solution of (18) or (19) is, for instance, the hypergeometric
function:

x3 · 4F3

(
[

7
10

,
9
10

,
11
10

,
13
10

], [1,
4
3

,
5
3
],

800000
27

· x5
)

. (20)

If one finds that the concept of diagonal is easier to understand, compared to“Periods”
over non-vanishing cycles that are not really defined (we just know they exist), such a
result may look a bit too abstract and thus slightly frustrating. In fact, one can recover some
contact with the easier concept of diagonals, performing some kind of “desingularization”.
Let us consider the more general α-dependent rational function of three variables:

R(x, y, z) =
1

α − x − y − z − x5 y
. (21)

It has a telescoper that is a linear differential operator of order four M4(α). The first terms
of the diagonal of that rational function (21) can easily be calculated. We have calculated
this order-four linear differential operator M4(α). It is a bit too large to be given here.
However, one remarks that this α-dependent order-four linear differential operator M4(α)
is actually related to the previous order-four linear differential operator L4, in the α → 0
limit:

M4(0) = −675000000 x11 · L4. (22)

To sum-up: The telescoper corresponding to “Periods” over a non-vanishing cycles can
be obtained from a one-parameter telescoper having clear-cut diagonal solutions (“Periods”
over a vanishing cycle).

2.4. The Devil Is in the Detail: The Number of Variables

Let us consider the diagonal of the following rational function of four variables

1
1 − α x − y − z − β · x u

. (23)

Its telescoper is, for any value of α, and for β ̸= 0, the order-two linear differential operator

L2 = (1 − 27 β · x) · x D2
x + (1 − 54 β · x) · Dx − 6 β, (24)

which has the following hypergeometric 2F1 solution:
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2F1

(
[
1
3

,
2
3
], [1], 27 β · x

)
. (25)

Recalling the definition of the diagonal of a rational function based on multi-Taylor
expansion, it is easy to see, based on this almost trivial example, that the various powers of
the product t = x y z u that the diagonal extracts require the occurrence of the variable
u, which only occurs in the denominator of (23), through the product x u , automatically
yielding the occurrence of the variable x. Consequently, any further occurrence of the
variable x, from the −α x monomial in the denominator of (23), is excluded. This explains
why the diagonal of (23) is actually blind to the −α x term. In other words, the diagonal of
the four variables rational function (23) is in fact the diagonal of a rational function of three
variables: y, z, and the product x u.

Remark 1. To take into account this problem, we will introduce the concept of an “effective number”
of variables. In the previous example, the number of variables is four but the “effective number” of
variables is three.

2.5. Understanding the Complexity of the Diagonal of a Rational Function
2.5.1. Order of the Linear Differential Operator and Number of Variables

The simplest example of a diagonal of rational function of n variables corresponds to
the diagonal of the rational function

1
1 − x1 − x2 − x3 · · · − xn

. (26)

The diagonal of (26) is annihilated by an order-(n − 1) linear differential operator with a
n−1Fn−2 hypergeometric solution

n−1Fn−2

(
[
1
n

,
2
n

,
3
n

, · · · ,
n − 1

n
], [1, 1, · · · , 1], nn · x

)
. (27)

This simple example may provide the prejudice that, for a given globally bounded se-
ries (36), the number of variables of the rational function is related to the (minimal) order
of the linear differential operator annihilating the series. One should note, however, for
the class of the above example, that the corresponding linear differential operator has
the Maximally Unipotent Monodromy property (MUM), which means that all its indicial
exponents (at the origin) of the operator are equal (see, for instance, [22,32]).

This result is reminiscent of the well-known 4F3([1/5, 2/5, 3/5, 4/5], [1, 1, 1], x) Can-
delas et al. hypergeometric series emerging in [3] for a particular Calabi–Yau manifold.
The simplest Calabi–Yau series (see, for instance, [18]) are 4F3 hypergeometric series like
4F2([1/2, 1/2, 1/2, 1/2], [1, 1, 1], x) or 4F2([1/5, 2/5, 3/5, 4/5], [1, 1, 1], x) (see equation 3.11
in [3]).

Let us recall that Calabi-operators [22], annihilating the Calabi–Yau series [18], are
(self-adjoint) order-four linear differential operators that have the Maximally Unipotent
Monodromy property (MUM) at x = 0: if one considers their formal series expansions at
x = 0, among the four formal series expansions, one is analytic (it actually corresponds
to our diagonals of rational functions); another one is a formal series with a ln(x)1, an-
other one is a formal series with a ln(x)2, and the last one is a formal series with a ln(x)3.
Accordingly, with ((26) yielding (27)), one would expect that the diagonal of rational func-
tion representation of a Calabi–Yau series (the solution of an order-four linear differential
operator) should require at least five variables for the rational function.
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2.5.2. Order of the Linear Differential Operator and Degree in the Variables

Let us now consider the diagonal of the following rational function of three variables

1
1 − x − α y − z2 , (28)

whose diagonal writes as a simple 4F3 hypergeometric solution:

4F3

(
[
1
5

,
2
5

,
3
5

,
4
5
], [1,

1
2

,
1
2
],

55

24 · α2 · x2
)

. (29)

In contrast with example (26), here, we just need, for the rational function, three
variables, instead of the expected five variables. Note, however, that the order-four linear
differential operator L4, annihilating this hypergeometric solution (29), does not have MUM.
As usual, this order-four linear differential operator is homomorphic to it adjoint with a
very simple order-two intertwiner:

L4 ·
(

x D2
x + Dx

)
=

(
x D2

x + Dx

)
· adjoint(L4). (30)

One thus expects [42] this order-four linear differential operator L4 to have a symplectic
differential Galois group included in Sp(4, C). Actually, the exterior square of this order-
four operator L4 has a simple rational function solution [42], namely, 1/x/(55 · x2 − 24).

Let us now consider the diagonal of the following rational function of three variables:

1
1 − x − α y − z3 . (31)

The linear differential operator annihilating this diagonal is an order-six linear differential
operator with a quite simple 6F5 hypergeometric solution:

6F5

(
[
1
7

,
2
7

,
3
7

,
4
7

,
5
7

,
6
7
], [1,

1
3

,
1
3

,
2
3

,
2
3
],

77

36 · α3 · x3
)

. (32)

Let us restrict ourselves to α = 1. The order-six linear differential operator, annihilating
the diagonal of (31), does not have MUM. One has three series analytic at x = 0: one of the
form x · (1 + 2377375/6561 x3 + · · · ), one of the form x2 · (1 + 16509584/32805 x3 + · · · ),
and the third one being the diagonal of the rational function which is the expansion of (32):

1 + 140 x3 + 84084 x6 + 64664600 x9 + 55367594100 x12 + 50356110752640 x15

+47606217704845800 x18 + 46236665756994672960 x21 + · · · (33)

One also has three other formal series solutions with a ln(x)1 but no ln(x)2 or ln(x)3.
As usual, this order-six linear differential operator is homomorphic to its adjoint with

a very simple order-four intertwiner:

L6 ·
(

x2 D4
x + 4 x D3

x + 2 D2
x

)
=

(
x2 D4

x + 4 x D3
x + 2 D2

x

)
· adjoint(L6). (34)

One expects [42] this order-six linear differential operator L6 to have a symplectic dif-
ferential Galois group included in Sp(6, C). Actually, the exterior square of this order-
six linear differential operator L6 has a simple rational function solution [42], namely,
1/x/(77 · x3 − 36).

Remark 2. This result can be generalized. Let us consider the rational function:

1
1 − x − y − zn . (35)
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The linear differential operator L(1)
2n , annihilating this diagonal, is an order-(2 n) linear differential

operator with a quite simple 2nF2n−1 hypergeometric solution:

2nF2n−1

(
[

1
2 n + 1

,
2

2 n + 1
,

3
2 n + 1

, · · · ,
2 n

2 n + 1
],

[1,
1
n

,
1
n

,
2
n

,
2
n

, · · · ,
n − 1

n
,

n − 1
n

],
(2 n + 1)(2 n+1)

n2 n · xn
)

. (36)

Let us also consider the linear differential operators L(m)
2n annihilating the diagonal of the rational

function: ( 1
1 − x − y − zn

)m
. (37)

One finds (using the Homomorphisms command in Maple) the following homomorphisms between
successive linear differential operators L(m)

2n :

Homomorphisms
(

L(m)
2n , L(m+1)

2n

)
= (2 n + 1) · x · Dx + m · n. (38)

In other words, one has the relations:

L(m+1)
2n ·

(
(2 n + 1) · θ + m · n

)
= Z1(m) · L(m)

2n , (39)

where Z1(m) is an order-one linear differential operator. The linear differential operator L(1)
2n is

simply homomorphic to its adjoint:

Homomorphisms
(

adjoint(L(1)
2n ), L(1)

2n

)
=

1
xn−1 · θ2 · (θ − 1)2 · (θ − 2)2 · (θ − 3)2 · · ·

(
θ − (n − 2)

)2
. (40)

Remark 3. With the previous, rather simple, examples we see that the order of the linear differential
operator annihilating the diagonal of a rational function is not related to the number of variables of
the rational function (or even to the number of “effective” variables see Section 2.4). Furthermore,
a given globally bounded series can be seen to be the diagonals of an infinite number of rational
functions of a certain number of variables, but also, in the same time, of other infinite number of
rational functions with a different number of variables. For a given globally bounded series, we can
find the (minimal order) linear differential operator annihilating this series. Having this (minimal
order) linear differential operator, the question is: can we find the minimal number of variables
necessary to see this globally bounded series as the diagonal of a rational function of that number of
variables? We will address these questions in a forthcoming paper.

3. Diagonals of Rational Functions: Should We Only Consider Rational Functions of the
Form 1/Q?

With P and Q multivariate polynomials (with Q(0) ̸= 0), the diagonals of the rational
functions P/Qk are, for fixed polynomial Q, and for arbitrary integer k, a finite dimensional
vectorial space related, as shown by Christol [44,45], to the de Rham cohomology (we are
thankful to P. Lairez for having clarified this point). There are so many cohomologies in
mathematics. For non-mathematicians, let us just say that the introduction of a cohomology
often amounts to seeing that “something” you expect, at first sight, to be infinite, for
instance, the number of solutions of a system of PDE’s (partial differential equations), is
in fact a finite set (for instance for D-finite systems of PDE’s). For physicists, not familiar
with de Rham cohomology, let us just say that this can be seen as a consequence of the
fact that these P/Qk rational functions are solutions of D-finite systems, which means that
these systems of PDE’s have a finite set of solutions of the form P/Qk. Being in such a
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“finite box” will force the telescopers of the diagonals of P/Qk and 1/Q to be related (by
homomorphisms). This requires one to find a “cyclic vector” in mathematicians wording.

