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Abstract: We imagine spherically symmetric configurations made of both dark matter and dark
energy in the halo of spiral galaxies. Adopting a polytropic equation of state for dark matter and
the Extended Chaplygin gas equation of state for dark energy, we model the same object with three
different dark matter–dark energy compositions. We compute the frequencies and the corresponding
eigenfunctions of the ten lowest modes, integrating the equations for the radial perturbations by
imposing the appropriate boundary conditions at the center and the surface of the object. Also, a
comparison between the different models is made.
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1. Introduction

The concordance cosmological model, the ΛCDM model, describes the formation
and structure of the Universe at large scales, and is based on cold dark matter and Λ,
the cosmological constant. The existence of dark matter, still of unknown nature and
origin, originates from old studies that showed that the Universe is mostly composed of an
invisible material that affects galaxies and galaxy clusters only gravitationally. The pioneer
works belong to F. Zwicky [1] in the 30s, and several decades later to V. Rubin, who studied
the Andromeda’s rotation curve and discovered that at any distance from the bulge of the
galaxy, the rotation speed was constant [2]. These studies showed that approximately 85%
of the mass of the Universe corresponds to dark matter [3].

In addition to dark matter, there is another dark component in the Universe, called
dark energy. This is also of unknown nature as of today, but has a repulsive rather than
attractive character, since the current accelerating expansion of the Universe is produced
by it [4–6]. Current modern data seem to show that approximately 70% of the Universe is
made of dark energy, 25% of dark matter, and 5% of ordinary matter [7].

Compact stars [8], the final products of very massive stars, are extremely dense objects
with a mass of the order of one solar mass, and a radius of a few kilometers, such as neutron
stars [9] and strange quark stars [10–15], although the latter class of compact objects remain
hypothetical for the time being. In the same way, there are studies that contemplate the
possibility that relativistic exotic stars may exist, composed of dark matter [16–18], or dark
energy even [19–22]. In a recent study, we considered configurations composed of both
dark matter and dark energy adopting the two-fluid formalism [23]. In that study we gave
a relativistic description based on the field equations of General Relativity.

To determine the radius and mass of those stars, we require the EoS of each fluid
component, i.e., one for dark matter and another for dark energy, under the condition that
there is no direct interaction between the fluids other than the gravitational force. Dark
matter may be viewed as a Bose–Einstein condensate [24], and so we adopt the polytropic
equation of state for dark matter [25,26]. Regarding dark energy, we consider the Extended
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Chaplygin gas equation of state [27,28], which was introduced with the aim of unifying
dark energy and non-relativistic matter working with a single fluid instead of two.

Regarding plausible scenarios and astrophysical mechanisms that may produce dark
stars in the Universe, it has been proposed that the first stars to exist in the Cosmos,
contrary to ordinary main sequence stars, were powered by dark matter heating rather
than fusion [29,30]. Dark matter particles might have accumulated in the interior of the first
stars and been annihilated, producing a heat source that can power such stars. Moreover, if
Bose–Einstein condensation took place in the very early Universe, at very high redshifts, as
suggested by the analysis performed in [16], at the moment of star formation most of the
DM was already in a condensate form. Hence, one may naturally expect the formation of
stellar type objects made of pure condensate dark matter stars [16].

Asteroseismology is a widely used technique, since the frequencies of the oscillation
modes of pulsating stars are very sensitive to the inner structure and composition of the
object. It has been proven to be a powerful tool at our disposal, since it allows us to
probe the interior of the Sun, solar-like stars, and other classes of stars [31,32], such as
nuclear reactions, their compositions, equations of state, differential rotation rates, and
meridional circulation. Currently, asteroseismology has been extended to the study of
compact stars [33–36], like white dwarfs [37] and neutron stars [38]. In addition, there are
studies of exotic stars such as strange quark stars [39], dark matter stars [39–41], and dark
energy stars [21]. For more details, the interested reader may consult for instance [42–50].

Regarding excitation and detectability, there are numerous astrophysical mechanisms
that may excite oscillation modes of stars, such as tidal effects in binaries, starquakes
caused by cracks during supernova explosions, magnetic reconfiguration, or any other
form of instability [38,51–55]. The Kepler and CoRoT missions have already measured
the oscillation spectra of solar-like, white dwarf, and red giant stars [56–61]. Actual wave
detectors, like LIGO [38], do not detect the radial oscillations studied here, due to their low
sensitivity at the kHz frequency range. However, the third-generation of ground-based
gravitational wave detectors are expected to have a much higher sensitivity (by an order
of magnitude), such as the Cosmic Explorer [62] and the Einstein Telescope [63]. These
detections could give us information related to neutron star masses, frequencies, tidal Love
numbers, amplitudes of the modes, damping times, and moments of inertia.

In the present work, we compute the frequencies and corresponding eigenfunctions
of the 10 lowest radial oscillation modes of spherical configurations from the dark sector,
namely both dark matter and dark energy. To that end, we model an object of a given
mass and radius with three different models, which differ in their internal structure and
composition.

The present article is structured as follows: after this introductory section, we present
the structure equations governing the hydrostatic equilibrium and the equations of state
employed here. Radial oscillations are discussed in Section 3, and we present and discuss
our main results in Section 4. Finally, we conclude our work in Section 5.

Throughout the manuscript, we adopt the mostly positive metric signature (−, +, +, +)
and we work in natural geometrical units, setting G = c = 1 for the Newton’s constant
and speed of light in vacuum, respectively. All units used here are measured in GeV:
1 m = 5.068 × 1015/ GeV, 1 kg = 5.610 × 1026 GeV, 1 s = 1.519 × 1024/ GeV, and the
Planck mass Mpl = 1.22 × 1019 GeV.

2. Relativistic Spheres in General Relativity

We assume that the objects are non-rotating and are electrically neutral. Also, we work
with relativistic configurations in four dimensions, with a vanishing cosmological constant.

2.1. Structure Equations

The metric tensor in Schwarzschild coordinates (t, r, θ, ϕ) for static and spherically
symmetric space-times is given by
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ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θ dϕ2). (1)

To obtain interior solutions describing hydrostatic equilibrium of stars composed
of dark matter and dark energy, we need to integrate the Tolman–Oppenheimer–Volkoff
(TOV) equations [64,65] for two-fluid formalism [66,67], which are given by

m′(r) = 4πr2ρ(r), (2)

ν′(r) = 2
m(r) + 4πr3 p(r)
r2(1 − 2m(r)/r)

, (3)

p′M(r) = −[ρM(r) + pM(r)]
ν′(r)

2
, (4)

p′E(r) = −[ρE(r) + pE(r)]
ν′(r)

2
, (5)

which we consider a spherical configuration composed of dark matter and dark energy,
whose pressure and energy density are pM and ρM, for dark matter, and pE and ρE for dark
energy, respectively. m(r) is the mass function, and a prime denotes differentiation with
respect to the radial coordinate r.

The total pressure p and total density ρ are the sum of the pressures and densities of
both fluids, i.e.,

p = pM + pE, (6)

ρ = ρM + ρE. (7)

The TOV equations are to be integrated imposing the following initial conditions at
the centre of the star

m(0) = 0, (8)

pM(0) = pcM, (9)

pE(0) = pcE, (10)

where pcM and pcE are the central pressure for dark matter and dark energy, respectively.
Moreover, the the surface conditions of the star that must be satisfied are

p(R) = 0, (11)

m(R) = M, (12)

with R being the radius of the star and M its mass.

2.2. Equations of State

To solve the TOV equations, we will require the equations of state. Since each fluid is
independent, dark matter and dark energy have their own equation of state.

Dark matter may be interpreted as a Bose–Einstein condensate [24], since it solves the
core–cusp problem [68]. Hence, a polytropic EoS of the following form is obtained [16,25,26]

pM(r) = k ρ2
M(r), (13)

where k is the constant of proportionality, determined by [16,26,39]

k =
2πl
m3 , (14)

with m being the mass of the dark matter particle, and l being the scattering length that
determines the elastic cross-section at low energies, σ = 4πl2 [16,26,39]. Each model is
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characterized by its own numerical value of k, which can be seen in Table 1. Nowadays, the
DM self-interacting cross section must satisfy the constraint [69–71]

1.75 × 10−4 cm2/g <
σ

m
< (1 − 2) cm2/g. (15)

The numerical values of k displayed in Table 1 may be achieved if, e.g., l ∼ 1 f m and
m ∼ 1 GeV, and the bounds on σ are satisfied. We comment in passing that regarding the
fuzzy DM model based on a free ultra-light scalar field, recent works have put an upper
bound on its mass, m < 10−23 eV [72,73], violating the 10−22 eV from the linear matter
power spectrum.