Experimentally, if one considers the (minimal order) linear differential operators for the
diagonal of P/Qk and for the diagonal of 1/Q, these two linear differential operators are
actually homomorphic. Note that this experimental result, valid for diagonals (i.e., integrals
over vanishing cycles), is no longer valid for telescopers of rational functions with analytic
solutions corresponding to “periods”, n-fold integrals, over non-vanishing cycles. In this
case, we have a slight generalization of that homomorphism between telescopers P/Qk

and telescopers 1/Q, which will be described in the sequel (see Section 5.2 below).
It is true that the analysis of lattice Green functions (LGF) [65–68] in physics naturally

yields to diagonals of rational functions in the form R = 1/Q, where Q is a polynomial.
However, the other n-fold integrals, emerging in physics, are much more complex (for
instance, the χ(n) terms of the susceptibility of the two-dimensional Ising model [26]). The
lattice Green functions [32,65–69] and some Occam’s razor simplicity argument are not
sufficient to justify a bias of studying, quite systematically, rational functions of the form
R = 1/Q (as we often do). In fact, these de Rham cohomology arguments are the reason
why, for diagonals (and diagonals only), one can focus only on rational functions in the
form R = 1/Q, but since these arguments may look too esoteric for physicists, let us, in
a learn-by-example, pedagogical approach, provide examples showing that telescopers
of rational functions in the form R = 1/Qk are homomorphic to telescopers of rational
functions in the form R = 1/Q and then that telescopers of rational functions in the form
R = P/Q are homomorphic to telescopers of rational functions in the form R = 1/Q.

3.1. Diagonals of Rational Functions: R = 1/Qk Reducing to 1/Q

Let us denote Q the polynomial:

Q = 1 + x y + y z + z x + 3 · (x2 + y2 + z2). (41)

Let us denote L(n)
4 the telescopers of Diag(1/Qn)

L(n)
4 · Diag

( 1
Qn

)
= 0. (42)

One remarks that these telescopers are all of order four. One actually finds the following
homomorphisms between successive telescopers (42)

Homomorphisms
(

L(n)
4 , L(n+1)

4

)
= 3 x · Dx + 2 n. (43)

In other words, one has the relations:

L(n+1)
4 · (3 θ + 2 n) = Z1(n) · L(n)

4 , (44)

where Z1(n) is an order-one linear differential operator, with the intertwining relation (44)
yielding:

L(n+1)
4 · (3 θ + 2 n) · · · (3 θ + 6) · (3 θ + 4) · (3 θ + 2)

= Z1(n) · · · Z1(3) · Z1(2) · Z1(1) · L(1)
4 . (45)

One deduces:

2n · n! · Diag
( 1

Qn+1

)
= (3 θ + 2 n) · · · (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag

( 1
Q

)
. (46)
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In other words, the diagonal of 1/Qn+1 can be simply deduced from the diagonal of 1/Q.

Remark 4. The product (3 θ + 2 n) · · · (3 θ + 6) · (3 θ + 4) · (3 θ + 2) in the intertwining
relation (45) is in fact a direct sum:

(3 θ + 6) · (3 θ + 4) · (3 θ + 2)

= 27 x3 · LCLM
(
(3 θ + 6), (3 θ + 4), (3 θ + 2)

)
. (47)

One has, for instance, the relations:

2 · Diag
( 1

Q2

)
= (3 θ + 2) · Diag

( 1
Q

)
8 · Diag

( 1
Q3

)
= (3 θ + 4) · (3 θ + 2) · Diag

( 1
Q

)
(48)

48 · Diag
( 1

Q4

)
= (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag

( 1
Q

)
384 · Diag

( 1
Q5

)
= (3 θ + 8) · (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag

( 1
Q

)
.

Of course, since the telescoper of Diag
(

1
Q

)
is an order-four linear differential operator, the order-

(k − 1) product in front of Diag
(

1
Q

)
in (48) can be, for Diag

(
1

Qk

)
, reduced to an order-three

linear differential operator (the simple products (3 θ + 2 · (k − 1)) · · · (3 θ + 4) · (3 θ + 2) in
(48) being taken “modulo” L4, for k ≥ 5).

3.2. Diagonals of Rational Functions: R = P/Q Reducing to 1/Q

Experimentally, one finds, quite often, that the telescoper of a rational function of the
form R = P/Q and the telescoper of the simple rational function 1/Q with its numerator
normalized to 1 are homomorphic. The intertwiner M occurring in the homomorphisms
of these two telescopers yields a relation of the form

Diag
( P

Q

)
= M · Diag

( 1
Q

)
, (49)

yielding the prejudice that the diagonals of the rational functions of the form P/Q should
reduce to the “simplest” diagonal, namely, Diag(1/Q). In fact, things are slightly more
subtle, as will be seen below. In fact, one is looking for a cyclic vector, and the cyclic vector
is not necessarily Diag(1/Q) (see relation (58) and (59) below).

Sticking with the polynomial (41), one has

L(1)
4 · Diag

( 1
Q

)
= 0, (50)

and considering the diagonal of x y/Q, one obtains an order-five differential operator with
unique factorization:

L(xy)
4 · Dx · Diag

( x y
Q

)
= 0. (51)

The homomorphisms between L(1)
4 and L(xy)

4 amount to seeking for linear differen-
tial operators that map the solutions of one differential operator into the other. These
relations are

L(xy)
4 · Q3 = K3 · L(1)

4 , (52)
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and

L(1)
4 · J3 = P3 · L(xy)

4 , (53)

where the intertwiners Q3, K3, J3, and P3 are linear differential operators of order three.

Note that the above two relations show [23] that the linear differential operator J3 · Q3

(resp. Q3 · J3) leaves the solutions of L(1)
4 (resp. L(xy)

4 ) unchanged,

J3 · Q3 · Diag
( 1

Q

)
= Diag

( 1
Q

)
(54)

= 1 − 195 x2 + 135225 x4 − 143647728 x6 + 182699446545 x8

−252437965534755 x10 + 364803972334074000 x12 + · · ·

and:

Q3 · J3 · Dx · Diag
( x y

Q

)
= Dx · Diag

( x y
Q

)
(55)

= 16 x − 38400 x3 + 71593536 x5 − 126120445440 x7

+218901889206000 x9 − 378463218115207680 x11 + · · · (56)

Equivalently, the adjoint of P3 · K3 (resp. the adjoint of K3 · P3) leaves the solutions of the
adjoint of L4 (resp. the adjoint of L(xy)

4 ) unchanged.
Introducing the differential operator Dx on both sides of (53), and using (51),

one obtains:

L(1)
4 · J3 · Dx · Diag

( x y
Q

)
= P3 · (L(xy)

4 · Dx) · Diag
( x y

Q

)
. (57)

The RHS of (57) cancels and, therefore, the LHS of (57), according to (50), leads to

Diag
( 1

Q

)
= J3 · Dx · Diag

( x y
Q

)
. (58)

Also, acting by both sides of (52) on Diag(1/Q), using (50) and keeping (51) in mind leads
to:

Dx · Diag
( x y

Q

)
= Q3 · Diag

( 1
Q

)
. (59)

With these relations, we see that the derivative of the diagonal of xy/Q simply reduces
to the diagonal of 1/Q, but the diagonal of xy/Q does not simply reduce to the diagonal
of 1/Q. Here, 1/Q is not the “cyclic vector”.

4. Diagonals of Algebraic Functions
4.1. Diagonals of Algebraic Functions: A First Example

Let us consider the algebraic functions:

A(x, y) =
1(

1 − α · (x + y)
)1/n n = 2, 3, · · · (60)

The telescopers of these algebraic functions are order-two linear differential operators with
the simple 2F1 hypergeometric solution:

2F1

(
[

1
2 n

,
n + 1

2 n
], [1], 4 · α2 · x

)
= 1 +

n + 1
n2 α2 x +

(1 + n) · (1 + 2 n) · (1 + 3 n)
4 · n4 α4 x2 + · · · (61)
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Note that, among these 2F1 hypergeometric functions, the n = 2, n = 3, n = 4, and
n = 6 cases correspond to modular forms (see Appendix B in [16]).

These hypergeometric series can be seen to be, as they should, the diagonals of the
algebraic functions (60). In particular, for n = 2, one obtains:

2F1

(
[
1
4

,
3
4
], [1], 4 · α2 · x

)
=

( 1
1 − 3 α2 x

)1/4
· 2F1

(
[

1
12

,
5

12
], [1],

27
4

· α4 · x2 · (1 − 4 α2 x)
(1 − 3 α2 x)3

)
(62)

= 1 +
3
4

α2 x +
105
64

α4 x2 +
1155
256

α6 x3 +
225225
16384

α8 x4 + · · ·

For n = 2 , it is natural to associate the denominator of (60) with the algebraic surface

z2 = 1 − α · (x + y), (63)

and, following ideas developed in [40], since calculating the diagonal of the function (60)
for n = 2 amounts, in the multi-Taylor expansion, to extracting the terms depending only
on the product p = x y, take the intersection of the algebraic surface (63) with the surface
p = x y. This amounts, for instance, to eliminating y = p/x in (63), thus obtaining the
algebraic curve

−α · x2 − x z2 − α · p + x = 0, (64)

which turns out to be an elliptic curve (genus-one). Calculating the j-invariant of the elliptic
curve (64), one deduces the following Hauptmodul

H =
1728

j
=

27
4

· α4 · p2 · (1 − 4 α2 p)
(1 − 3 α2 p)3 , (65)

which is actually the Hauptmodul pullback in (62). This example gives some hope that the
effective algebraic geometry approach of diagonals of rational functions, detailed in [40],
could also work with diagonals of algebraic functions.

For n ̸= 2 , it is tempting to associate the denominator of (60) with the algebraic
surface

zn = 1 − α · (x + y), (66)

and after the elimination y = p/x in (63), the algebraic curve

−α · x2 − x zn − α · p + x = 0, (67)

but such algebraic curves turn out to be of the genus g = n − 1. Understanding the
emergence of modular forms for the n = 3, n = 4, and n = 6 subcases of (61) from,
respectively, genus 2, 3, and 5 algebraic curves is an open (and challenging) problem.

Remark 5. From the definition of the diagonals of rational or algebraic functions, it is straight-
forward to see that the diagonals of the algebraic functions (60) are series of the variable α2 x.
Consequently, the previous calculations for a particular value of α are sufficient to recover the
previous results valid for arbitrary α. For that reason, we will, in the next example, take specific
values of the parameters.
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4.2. Diagonals of Algebraic Functions: A Second Example

Let us consider the algebraic functions:

A(x, y) =
1(

1 − 3 · (x + y) + 5 · (x2 + y2)
)1/n , n = 2, 3, · · · (68)

For n = 2, the telescoper of the algebraic function (68) is an order-two linear differential
operator with the pullbacked 2F1 hypergeometric solution:

1
(1 − 30 x)1/2 · 2F1

(
[
1
4

,
3
4
], [1], −4 · (11 − 200 x) · x

(1 − 30 x)2

)
=

1
(1 − 27 x + 300 x2)1/4 (69)

× 2F1

(
[

1
12

,
5

12
], [1],

27
4

· x2 · (11 − 200 x)2 · (1 − 16 x + 100 x2)

(1 − 27 x + 300 x2)3

)
= 1 +

27
4

x +
4305

64
x2 +

199395
256

x3 +
167040825

16384
x4 + · · ·

With multi-Taylor series expansion, it is straightforward to see that the hypergeometric
series is actually the diagonal of the algebraic function (68) for n = 2.

As in the previous subsection, we introduce the algebraic surface

z2 = 1 − 3 · (x + y) + 5 · (x2 + y2), (70)

and, again, eliminate y = p/x in (70), thus obtaining the algebraic curve

5 x4 − x2 z2 − 3 x3 + 5 p2 − 3 p x + x2 = 0, (71)

which turns out to be an elliptic curve (genus-one). Calculating the j-invariant of the elliptic
curve (71), one deduces the following Hauptmodul:

H =
1728

j
=

27
4

· p2 · (11 − 200 p)2 · (1 − 16 p + 100 p2)

(1 − 27 p + 300 p2)3 , (72)

which is actually the Hauptmodul pullback in (69). Again, this last example gives some hope
that the effective algebraic geometry approach of diagonals of rational functions, detailed
in [40], could also work with diagonals of algebraic functions. For n ̸= 2, it is tempting to
introduce the algebraic surface

zn = 1 − 3 · (x + y) + 5 · (x2 + y2), (73)

and, again, eliminate y = p/x in (70), thus obtaining the algebraic curve

5 x4 − x2 zn − 3 x3 + 5 p2 − 3 p x + x2 = 0, (74)

which is an algebraic curve of genus g = 2 n − 3 for n even, and g = 2 n − 2 for n odd.
For n = 3 (genus 4), the telescoper of the algebraic function (68) is an (irreducible) order-
three linear differential operator that is not homomorphic to its adjoint. The interpretation
of such non-self-dual order-three linear differential operators from these higher genus
algebraic curves is a totally open problem.
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5. Understanding the Emergence of Selected Differential Galois Groups for Diagonals
of Rational Functions

Experimentally, one finds that almost all the linear differential operators annihilating
the diagonal of a rational or algebraic function are homomorphic to their adjoint [41]. For
instance, recalling an example in [41]

4F3

(
[
1
3

,
1
3

,
2
3

,
2
3
], [

1
2

, 1, 1],
729

4
· x

)
= Diag

( 1
1 − (1 + u) · (x + y + z)

)
= 1 + 18 x + 1350 x2 + · · · (75)

we find the corresponding order-four linear differential operator

x · L4 = 2 · x · (3 θ + 2)2 · (3 θ + 1)2 − 81 · θ3 · (2 θ − 1), (76)

which can be seen to be non-trivially homomorphic to its adjoint:

L4 ·
(

θ +
1
2

)
=

(
θ +

1
2

)
· adjoint(L4). (77)

Beyond diagonals of rational or algebraic functions, one also finds experimentally that
almost all the telescopers of rational or algebraic functions are homomorphic to their
adjoint. This homomorphism to the adjoint property is so systematic that, following a
mathematician’s prejudice, one can imagine that this is nothing but the Poincaré duality. The
Poincaré duality [43] works for any algebraic variety: the diagonal of any rational or alge-
braic function should yield self-dual linear differential operators in the sense that they are
homomorophic to their adjoint. This is not the case. It turns out that the linear differential
operators of some nFn−1, candidates to rule-out Christol’s conjecture [44,45,48], precisely
provide such rare examples of linear differential operators annihilating the diagonal of
rational or algebraic functions that are not homomorphic to their adjoint. Among these
candidates, a large set has been seen to actually be composed of diagonals of rational or
algebraic functions [48,70].

5.1. A Recall on Christol’s Conjecture

Let us recall one of the 3F2 hypergeometric candidates introduced to rule out Christol’s
conjecture:

3F2

(
[
2
9

,
5
9

,
8
9
], [

2
3

, 1], 27 · x
)

(78)

= 1 +
40
9

· x +
5236

81
· x2 +

7827820
6561

· x3 +
1444588600

59049
· x4 + · · ·

It is a globally bounded series (change x → 33 · x to obtain a series with integer coeffi-
cients). In fact, it actually corresponds [48] to the diagonal of the algebraic function:

(1 − y − z)1/3

1 − x − y − z
. (79)

The telescoper of the algebraic function (79) is the order-three linear differential operator,
which has (78) as a solution. This order-three linear differential operator is not homomorphic
to its adjoint. We have a SL(3, C) differential Galois group.

Other similar examples are, for instance,

3F2

(
[
1
9

,
4
9

,
7
9
], [

2
3

, 1], 27 · x
)

= Diag
( (1 − y − 2 z)2/3

1 − x − y − z

)
, (80)
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or

3F2

(
[
2
9

,
5
9

,
8
9
], [

5
6

, 1], 27 · x
)

= Diag
( (1 − y − 2 z)1/3

1 − x − y − z

)
, (81)

or even the 4F3 hypergeometric function:

4F3

(
[
2
9

,
5
9

,
8
9

,
1
2
], [

1
3

,
5
6

, 1], 27 · x
)

= Diag
( (1 − x)1/3

1 − x − y − z

)
. (82)

Again, these three diagonals, (80), (81), and (82), are solutions of telescopers that are not
homomorphic to their adjoint.

These examples are taken in a list of 116 potential counter-examples constructed in
2011 by Bostan et al. [25]. Note that, more recently, 38 cases in that list of 116 have actually
been found to be diagonals of algebraic functions [70]. The two relations (80) and (81) can
be generalized [70,71] as follows:

4F3

(
[
1 − (R + S)

3
,

2 − (R + S)
3

,
3 − (R + S)

3
,

1 − S
2

],

[
1 − (R + S)

2
,

2 − (R + S)
2

, 1], 27 · x
)

= Diag
( (1 − x)R · (1 − x − 2 y)S

1 − x − y − z

)
, (83)

where R and S are rational numbers. These diagonals are annihilated by the order-four
linear differential operator:

2 · x · (S − 1 − 2 θ) · (S + R − 3 θ) · (S + R − 1 − 3 θ) · (S + R − 2 − 3 θ)

−θ2 · (S + R + 1 − 2 θ) · (S + R − 2 θ). (84)

This order-four linear differential operator is not homomorphic to its adjoint. Other more
involved similar relations can be found in section 2.1 of chapter 2 of [70].

Experimentally, we found, after quite systematic calculations of thousands of telescop-
ers of rational or algebraic functions, that the telescopers are (almost always) homomorphic
to their adjoint, or if they are not irreducible, that each of the factors of these telescopers
are homomorphic to their adjoint. Such previous examples like (78), (79), or (80) and (81),
curiously related to Christol’s conjecture, provide rare examples of diagonals of algebraic
functions such that their corresponding telescopers are not homomorphic to their adjoint.
We have similar results with the algebraic function:

x1/3

1 − x − y − z
. (85)

In order to understand this “duality-breaking” (the telescoper is not self-adjoint up to
homomorphisms), it is tempting to introduce the (algebraic) function:

1
1 − x − y − z − α · x1/3 . (86)

However, in order to avoid the introduction of rational functions of n-th roots of variables,
we will introduce the diagonal of the following rational function:

1
1 − x3 − y3 − z3 − α · x

. (87)
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5.2. Understanding the Emergence of Selected Differential Galois Groups for Almost All the
Diagonal of Rational Functions

The linear differential operator annihilating the diagonal of the rational function (87)
is a (quite large) order-eight linear differential operator L8(α), depending on the parameter
α, which is homomorphic to its adjoint with an order-six intertwiner. This order-eight linear
differential operator L8(α) is irreducible except at α = 0. For α = 1, α = 2, and α = 3
the order-eight linear differential operator L8(α) is homomorphic to its adjoint with an
order-six intertwiner. The differential Galois group should, thus, be included in Sp(8, C).
This is confirmed when calculating [42] the exterior square of L8(α). This exterior square
has a rational function solution Pa/x/Qa, where the polynomials Pa and Qa read:

Pa = (4 α3 − 27) · (20 α3 − 81) + 18 · (−6561 − 891 α3 + 500 α6) · x3 + 1594323 x6,

Qa = 387420489 x9 − 531441 · (81 + 100 α3) · x6 (88)

+(1594323 − 2972133 α3 + 729000 α6 − 50000 α9) · x3 − 27 · (4 α3 − 27)2.

Let us now take the α → 0 limit of the order-eight linear differential operator L8(α).
In this limit, the order-eight linear differential operator just becomes the direct-sum

L2 ⊕ L3 ⊕ M3, (89)

where the order-two linear differential operator L2 has the 2F1 hypergeometric solution

2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
, (90)

where the order-three linear differential operator L3 has the 3F2 hypergeometric function
solution

3F2

(
[
5
9

,
8
9

,
11
9
], [

2
3

, 1], 27 x3
)

, (91)

and where the order-three linear differential operator M3 has the 3F2 hypergeometric
function solution:

3F2

(
[
7
9

,
10
9

,
13
9
], [

1
3

, 1], 27 x3
)

. (92)

These two order-three linear differential operators, similarly to the previous example
(78), are not homomorphic to their adjoint: they break the self-adjoint duality (up to
homomorphisms of operators) and thus have a SL(3, C) differential Galois group.

These two hypergeometric series are exactly on the same footing as (78): they are
globally bounded series (just change x3 → 33 x3 in order to obtain a series with integer coef-
ficients), and their respective order-three linear differential operators are not homomorphic
to their adjoint, their differential Galois group being SL(3, C). Let us note, however, that
the order-three linear differential operator L3 is actually homomorphic to the adjoint of M3,
and of course the order-three linear differential operators M3 is homomorphic to the adjoint
of L3.

If, from an algebraic geometry perspective [40], one sees the fact that all our linear
differential operators, annihilating diagonals of rational functions, are homomorphic to
their adjoint as the differential algebra expression of the Poincaré duality on the algebraic
varieties corresponding to the denominators of our rational functions [40], the fact that this
Poincaré duality is broken for L3 or M3 is, in fact, restored in the bigger picture (87) with the
linear differential order-eight operator. In the α → 0 limit, we see that these two linear
differential operators breaking the duality actually emerge in a dual pair, thus restoring the
duality. For instance, if one focuses on L6 = L3 ⊕ M3 in (90), one finds easily that this
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order-six linear differential operator is homomorphic to its adjoint. Its exterior square has
the following rational function solution:

4 + 621 x3

(1 − 27 x3)3 · x
. (93)

Since these calculations are in the α → 0 limit, let us expand, in α, the rational
function (87):

1
1 − x3 − y3 − z3 − α · x

=
1

1 − x3 − y3 − z3 +
x

(1 − x3 − y3 − z3)2 · α

+
x2

(1 − x3 − y3 − z3)3 · α2 +
x3

(1 − x3 − y3 − z3)4 · α3

+
x4

(1 − x3 − y3 − z3)5 · α4 + · · · (94)

The diagonal of a sum is clearly the sum of the diagonals. Thus, the diagonal of the LHS
of (94) will be the sum of the various rational function terms in αn in the RHS of (94). The
diagonal of the α1 term in the α-expansion (94)

x
(1 − x3 − y3 − z3)2 , (95)

is clearly equal to zero since the diagonal extracts, in the multi-Taylor series, the terms in
the product p = x y z, or, in this case, the terms in the product x3 y3 z3. Similarly, the
diagonal of the α2 term in the α-expansion (94)

x2

(1 − x3 − y3 − z3)3 , (96)

is also zero, but the diagonal of the α3 term

x3

(1 − x3 − y3 − z3)4 , (97)

is not zero. Actually, this last diagonal reads:

−1
9
· 1 + 216 x3

(1 − 27 x3)3 · x · d
dx 2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
−18 · x3

(1 − 27 x3)2 · 2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
(98)

= −20 x3 − 1680 x6 − 92400 x9 − 4204200 x12 − 171531360 x15 + · · ·

and is annihilated by an order-two operator M2.
We have a different story with telescopers. Since the telescoper of a sum of rational

functions is the direct sum (LCLM) of the telescopers of these rational functions (or at least
is a rightdivisor of the LCLM of the telescopers), let us consider the telescopers of the first
five terms in the RHS of (94). The telescoper of the first term is, of course, the order-two
linear differential operator L2 annihilating the diagonal of this rational function. The
telescoper of the second term (in α1) is the previous order-three linear differential operator
L3. The telescoper of the third term (in α2) is exactly the previous M3. The telescoper of
the fourth term (in α3) is the order-two linear differential operator M2. The telescoper of
the sum of the first orders in α in the expansion (94)

1
1 − x3 − y3 − z3 +

x
(1 − x3 − y3 − z3)2 · α +

x2

(1 − x3 − y3 − z3)3 · α2, (99)
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is actually the LCLM of the three telescopers L2, L3, and M3 , which is precisely the α → 0
limit of the order-eight linear differential operator.

5.3. Revisiting 1/Q → P/Qk for Telescopers

The next terms in the α-expansion (94), namely, the terms in α4+3 n with n = 0, 1, · · ·

x4+3 n

(1 − x3 − y3 − z3)5+3 n , (100)

have telescopers homomorphic to the telescoper L3 for (95). Similarly, considering the
α-expansion (94), namely, the terms in α5+3 n with n = 0, 1, · · ·

x5+3 n

(1 − x3 − y3 − z3)6+3 n , (101)

have telescopers homomorphic to the telescoper M3 for (96). Finally, the terms in α3+3 n

with n = 0, 1, · · ·

x3+3 n

(1 − x3 − y3 − z3)4+3 n , (102)

have telescopers homomorphic to the telescoper L2, generalizing the result (98) for n = 0.
This last sequence of telescopers can be understood from the ideas sketched in
Sections 3.1 and 3.2 for diagonals (changing, for instance, (x, y, z) into (x3, y3, z3)). How-
ever, we see that these ideas do not work anymore when we compare the telescopers
for (100) (resp. the telescopers for (101)) with the telescopers for (102). These different
telescopers are not homomorphic. They correspond to three different sequences of telescopers
of a different nature, corresponding to three hypergeometric functions of quite a different
nature:

2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
, 3F2

(
[
7
9

,
10
9

,
13
9
], [

1
3

, 1], 27 x3
)

, 3F2

(
[
5
9

,
8
9

,
11
9
], [

2
3

, 1], 27 x3
)

.

Accordingly, similar α-dependent examples are sketched in Appendix A.

To sum-up: The ideas sketched in Sections 3.1 and 3.2 for diagonals can be generalized
to telescopers (which may correspond to vanishing cycles, i.e., diagonals), with the caveat
that the unique “root” rational function 1/Q has to be replaced by a finite set of rational
functions (1/Q1, 1/Q2, 1/Q3 in our previous example).

6. An Infinite Number of Birational Symmetries of the Diagonals and Telescopers

Let us consider the simplest example of the non-trivial diagonal of rational function,
namely, the diagonal of the rational function of three variables:

R(x, y, z) =
1

1 − x − y − z
. (103)

Let us consider the birational transformation B:

B : (x, y, z) −→
(

x, y · (1 + 3 x + 7 x2),
z

1 + 3 x + 7 x2

)
. (104)

It is birational because its compositional inverse is also a rational function:

(x, y, z) −→
(

x,
y

1 + 3 x + 7 x2 , z · (1 + 3 x + 7 x2)
)

. (105)
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Note that this birational transformation preserves the product p = x y z, as well as the
neighbourhood of the point (x, y, z) = (0, 0, 0). This birational transformation is an
infinite order transformation. The composition of this transformation n times gives:

(x, y, z) −→
(

x, y · (1 + 3 x + 7 x2)n,
z

(1 + 3 x + 7 x2)n

)
. (106)

The rational function (103), transformed by the (infinite order) birational transformation
(104), reads:

RB(x, y, z) = R
(

x, y · (1 + 3 x + 7 x2),
z

1 + 3 x + 7 x2

)
=

1
1 − x − y · (1 + 3 x + 7 x2) − z/(1 + 3 x + 7 x2)

. (107)

With the multi-Taylor expansion of (107), one finds easily that the diagonals of (103) and
(107) are actually identical.

More generally, let us consider

Bx : (x, y, z) −→
(

x, y · Q1(x),
z

Q1(x)

)
, (108)

where Q1(x) is a rational function (see, however, Section 6.4) with a Taylor expansion such
that Q1(0) ̸= 0. One also finds for any such rational function Q1(x) that the diagonals
of (103) and (107) are actually identical. This can be seen from the multi-Taylor expansion
of (107):

RB(x, y, z) = ∑
m

∑
n

∑
l

am,n,l · xm · yn · Q1(x)n · zl · Q1(x)−l (109)

= ∑
m

am,m,m · (x y z)m + ∑
(m,n,l) ̸= (m,m,m)

am,n,l · xm · yn · zl · Q1(x)n−l .

The second triple sum can be decomposed into the terms such that n ̸= l, which cannot
contribute to the diagonal (which extracts terms in p = x y z and thus terms in the product
y z) and the n = l terms (such that the Q1(x)n−l factor in (109) disappear):

∑
m ̸= n

am,n,n · xm · yn · zn. (110)

This last sum (110), which excludes the power of x to be equal to the power of the prod-
uct y z, cannot contribute to the diagonal. We have thus proved that the diagonals of
(103) and (107) are equal.

Of course, there is nothing particular with the variable x. We can also introduce other
birational transformations that single out, respectively, y and z:

By : (x, y, z) −→
(

x · Q2(y), y,
z

Q2(y)

)
, (111)

and

Bz : (x, y, z) −→
(

x · Q3(z),
y

Q3(z)
, z

)
, (112)

for any rational functions Q2(x) and Q3(x) with a Taylor expansion such that
Q2(0) ̸= 0 and Q3(0) ̸= 0. We can compose these birational transformations (108),
(111) and (112), in any order and change the various Q1(x), Q2(x), and Q3(x) at each step.
Thus, we obtain quite a large infinite set of birational transformations preserving the prod-
uct p = x y z and the neighbourhood of the point (x, y, z) = (0, 0, 0). Since the product
p = x y z is preserved, let us eliminate (for instance) the variable z = p/x/y. The three
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previous birational transformations (108), (111), and (112), on the three variables x, y, z
become birational transformations depending on a parameter p, of only two variables x, y:

B̃x : (x, y) −→
(

x, y · Q1(x)
)

, (113)

B̃y : (x, y) −→
(

x · Q2(y), y
)

, (114)

and

B̃z : (x, y) −→
(

x · Q3

( p
x y

)
, y/Q3

( p
x y

))
. (115)

Composing these birational transformations of two variables (113), (114), and (115), in any
order and changing the various Q1(x), Q2(x), and Q3(x) at each step, one obtains that
way a quite large subset of the (huge set of) Cremona transformations [49,72].

Remark 6. Of course there is nothing specific about the particular simple example (103) of the
rational function. The previous birational transformations (113), (114), and (115) are symmetries
of the diagonals of any rational function of three variables. Furthermore, there is nothing specific
about rational function of three variables. We can generalize such birational transformations for the
diagonal of the rational function of n variables, for any number of variables n.

6.1. Non-Birational Symmetries for Diagonals
6.1.1. Monomial Transformation

Let us consider the (non-birational) monomial transformation:

M : (x, y, z) −→
(

x, x2 y2, y z3
)

. (116)

By performing this monomial transformation (116) on the rational function (103), one
obtains the new rational function:

RM(x, y, z) = R
(

x, x2 y2, y z3
)

=
1

1 − x − x2 y2 − y z3 . (117)

The calculation of the telescoper of (117) gives an order-two linear differentizal operator
that has the 2F1 hypergeometric series solution:

2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
= 1 + 6 x3 + 90 x6 + 1680 x9 + 34650 x12

+756756 x15 + 17153136 x18 + · · · (118)

One verifies easily, that the diagonal of the multi-Taylor expansion of (117), is actually the
2F1 hypergeometric series (118). This series identifies with the diagonal of (103), where x is
changed into x3, by the monomial transformation (116).

6.1.2. Non-Birational Transformation

Let us now consider the non-birational “monomial-like” transformation

B : (x, y, z) −→
(

x, x2 y2 · (1 + 3 x),
y z3

1 + 3 x

)
. (119)
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By performing this non-birational monomial transformation (119) on the rational func-
tion (103), one obtains the new rational function

RB(x, y, z) = R
(

x, x2 y2 · (1 + 3 x),
y z3

1 + 3 x

)
=

1
1 − x − x2 y2 · (1 + 3 x) − y z3/(1 + 3 x)

. (120)

The calculation of the telescoper of (120) gives an order-two linear differential operator that
has, again, the 2F1 hypergeometric series solution:

2F1

(
[
1
3

,
2
3
], [1] 27 x3

)
= 1 + 6 x3 + 90 x6 + 1680 x9

+34650 x12 + 756756 x15 + 17153136 x18 + · · · (121)

For the multi-Taylor expansion of (120), one verifies easily that its diagonal is the 2F1
hypergeometric series (121). This result can be understood from the results on (117) and
the diagonal-preservation results on the birational transformations (108), (111), and (112).

Consequently, we have another infinite set of (non-birational) transformations such
that the diagonal of a rational function is changed into the diagonal of that rational function
where x is changed into xN .

6.2. Birational Symmetries for Telescopers

Recalling the creative telescoping Equation (6) and (9), we have verified experimentally,
on thousands of examples, that the previous birational transformations generated by (108),
(111) and (112), are actually compatible with the creative telescoping Equations (6) and (9).
Note however, in the birationally transformed creative telescoping equations, that if the
telescoper does remain invariant (even if the rational function has not a multi-Taylor expansion),
the two “certificates” U and V are transformed in a very involved way (they become quite
large rational functions).

6.2.1. Birational Symmetries not Preserving (x, y, z) = (0, 0, 0)

Let us consider the involutive birational transformation:

I : (x, y, z) −→
( 1

x
,

1
y

, x2 y2 z
)

. (122)

This involutive birational transformation transforms the rational function (103) into:

RI(x, y, z) = − x y
x2 y3 z − x y + x + y

. (123)

The calculation of the telescoper of (123) gives the same telescoper as the telescoper of (103),
whose diagonal is the hypergeometric series:

2F1

(
[
1
3

,
2
3
], [1], 27 x

)
= (1 − 24 x)−1/4 · 2F1

(
[

1
12

,
5

12
], [1],

1728 x3 · (1 − 327 x)
(1 − 24 x)3

)
(124)

= 1 + 6 x + 90 x2 + 1680 x3 + 34650 x4 + 756756 x5 + 17153136 x6 + · · ·

The hypergeometric series (124) (which is equal to the diagonal of (103)), is, here, just an
analytical solution of the telescoper of (123), that is, a “Period” of (123) but corresponding
to a non-vanishing cycle since (123) does not have a multi-Taylor expansion.
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6.2.2. Birational Symmetries from Collineations

Let us recall Noether’s theorem [49,73,74] on the decomposition [75] of Cremona
transformations. Noether’s theorem shows that any Cremona transformation can be seen
as the composition [49,75] of collineation transformations and of the Hadamard inverse
transformation:

(x, y) −→
( 1

x
,

1
y

)
. (125)

Let us consider Cremona transformations preserving (x, y) = (0, 0):

(x, y) −→
( x

1 − x + 2 y
,

y
1 − x + 2 y

)
. (126)

With this theorem in mind, since we have already considered the involutive transforma-
tion (122) corresponding to the Hadamard inverse (125), let us just introduce the following
birational transformation associated with the collineation (126):

(x, y, z) −→
( x

1 − x + 2 y
,

y
1 − x + 2 y

, z · (1 − x + 2 y)2
)

. (127)

This birational transformation (associated with collineations) is an (infinite order) transfor-
mation. It preserves (x, y, z) = (0, 0, 0) and the product p = x y z. Let us perform this
birational transformation (127) on the rational function (103). One obtains a new rational
function whose telescoper is an order-four linear differential operator L4, which is the
product of two order-two linear differential operator M2 and N2: L4 = M2 · N2. The
order-two linear differential operator M2 is (non-trivially) homomorphic to the order-two
telescoper of the rational function (103). The second order-two linear differential oper-
ator N2 corresponds to algebraic functions. For such transformations, associated with
collineations, we see that the telescoper is not preserved, we just have a (non-trivial) ho-
momorphism property. The example (127) is revisited in detail in Appendix B.4. More
examples of birational symmetries for telescopers, associated with collineations, are given
in Appendix B. These examples illustrate the complexity of the homomorphism.

6.3. Algebraic Geometry Comments on These Birational Symmetries

The diagonal of the rational function (103) is the hypergeometric series:

2F1

(
[
1
3

,
2
3
], [1], 27 x

)
= (1 − 24 x)−1/4 · 2F1

(
[

1
12

,
5

12
], [1],

1728 x3 · (1 − 327 x)
(1 − 24 x)3

)
(128)

= 1 + 6 x + 90 x2 + 1680 x3 + 34650 x4 + 756756 x5 + 17153136 x6 + · · ·

The algebraic curve, associated with the denominator of the rational function (103), is
the genus-one algebraic curve (elliptic curve):

1 − x − y − p
x y

= 0 or: − x2 y − x y2 + x y − p = 0. (129)

The calculation of its j-invariant gives the following Hauptmodul:

H =
1728

j
=

1728 p3 · (1 − 27 p)
(1 − 24 p)3 , (130)

which is exactly the Hauptmodul pullback in (128).
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Let us consider the rational function (107); the algebraic curve corresponding to
eliminate z = p/x/y in the denominator of (107) reads:

−49 x5 y2 − 42 x4 y2 − 7 x4 y − 23 x3 y2 + 4 x3 y − 6 x2 y2

+2 x2 y − x y2 + x y − p = 0. (131)

This algebraic curve is a genus-one algebraic curve (elliptic curve), and the calculation
of its j-invariant gives the same Hauptmodul pullback in (128) as the Hauptmodul (130)
for (129). This is in agreement with the fact that the diagonals of (103) and (107) are equal.
At first sight, the fact that (131) is an elliptic curve is not totally obvious; however, it is a
consequence of the fact that (129) and (131) are birationally equivalent elliptic curves (since
one obtains one from the other one from a birational transformation). Consequently, they
should have the same j-invariant.

This kind of remark will be seen as obvious, or slightly tautological, for an algebraic
geometer; however, as far as down-to-earth computer algebra calculations of diagonals
of rational functions or telescopers of rational functions are concerned, it becomes more
and more spectacular for more complicated birational transformations generated by the
composition of birational transformations like (108), (111), and (112).

More generally, the previous birational transformations preserving the product
p = x y z, p = x y z u, . . . occurring in the diagonals will preserve the algebraic ge-
ometry description of the diagonal of rational functions [40]. For instance, the genus-two
curves associated with the split Jacobians situation we have encountered in [40] (which
corresponds to products of elliptic curves) will be preserved by such birational transforma-
tions.

6.4. Diagonal of Transcendental Functions

Generalizing the rationals functions

RB(x, y, z) = R
(

x, y · Q1(x),
z

Q1(x)

)
=

1
1 − x − y · Q1(x) − z/Q1(x)

, (132)

deduced from (107), using birational transformations like (108), one can consider beyond
transcendental functions like

RT(x, y, z) = R
(

x, y · cos(x),
z

cos(x)

)
=

1
1 − x − y · cos(x) − z/ cos(x)

. (133)

One verifies easily, from the multi-Taylor expansion of the (simple) transcendental function
(133), that its diagonal is actually the same as the one of (103), namely, (128). This is not a sur-
prise since the demonstration of the invariance of the diagonal by birational transformation
sketched in section 6 (see (109)) just requires that Q1(0) ̸= 0 with Q1(x) behaving at the
origin as a polynomial.

7. Conclusions

Diagonals of rational functions have been shown to emerge naturally for n-fold inte-
grals in physics, field theory, and enumerative combinatorics, seen as “Periods” of algebraic
varieties (corresponding to the denominators of these rational functions). Of the thousands
of examples we have analyzed, corresponding to n-fold integrals of theoretical physics
(in particular the χ(n)’s of the susceptibility of the Ising model, . . . ) or corresponding to
the rather academic diagonal of rational functions, we have seen the emergence of many
striking properties, and we want to understand if these remarkable properties are inherited
from the “physics”, and, more precisely, the rather “integrable” framework of these examples
(Yang–Baxter integrability, 2D Ising models, Calabi–Yau and other mirror symmetries, . . .
), or, on the contrary, if they are a consequence of the remarkable nature of diagonals of
rational functions in the most general framework.
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This paper is a plea for diagonals of rational or algebraic functions and more generally
telescopers of rational or algebraic functions.

• We show that “periods” corresponding to non-vanishing cycles, obtained as solutions
of telescopers of rational functions, can sometimes be recovered from diagonals of
rational functions corresponding to vanishing cycles, introducing an extra parameter.
These two concepts are not that compartmentalized.

• When considering the diagonals of rational functions we have shown that the number
of variables of a rational function must, from time to time, be replaced by a notion of
“effective number” of variables.

• We have shown that the “complexity” of the diagonals of a rational function, and,
for instance, the order of the (minimal order) linear differential operator annihilating
this diagonal, is not related to the number of variables or the “effective number”
of variables of the rational function. In a forthcoming publication, we will try to
understand what is the minimal number of variables necessary to represent a given
D-finite globally bounded series as a diagonal of a rational function.

• We have shown that the algebraic geometry approach of the diagonals of rational
functions, or of the telescopers of these rational functions, described in [40], can,
probably, be generalized to diagonals of algebraic functions, or the telescoper of
algebraic functions. These are just preliminary studies, and almost everything remains
to be done.

• When studying diagonals of rational functions, our explicit examples enable one to
understand why one can actually be restricted to rational functions of the form 1/Q
provided the polynomial at the denominator is irreducible. The situation where the
denominator Q factorizes clearly needs further analysis, which will be displayed in a
forthcoming paper. The case of the calculations of telescopers is slightly different: one
can (probably), again, be restricted to rational functions of the form 1/Q but with a
finite set of polynomials Q.

• We have shown that diagonals of rational functions (and this is also the case with
diagonals of algebraic functions) are left-invariant when one performs an infinite set
of birational transformations on the rational functions. This remarkable result can, in
fact, be generalized to an infinite set of rational transformations, with the diagonals of
the transformed rational functions becoming the diagonal of the original rational
function where the variable x is changed into xn. These invariance results generalize
to telescopers. A more general (infinite) set of birational transformations is shown
to correspond to a more convoluted “covariance” property of the telescopers (see
Appendix B).

• We provide some examples of diagonals of transcendental functions that can also yield
simple 2F1 hypergeometric functions associated with elliptic curves. The analysis of
diagonal of transcendental functions is clearly an interesting new domain to study.
Accordingly, we thank one of the referees for his remark of a link to recent preprints
of Golyshev et al. [76], where the classical Clausen–Sonin–Gegenbauer formulae are
interpreted as special degenerated cases of the more general “multiplication kernel”
setting developed by Kontsevich and Odesskii [77] (these formulae can be seen as
examples of “diagonal” forms of generating functions for the multiplication kernels).

• Finally, when trying to understand the puzzling fact that telescopers of rational
functions are almost always homomorphic to their adjoint and thus have selected
symplectic or orthogonal differential Galois groups, we understand a bit better the
emergence of curious examples of telescopers that are not homomorphic to their
adjoint; this (up to homomorphisms) self-duality-breaking rules out a Poincaré duality
interpretation of this quite systematic emergence of operators homomorphic to their
adjoint. A “desingularization” of such puzzling cases, corresponding to the introduc-
tion of an extra parameter, shows that such operators now occur in dual (adjoint) pairs,
thus restoring the duality (homomorphism to the adjoint). The limit when the extra
parameter goes to zero is the direct sum of different telescopers corresponding to the
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first rational function terms of the expansion of the extended rational function in term
of this extra parameter. With Section 5.2, we see that the puzzling (non self-adjoint
up to homomorphism) order-three linear differential operator L3 with SL(3, C) dif-
ferential Galois group is better understood as a member of a triplet of three “quarks”
(90), (91), and (92), which restores the duality. This may suggest that the quite strange
3F2 hypergeometric functions (91) or (92) could be related to (90), which has a clear
elliptic curve origin. After all, these functions are three periods of the same algebraic
variety. The existence of such a relation between hypergeometric functions of a totally
and utterly different nature is a challenging open question.

• In Appendix B, the calculations of telescopers of rational functions, associated with
very simple collineations, yield quite massive linear differential operators, which
factor into an order-two operator associated with an elliptic curve, and a “dressing”
of products of factors, which turn out to be direct sums of operators with algebraic
function solutions. This occurrence of this “mix” between products and direct sums of
a large number of operators (occurring, for instance, for the linear differential operators
annihilating the χ(n) components of the susceptibility of the Ising model [1,26]) will
be revisited in a forthcoming paper.

Instead of pursuing one specific mathematical problem, this paper can be seen as a
journey into the amazing world of integer sequences and differential equations. With all
the examples displayed in this paper, we provide some answers, sometimes involving
some plausible scenarios, to many important questions naturally emerging when working
on diagonals of rational or algebraic functions, or on telescopers of rational or algebraic
functions related, or not related, to problems of physics or enumerative combinatorics. Like
any fruitful concept, every answered questions does not “close” the subject but, on the
contrary, often raises more new questions than the number of answered questions.

Diagonals of rational or algebraic functions correspond to (globally bounded) series
that can be recast into series with integer coefficients and are solutions of linear differential
operators. When studying the two dimensional Ising model and its related Painlevé equa-
tions, one finds that the λ-extensions of the correlation functions [78,79] can also produce
series with integer coefficients that are differentially algebraic [80] solutions of non-linear
differential equations of the Painlevé type. These series are, also, such that their reduction
modulo primes give algebraic functions, just like diagonals of rational or algebraic func-
tions (for other examples of differentially algebraic series with integer coefficients see, for
instance, [81]).

This paper tries to show that the concept of diagonals of rational or algebraic functions
is a remarkably rich and fruitful concept not only providing tools for physics but also
bridging, in a quite fascinating way, different domains of mathematics. The case of the
diagonal of transcendental functions, or of these λ-extensions, seems to show that the
“unreasonable richness” of diagonals and telescopers may just be the tip of an even more
fascinating mathematical “iceberg” of mathematical physics.
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Appendix A. Other α-Dependent Example

Appendix A.1. A First very Simple Example

Another example, similar to the rational function (87) studied in Section 5.2, is

1
1 − x2 − y2 − z2 − α · x y2 . (A1)

The telescoper is an order-four linear differential operator that becomes, in the α → 0 limit,
the LCLM of two order-two linear differential operators, with one, L2, corresponding to
the hypergeometric solution (which is actually the α = 0 diagonal)

2F1

(
[
1
3

,
2
3
], [1], 27 x2

)
, (A2)

and an order-two linear differential operator M2 having the solution

d
dx 2F1

(
[
1
6

,
5
6
], [1], 27 x2

)
. (A3)

The order-two operator M2 is not homomorphic to the order-two operator L2. Let us
consider the α expansion of (A1)

1
1 − x2 − y2 − z2 − α · x y2 =

1
1 − x2 − y2 − z2 +

x y2

(1 − x2 − y2 − z2)2 · α

+
x2 y4

(1 − x2 − y2 − z2)3 · α2 + · · · (A4)

The diagonal of the term in α1 in (A4) is trivial: it is equal to zero. In contrast, the telescoper
of the term in α1 in (A4) is actually nothing but the order-two linear differential operator
M2. The telescoper of the term in α2 in (A4) is an order-two linear differential operator
homomorphic to the previous order-two linear differential operator L2. Similarly to the
calculations displayed in (87), the telescopers for the terms in α2 n in the expansion (A4)
yield order-two linear differential operators, homomorphic to L2, and the telescopers for
the terms in α2 n+1 yield order-two operators, homomorphic to M2.

Appendix A.2. Christol: Breaking the Duality Symmetry

These results can be compared with ones for the diagonal of the rational function

1
1 − x4 − y4 − z4 − α · x

. (A5)

The linear differential operator annihilating the diagonal of the rational function (A5) is
an order-ten linear differential operator L10(α) depending on the parameter α, and is
homomorphic to its adjoint with an order-eight intertwiner. Consequently, its differential
Galois group is included in Sp(10, C). The order-ten linear differential operator L10(α) is
irreducible except at α = 0.
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At α = 0, it is the direct sum LCLM(L2, M2, L3, M3), of two order-three linear differ-
ential operators and two order-two linear differential operators, namely, L2 corresponding
to the solution

2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
(A6)

= 1 + 6 x4 + 90 x8 + 1680 x12 + 34650 x16 + 756756 x20 + · · ·

as it should (this is the diagonal of (A5) at α = 0), and the other one, M2, corresponding
to the globally bounded series solution expressed in terms of HeunG functions (use Table
page 24 of [64]):

(1 − 24 x4)2

(1 − 27 x4)2 · HeunG
(9

8
,

97
32

,
7
6

,
5
6

, 1, −1; 27 · x4
)

. (A7)

The linear differential operator M2 is homomorphic to the order-two linear differential
operator corresponding to the modular form (see Appendix B in [16])

2F1

(
[
1
6

,
5
6
], [1], 27 x4

)
. (A8)

Using the identity

HeunG
(9

8
,

97
32

,
7
6

,
5
6

, 1, −1; 27 · x
)

=

4 · (1 − 27 x) · (27 x + 2)
(1 − 24 x)2 · x · d

dx 2F1

(
[
1
6

,
5
6
], [1], 27 x

)
+

1 9 x − 486 x2

(1 − 24 x)2 · 2F1

(
[
1
6

,
5
6
], [1], 27 x

)
, (A9)

the solution (A7) is rewritten in terms of the modular form (A8). The solution of M2, thus,
reads

2 + 27 x4

1 − 27 x4 · x · d
dx 2F1

(
[
1
6

,
5
6
], [1], 27 x4

)
+

1 + 18 x4

1 − 27 x4 · x4 · 2F1

(
[
1
6

,
5
6
], [1], 27 x4

)
= 1 +

315
4

x4 +
225225

64
x8 +

33948915
256

x12 +
75293843625

16384
x16

+
9927744261435

65536
x20 + · · · (A10)

The solution of the order-three linear differential operator L3 is

3F2

(
[

7
12

,
11
12

,
15
12

], [
3
4

, 1], 27 x4
)

, (A11)

while the order-three linear differential operator M3 has as solution

3F2

(
[
13
12

,
17
12

,
21
12

], [
1
4

, 1], 27 x4
)

. (A12)

These two linear differential operators are such that L3 is actually homomorphic to the
adjoint of M3, and, of course, M3 is homomorphic to the adjoint of L3, but L3 is not
homomorphic to the adjoint of L3 (and M3 is not homomorphic to the adjoint of M3). We
have, again, a pair of dual linear differential operators.
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Since these calculations are in the α → 0 limit, let us expand in α the rational
function (A5):

1
1 − x4 − y4 − z4 − α · x

=
1

1 − x4 − y4 − z4 +
x

(1 − x4 − y4 − z4)2 · α

+
x2

(1 − x4 − y4 − z4)3 · α2 +
x3

(1 − x4 − y4 − z4)4 · α3

+
x4

(1 − x4 − y4 − z4)5 · α4 + · · · (A13)

Since the telescoper of a sum of rational functions is the direct sum (LCLM) of the tele-
scopers of these rational functions, let us consider the telescopers of the first five terms
in the RHS of (A13). The telescoper of the first term is of course the order-two linear
differential operator L2 annihilating the diagonal of this rational function. The telescoper
of the second term (in α1) is the order-three linear differential operator L3. The telescoper
of the third term (in α2) is the order-two linear differential operator M2. The telescoper of
the fourth term (in α3) is exactly M3. The telescoper of the sum of the first orders in α in
the expansion (A13)

1
1 − x4 − y4 − z4 +

x
(1 − x4 − y4 − z4)2 · α

+
x2

(1 − x4 − y4 − z4)3 · α2 +
x3

(1 − x4 − y4 − z4)4 · α3, (A14)

is actually the LCLM of the four telescopers L2, M2, L3, and M3, and is precisely the α → 0
limit of the order-ten linear differential operator.

Let us now consider the telescopers of the next α orders in the expansion (A13). The
telescoper of the last rational function in (A13), namely, x4/(1 − x4 − y4 − z4)5, is an
order-two linear differential operator N2. One can thus write the solution of N2 as:

D1 =
3
48

· 1 + 540 x4 + 4374 x8

(1 − 27 x4)3 · x · d
dx 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
+

3
2
· (19 + 216 x4)

(1 − 27 x4)3 · x4 · 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
(A15)

= 30 x4 + 3780 x8 + 277200 x12 + 15765750 x16 + 771891120 x20 + · · ·

The telescoper of

x8

(1 − x4 − y4 − z4)9 , (A16)

is an order-two linear differential operator whose analytic solution reads:

D2 = − 3
672

· p1

(1 − 27 x4)7 · x · d
dx 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
+

3
28

· p2

(1 − 27 x4)7 · x4 · 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
(A17)

= 2970 x8 + 900900 x12 + 137837700 x16 + 14665931280 x20

+1236826871280 x24 + 88597190167200 x28 + · · ·

where:

p1 = 1 − 714 x4 − 924372 x8 − 54587520 x12 − 530141922 x16 − 554824404 x20,

p2 = 1 + 27030 x4 + 2062098 x8 + 23960772 x12 + 29170206 x16. (A18)



Universe 2024, 10, 71 32 of 44

If we consider, instead of the telescoper, the diagonal of the rational function (A13),
only the terms in α4 n n = 0, 1, 2, · · · will contribute; the other ones, corresponding to
non-vanishing cycles [55], will make zero contribution. Consequently, we obtain for the
diagonal of the rational function (A13):

Diag
( 1

1 − x4 − y4 − z4 − α · x

)
= 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
+D1 · α4 +D2 · α8 + · · · (A19)

= 1 + (30 α4 + 6) · x4 + (2970 α8 + 3780 α4 + 90) · x8

+(371280 α12 + 900900 α8 + 277200 α4 + 1680) · x12

+(51482970 α16 + 185175900 α12 + 137837700 α8 + 15765750 α4 + 34650) · x16

+(7571343780 α20 + 36141044940 α16 + 44975522592 α12

+14665931280 α8 + 771891120 α4 + 756756) · x20 + · · ·
= 1 + 6 x4 + 90 x8 + 1680 x12 + 34650 x16 + 756756 x20 + · · ·

+
(

30 x4 + 3780 x8 + 277200 x12 + 15765750 x16 + 771891120 x20 + · · ·
)
· α4

+
(

2970 x8 + 900900 x12 + 137837700 x16 + 14665931280 x20 + · · ·
)
· α8 + · · ·

Appendix B. Birational Symmetries from Collineations

Appendix B.1. Birational Symmetries from Collineations: A First Example

Let us consider a collineation transformation not preserving (x, y) = (0, 0):

(x, y) −→
( 2 + x + 3 y

1 − x + 2 y
,

1 + 5 x + 7 y
1 − x + 2 y

)
, (A20)

and let us now introduce the following birational transformation associated with the
collineation (A20):

(x, y, z) −→( 2 + x + 3 y
1 − x + 2 y

,
1 + 5 x + 7 y
1 − x + 2 y

,
x y z · (1 − x + 2 y)2

(2 + x + 3 y) · (1 + 5 x + 7 y)

)
, (A21)

which preserves the product p = x y z.
Let us transform the simple rational function (103) with the birational transformation (A21).

It becomes the rational function:

R =
(1 − x + 2 y) · (2 + x + 3 y) · (1 + 5 x + 7 y)

D , (A22)

where the denominator D reads:

D = x4 y z − 6 x3 y2 z + 12 x2 y3 z − 8 x y4 z − 3 x3 y z + 12 x2 y2 z − 12 x y3 z

+3 x2 y z − 6 x y2 z − 35 x3 − 194 x2 y − 323 x y2 − x y z − 168 y3 − 87 x2

−251 x y − 178 y2 − 36 x − 50 y − 4. (A23)

The intersection of the algebraic surface D = 0 with the algebraic surface p = x y z is
an elliptic curve. One obtains, almost instantaneously (using the j_invariant command in
Maple with(algcurves)), the Hauptmodul of this elliptic curve:

H =
1728 p3 · (1 − 27 p)

(1 − 24 p)3 . (A24)
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If one expects an algebraic geometry interpretation of the calculation of the diagonal of rational
functions or telescopers [40], this Hauptmodul must be the same as the Hauptmodul (130)
of the elliptic curve (129) since the two algebraic curves are birationaly equivalent, being
related by a birational transformation, namely, (A20). The calculation of the telescoper
of (A22) is really massive: it gives, after one month of computation, an order-eleven
linear differential operator (we thank C. Koutschan for performing these slightly “extreme”
computations). The result being too massive, let us consider other examples of birational
transformations associated with collineations simpler than (A21).

Remark A1. The diagonal of the rational function (A22) is a very simple series:

Diag
(
R
)

= −1
2
· 1

1 + x/4

= −1
2
+

1
8
· x − 1

32
· x2 +

1
128

· x3 − 1
512

· x4 + · · · (A25)

Remark A2. If one considers, instead of (A22), the rational function with the same denominator
(A23) but where the numerator is normalized to 1,

R =
1
D . (A26)

The diagonal of (A26) is the same as (A25) up to factor two:

Diag
(
R
)

= −1
4
· 1

1 + x/4
. (A27)

The telescoper of (A26) is an order-seven linear differential operator that factorizes as follows:

L7 = F2 · G2 · H2 · H1 with: H1 = Dx +
1

4 + x
, (A28)

where the order-two linear differential operator F2 is quite large and is (non-trivially) homomorphic
to the order-two linear differential operator L2, which is the telescoper of the rational function (103),
and where the order-two linear differential operators G2 and H2 have algebraic solutions. The
diagonal (A27) is solution of the order-one operator H1. The homomorphism between F2 and L2
gives

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx + B(x), (A29)

where A(x) and B(x) are rational functions. Consequently, a solution S of the telescoper
L7 (but not of the product G2 H2 H1 in (A28)) will be related to the hypergeometric solution
2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential operator L2, as follows:

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= G2 · H2 · H1 · S . (A30)

Remark A3. Note that the diagonal of the rational function (A22) is a very simple series (A25).
Therefore, the solution S of the telescoper, associated with an elliptic curve of Hauptmodul (A24)
(see equation (A30)), corresponds to a “period”, an integral over a non-vanishing cycle, and is
different from the integral over a vanishing cycle, namely, the diagonal (A25).

Remark A4. The factorization (A28) is far from being unique. The product of the last three factors
can be seen to be a direct sum:

G2 · H2 · H1 = G̃2 ⊕ H̃2 ⊕ H1, (A31)
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where the two new order-two operators G̃2 and H̃2 are simpler, with, again, algebraic function
solutions.

Appendix B.2. Birational Symmetries from Collineations. A Simpler Example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→( x + 3 y
1 − x + 2 y

,
1 + 5 x + y
1 − x + 2 y

,
x y z · (1 − x + 2 y)2

(x + 3 y) · (1 + 5 x + 7 y)

)
, (A32)

which preserves the product p = x y z. Again, if one transforms the simple rational
function (103) with the birational transformation (A32), one obtains the rational function of
the form

R =
(1 − x + 2 y) · (x + 3 y) · (1 + 5 x + y)

D , (A33)

and, again, the intersection of the algebraic surface D = 0 with the algebraic surface
p = x y z is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One
immediately obtains the same Hauptmodul (A24) for this new elliptic curve.

The telescoper of the rational function (A33) is an order-ten linear differential operator
(we thank C. Koutschan for providing this order-ten linear differential operator). This
telescoper is obtained using about nine days of computation time. It uses 286 evaluation
points (in contrast with the 462 evaluation points required for (A23)), and one uses in total
38 primes (of size 9 · 22 · 1018) to reconstruct the solution with Chinese remaindering. The
telescoper of the rational function (A33) factors as follows:

L10 = F2 · G2 · H1, · I1 · J2 · K2, (A34)

The order-two linear differential operator F2 in (A34) is homomorphic to the order-two
linear differential operator L2, which is the telescoper of the rational function (103). The
the order-two linear differential operators G2, J2, and K2 have algebraic solutions.

Remark A5. The factorization of (A34) is far from being unique. As usual, we have a mix between
product and the direct-sum of factors. Since the order-ten operator is quite large, it is difficult to
obtain the direct-sum factorization of L10 in (A34). One finds, however, quite easily that L10 has
two simple rational function solutions

1
(x − 35) · (4 x + 3)

,
x

(x − 35) · (4 x + 3)
, (A35)

corresponding to two order-one operators L1 = Dx + (8 x − 137)/(4 x + 3)/(x − 35) and
M1 = Dx + (4 x + 3)/(x + 21)/(x − 35) − 1/x and, thus, can be rightdivided by the LCLM
of L1 and M1. In fact, the product of the last factors at the right of the factorization of L10 can be
seen to be a direct sum:

G2 · H1 · I1 · J2 · K2 = L1 ⊕ M1 ⊕ G̃2 ⊕ J̃2 ⊕ K2. (A36)

In contrast, the product F2 · G2 is not a direct sum. The order-two operators G̃2 and J̃2 are (much)
simpler than G2 and J2, again with algebraic function solutions.

The result remaining still too large, let us consider another example of birational transformation
associated with collineations, simpler than (A21) or (A32).
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Remark A6. If one considers, instead of (A33), the rational function with the same denominator
D but where the numerator is normalized to 1,

R =
1
D . (A37)

The telescoper of the rational function (A37) is an order-seven linear differential operator

L7 = F2 · G1 · G2 · H2, (A38)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the order-two
linear differential operator L2, which is the telescoper of the rational function (103), and where the
order-two linear differential operators G2 and H2 have simple algebraic solutions. This factorization
(A38) is not unique. Introducing the order-one operator G̃1 = Dx + 1/x, one can see that G̃1
rightdivides L7 and that the product of the three factors, at the right of the decomposition (A38),
can be written as a direct sum

G1 · G2 · H2 = G̃1 ⊕ G̃2 ⊕ H2, (A39)

where the solutions of G̃2 are algebraic.

Remark A7. In Appendix B, we encounter many order-two linear differential operators with alge-
braic solutions. Even for large order-two linear differential operators, one can see quite easily (using
hypergeometricsols in DEtools of Maple) that the log-derivatives of these solutions are algebraic
functions, but finding the algebraic expression (minimal polynomial) of the solutions is much harder.
Just showing that the solutions are algebraic without having their exact expressions can be achieved
by showing that their p-curvatures are zero, recalling the André–Christol conjecture that one must
have a basis of globally bounded solutions or looking for rational solutions of symmetric powers
of the operators. In principle, these algebraic functions solutions of order-two linear differential
operators can be written as pullbacked 2F1 hypergeometric functions, but again it is a difficult
task [82].

Appendix B.3. Birational Symmetries from Collineations: An Even Simpler Example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→( x + 3 y
1 − x + 2 y

,
5 x + 7 y

1 − x + 2 y
,

x y z · (1 − x + 2 y)2

(x + 3 y) · (5 x + 7 y)

)
, (A40)

which preserves the product p = x y z and the origin (x, y, z) = (0, 0, 0). Again, if one
transforms the simple rational function (103) with the birational transformation (A40), one
obtains the rational function of the form:

R =
(1 − x + 2 y) · (x + 3 y) · (5 x + 7 y)

D , (A41)

and, again, the intersection of the algebraic surface D = 0 with the algebraic surface
p = x y z is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One
immediately obtains the same Hauptmodul (A24) for this new elliptic curve. The telescoper
of the rational function (A41) is an order-ten linear differential operator

L10 = F2 · G2 · H1 · I1 · J2 · K2, (A42)

where the order-two linear differential operator F2 is a quite “massive” operator (30,391 char-
acters), which is (non-trivially) homomorphic to the order-two linear differential operator
L2 which is the telescoper of the rational function (103) and where the solutions of G2,
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J2, and K2 are two algebraic functions. The order-two linear differential operator F2 is of
the form

F2 = D2
x +

A1(x)
D1(x)

· Dx +
A0(x)
D0(x)

, (A43)

where A1(x) and A0(x) are polynomials of degree 41 and 55, respectively, where D1(x)
and D0(x) read

D1(x) = λ(x) · P14(x) · P20(x), D0(x) = x · λ(x) · P14(x) · P20(x)2, (A44)

with:

λ(x) = (219024 − 6916931 x − 23604075 x2) · (7 − 225 x) · (5 − 243 x)

× (1 − 27 x) · (35 − x) · (21 + x) · x, (A45)

where P14(x) and P20(x) are polynomials of degrees 14 and 20, respectively. The order-two
operator linear differential G2 yielding algebraic solutions is also quite a “large” linear
differential operator.

Remark A8. The factorization of (A42) is far from being unique. As usual, we have a mix between
the product and direct-sum of factors. With the order-ten linear differential operator being quite
large, it is difficult to obtain the direct-sum factorization of L10 in (A42). One finds, however, quite
easily that L10 has two simple rational function solutions

1
(x − 35) · (x + 21)

,
x

(x − 35) · (x + 21)
, (A46)

corresponding to two order-one operators L1 = Dx + 2 (x − 7)/(x + 21)/(x − 35) and M1 =
Dx + 2 (x − 7)/(x + 21)/(x − 35) − 1/x and, thus, can be rightdivided by the LCLM of L1 and
M1. More interestingly, the product H1 · I1 · J2 · K2 in the decomposition (A42) of L10 can be
seen as the direct sum of L1, M1, and K2 and two new (and simpler) order-two linear differential
operators G̃2 and J̃2:

G2 · H1 · I1 · J2 · K2 = L1 ⊕ M1 ⊕ G̃2 ⊕ J̃2 ⊕ K2. (A47)

In contrast, note that the product F2 · G2 in the decomposition (A42) is not a direct-sum. It was
easy to see that the log-derivatives of the solutions of the order-two operator J2 were algebraic
functions but harder to see that these solutions were actually algebraic. One now finds immediately
that the solutions of J̃2 are algebraic functions.

Remark A9. If one considers, instead of (A41), the rational function with the same denominator
D but where the numerator is normalized to 1,

R =
1
D . (A48)

Its telescoper is an order-seven linear differential operator

L7 = F2 · G1 · G2 · H2, (A49)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the order-two
linear differential operator L2, which is the telescoper of the rational function (103) and where the
order-two linear differential operators G2 and H2 have simple algebraic solutions.
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Appendix B.4. Birational Symmetries from Collineations: Another Example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→( x
1 − x + 2 y

,
y

1 − x + 2 y
, z · (1 − x + 2 y)2

)
, (A50)

which preserves the product p = x y z and the origin (x, y, z) = (0, 0, 0). Again, if one
transforms the simple rational function (103) with the birational transformation (A50), one
obtains the rational function of the form:

R =
1 − x + 2 y

D , (A51)

again, the intersection of the algebraic surface D = 0 with the algebraic surface p = x y z
is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One immediately
obtains the same Hauptmodul (A24) for this new elliptic curve. The telescoper of the
rational function (A51) is an order-four linear differential operator

L4 = F2 · G2, (A52)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the
order-two linear differential operator L2, which is the telescoper of the rational func-
tion (103) and where the solutions of G2 are two algebraic functions of series expansion:

s0 = 1 +
105

4
· x +

12753
16

· x2 +
876225

32
· x3 +

251403765
256

· x4 + · · ·

s1 = x +
105

4
· x2 +

7385
8

· x3 +
2111725

64
· x4 +

155849463
128

· x5 + · · · (A53)

The series s = s1 is, for instance, the solution of the polynomial equation P(s, x) = 0,
where P(s, x) reads:

P(s, x) = 2847312 · p(x)3 · s6 + 158184 · p(x)2 · s4 + 5040 · p(x)2 · s3

+2197 · p(x) · s2 + 140 · p(x) · s + 4 x · (243 x + 35), (A54)

with p(x) = 243 x2 + 35 x − 1. The series expansions of the algebraic solutions of
P(s, x) = 0 read:

S(u) = u +
448451640 u4 − 38438712 u3 − 20761650 u2 + 1377667 u + 221830

17710
· x

+3 · 448451640 u4 − 38438712 u3 − 20761650 u2 + 1450531 u + 221830
2024

· x2 + · · ·

where u = 0, −1/6, 1/6, 5/26, −4/39, −7/78. One finds that

15 · S
(1

6

)
+ 8 · S

(
−1

6

)
+ 13 · S

(
− 7

78

)
= 0,

13 · S
(1

6

)
+ 8 · S

(
− 4

39

)
+ 15 · S

(
− 7

78

)
= 0,

15825411 · S
(1

6

)
− 1771 · S

(5
6

)
+ 29373604 · S

(
− 7

78

)
= 0, (A55)

and that the two solutions (A53) of G2 read:

s0 = S(0), s1 =
521
32

· S
(1

6

)
+

611
32

· S
(
− 7

78

)
. (A56)
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The homomorphism between F2 and L2 gives

F2 · X1 = Y1 · L2, where:

X1 = α(x) ·
(
(3240 x2 + 6 x + 1) · Dx + 1080 x − 6

)
, with:

α(x) =
81

10 · (1 − 35 x − 243 x2) · (1 − 27 x)
. (A57)

Consequently, a solution S of the telescoper L4 (but not of G2 in (A52)) will be related to
the hypergeometric solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential
operator L2, as follows:

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= G2 · S . (A58)

The formal series solutions of the order-four linear differential operator (A52) are (of course)
the two (algebraic) solutions (A53) of G2, together with a solution with a ln(x)1, and a
series s2, analytic at x = 0:

s2 = x2 +
93
2

· x3 +
31185

16
· x4 +

2488035
32

· x5 +
1953542437

640
· x6 + · · · (A59)

Relation (A58) is actually satisfied with S = 5103 · s2. Note that the series for (A58) is a
series with integer coefficients:

1
2
· 1

5103
· X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= 1 + 87 x + 5358 x2 + 282459 x3

+13662531 x4 + 626640714 x5 + 27758265651 x6 + 1200939383487 x7 + · · ·

Remark A10. Note that the diagonal δ of the rational function (A51) reads:

δ = 1 + 4 x + 108 x2 + 1960 x3 + 43240 x4 + 965664 x5 + 22377600 x6

+528712272 x7 + 12698698320 x8 + 308814134200 x9 + · · · (A60)

We expect this diagonal to be a solution of the order-four telescoper (A52). This series is actually a
linear combination of the three series s0, s1, and s2, analytic at x = 0:

δ = s0 − 89
4

· s1 − 105 · s2. (A61)

It is interesting to see how the three globally bounded series s0, s1, and s2 conspire to give a series
with integer coefficients, the diagonal (A61).

Remark A11. These results must be compared with the calculations for the rational function

R =
1
D , (A62)

where the denominator D is the same as the one in (A51). In this case, where the numerator
has been normalized to 1, the diagonal is the same as the diagonal of 1/(1 − x − y − z), namely,
2F1([1/3, 2/3], [1], 27 x), and the telescoper is the same telescoper as the one for 1/(1 − x− y− z).

Appendix B.5. Birational Symmetries from Collineations: Another Example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→( x + 3 y
1 − x + 2 y

,
y

1 − x + 2 y
,

x z · (1 − x + 2 y)2

x + 3 y

)
, (A63)
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which preserves the product p = x y z, and the origin (x, y, z) = (0, 0, 0). Again, if one
transforms the simple rational function (103) with the birational transformation (A63), one
obtains the rational function of the form:

R =
(1 − x + 2 y) · (x + 3 y)

D , (A64)

again, the intersection of the algebraic surface D = 0 with the algebraic surface p = x y z
is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One immediately
obtains the same Hauptmodul (A24) for this new elliptic curve. The telescoper of the
rational function (A64) is an order-seven linear differential operator

L7 = F2 · G2 · H1 · H2, (A65)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the
order-two linear differential operator L2, which is the telescoper of the rational func-
tion (103); where the order-two linear differential operators G2 and H2 have algebraic
solutions (one finds easily that the log-derivative of these solutions are algebraic functions);
and where H1 is an order-one linear differential operator. This homomorphism between
F2 and L2 gives

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx + B(x), (A66)

where A(x) and B(x) are rational functions. Consequently, a solution S of the telescoper
L7 (but not of the product G2 · H1 · H2 in (A65)) will be related to the hypergeometric
solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential operator L2, as follows:

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= G2 · H1 · H2 · S . (A67)

In that case, the solution of S of the telescoper L7 reads

S = x4 +
13316825310791

231428221515
· x5 +

30360140830595651
11108554632720

· x6 + · · · (A68)

and the expansion of (A67) reads:

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
=

1
x

+
85390121841387522079
629841285410317908

+
906492811433323772155053002605

77136236451492696817854192
· x + · · · (A69)

Remark A12. The factorization (A65) is far from being unique. Introducing the order-one linear
differential operator L1 = Dx + 4/(3 + 4 x), one has the following direct-sum decomposition:

L7 = L1 ⊕ L6, (A70)

G2 · H1 · H2 = L1 ⊕ G̃2 ⊕ H2, (A71)

where L6 is an order-six linear differential operator and where the order-two linear differential
operator operator G̃2 is slightly simpler than G2.

Remark A13. If one considers, instead of (A64), the rational function with the same denominator
D but where the numerator is normalized to 1,

R =
1
D . (A72)
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its telescoper is an order-four linear differential operator

L4 = F2 · G2. (A73)

The order-two linear differential operator F2 is (non-trivially) homomorphic to the order-two linear
differential operator L2, which is the telescoper of the rational function (103), and the order-two
linear differential operator G2 has simple algebraic solutions.

Appendix B.6. Birational Symmetries from Collineations: Another Simpler Example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→( x + 3 y
1 − x + 2 y

,
1 + y

1 − x + 2 y
,

x y z · (1 − x + 2 y)2

(x + 3 y) · (1 + y)

)
, (A74)

which preserves the product p = x y z. Again, if one transform the simple rational
function (103) with the birational transformation (A74), one obtains the rational function of
the form:

R =
(1 − x + 2 y) · (x + 3 y) · (1 + y)

D , (A75)

again, the intersection of the algebraic surface D = 0 with the algebraic surface p = x y z
is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One immediately
obtains the same Hauptmodul (A24) for this new elliptic curve.

The telescoper of the rational function (A75) can now be calculated in only a few hours,
and one obtains an order-nine linear differential operator of the form

L9 = F2 · G2 · H1 · H2 · I2, (A76)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the
order-two linear differential operator L2, which is the telescoper of the rational func-
tion (103); where the order-two linear differential operators G2, H2, and I2 have algebraic
solutions; and where H1 is an order-one linear differential operator. This homomorphism
between F2 and L2 gives

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx + B(x), (A77)

where A(x) and B(x) are quite large rational functions. Consequently, a solution S of
the telescoper L9 (but not of the product G2 · H1 · H2 · I2 in (A76)) will be related to
the hypergeometric solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential
operator L2, as follows:

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= G2 · H1 · H2 · I2 · S . (A78)

If finding the emergence of the hypergeometric function 2F1([1/3, 2/3], [1], 27 x) is easy to
obtain from the (algebraic geometry) calculation of the Hauptmodul (A24), (see (129)), the
telescoper of (A75), or equivalently, the solution S of that telescoper, requires one to find
many linear differential operators, namely, the intertwinner X1 and the right factors G2, H1,
H2, and I2. In contrast with the birational transformations described in Section 6 (see (108),
(111), and (112)), which simply preserve the diagonals of the rational functions, we have
here, again, with the birational transformation (A74), two birationally equivalent underlying
elliptic curves and a much more convoluted “covariance” requiring one to find many linear
differential operators. The “elliptic curve skeleton” (the j-invariant or the Hauptmodul)
is preserved, but the right factors dressing G2, H1, H2, and I2 and the intertwiner X1 are
quite involved.
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Remark A14. In fact, the order-nine operator (A76) is a direct sum. It can be written in the form

L9 = L8 ⊕ L1, (A79)

G2 · H1 · H2 · I2 = L1 ⊕ G̃2 ⊕ H̃2 ⊕ I2, (A80)

where the order-one operator reads:

L1 = Dx +
4

3 + 4 x
, (A81)

where L8 is an order-eight operator and where the operators with a tilde are much simpler than the
operators without a tilde.

Remark A15. Again if one considers, instead of (A75), the rational function with the same
denominator D, but where the numerator has been normalized to 1,

R =
1
D , (A82)

one finds an order-seven telescoper that factorizes as follows:

L7 = F2 · G1 · H2 · I2, (A83)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the order-two
linear differential operator L2, which is the telescoper of the rational function (103), and where the
order-two linear differential operators H2 and I2 have algebraic solutions.

Remark A16. Again, the factorization (A83) is far from being unique. Introducing the order-one
linear differential operator L1 = Dx + 1/x, one has the two following direct-sum decompositions

L7 = L6 ⊕ L1, (A84)

G1 · H2 · I2 = L1 ⊕ H̃2 ⊕ I2, (A85)

where the order-two linear differential operator H̃2 is slightly simpler than H2.

Remark A17. As far as an algebraic geometry approach of diagonals and telescopers is concerned
(see [40]), we see that the concept of telescopers, which describes all the periods, can be more
interesting than the concept of diagonals, which often yields to diagonals that can be almost
trivial functions (being simple rational functions, or being simply equal to zero). The examples
of Appendix B show that the differential algebra approach of creative telescoping cannot be totally
replaced by an algebraic geometry approach [40]. The algebraic geometry approach very quickly
provides some precious information on the telescoper (the Hauptmodul), but not the telescoper itself.
In fact, one might consider the opposite point of view: creative telescoping could be seen as a tool to
obtain effective algebraic geometry results.

Remark A18. The examples displayed in this appendix can be seen as an illustration of the
“dialogue of the deaf” between mathematicians and physicists. Some mathematicians will point out
the fact that the calculation of the Hauptmodul (A24) underlines the essence of the problem, namely,
the existence of an underlying elliptic curve, and will see the explicit calculation of the telescoper,
and all its periods, as a laborious and slightly useless piece of work. In particular, they will consider
the “dressing” right-factors occurring in the decompositions (A34), (A42), . . . as a totally and
utterly spurious information, and they will also probably see the explicit expression of the large
order-two operators F2 as superfluous, retaining only the order-two linear differential operator L2,
prefering to ignore, or forget, the intertwiner X1 in (A66) or (A77). Accordingly, they may consider
the other solutions of the telescoper, namely, the “periods” (associated with non-vanishing cycles)
that are not diagonals, as irrelevant. In contrast, for a physicist, obtaining all the periods, and the
explicit expression of the telescoper, will be seen as essential. Recalling the χ(n) components of
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the susceptibility of the Ising model; it is essential to obtain the explicit expression of the linear
differential operators (telescopers) annihilating these χ(n)’s even if these (large) linear differential
operators [26] are products (and direct sums) of a large set of factors. In the framework of integrable
models, beyond diagonals, a physicist will always seek for a linear differential operator corresponding
to an elliptic curve (resp. K3 surface, Calabi–Yau manifold, . . . ) even if it is “buried” as a left factor
of a large telescoper, like the F2’s in (A34) or (A42).
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