Table 1. Numerical values of the parameters A, B, k and f for each model. For all three models
considered in this work we assume a sphere of mass M = 1.216 M⊙ and radius R = 8.145 km.

A B k f

Model 1
√

0.40 2.299 × 10−4/km2 45.140 GeV−4 0.60

Model 2
√

0.55 2.595 × 10−4/km2 55.567 GeV−4 0.75

Model 3
√

0.70 2.848 × 10−4/km2 66.942 GeV−4 0.90

As far as dark energy is concerned, following [20], we consider the Extended Chaply-
gin equation of state [27,28].

pE(r) = − B2

ρE(r)
+ A2ρE(r), (16)

where A is dimensionless and B has dimensions of energy density and pressure,
both positive constants. Note that the equation of state of Chaplygin gas is given by
pCh = −B2/ρCh [74], while the additional barotropic term, A2ρE, provides us with another
viable dark energy model [75]; as it predicts a transition from deceleration to acceleration, it
fits supernovae data, while at the same time the equation-of-state parameter w interpolates
between 0 and −1, unifying thus non-relativistic matter and DE. What is more, at low
red shift, the energy density becomes a constant, mimicking thus a positive cosmological
constant, see Equation (11) of [75]. Table 1 shows the numerical values for A and B that we
have considered.

It must be taken into account that given the form of the EoS, the pressure and density
cannot become zero at the same time. Therefore, a vanishing pressure at the surface of
the star implies a non-vanishing value for the energy density, which is computed to be
ρs = B/A.

Additionally, it is convenient to introduce a new dimensionless factor related to the
central conditions of the stars defined as

f =
pcM

pcM + pcE
. (17)

The numerical values for A, B, k, and f that we have chosen for three different models
are displayed in Table 1 in order to compare stars of the same mass and radius but with
different inner composition and obtain realistic solutions. The values are M = 1.216 M⊙ for
the mass, and R = 8.145 km for the radius. The chosen values are motivated by the fact that
there are a few observed objects with known masses and radii around those values, see for
instance Table 1 of [76].

In a recent work, we studied some properties of dark stars made of dark matter and
dark energy [23], and here we propose to study radial oscillations and frequencies for this
class of objects.
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3. Radial Oscillations

The equations for radial perturbations of the stars, given below, are satisfied by the
radial displacement, ∆r, and the pressure perturbation, ∆p, defined by

ξ ≡ ∆r
r

, (18)

η ≡ ∆p
p

, (19)

which satisfy the following first order differential equations [77,78]:

ξ ′(r) = −
(

3
r
+

p′

ζ

)
ξ − 1

rΓ
η, (20)

η′(r) = ω2
[

r
(

1 +
ρ

p

)
eλ−ν

]
ξ −

[
4p′

p
+ 8πζreλ − r(p′)2

pζ

]
ξ −

[
ρp′

pζ
+ 4πζreλ

]
η, (21)

where ζ is defined to be
ζ ≡ p + ρ, (22)

eλ and eν are the metric potentials, which are computed as follows

eλ(r) =
1

1 − 2m(r)
r

, (23)

ν(r) = ln
(

1 − 2M
R

)
+ 2

∫ r

R

m(x) + 4πx3 p(x)
x2(1 − 2m(x)/x)

dx, (24)

with M the mass of the star and R its radius, while ω = sω0 is the frequency oscillation
mode, where s is a dimensionless number, while the constant ω0 is computed by

ω0 =

√
M
R3 . (25)

Finally

Γ = c2
s

(
1 +

ρ

p

)
, (26)

c2
s =

dp
dρ

, (27)

with Γ being the relativistic adiabatic index, and cs is the the speed of sound.
The unknown frequencies are determined solving the Sturm–Liouville boundary value

problem imposing the following boundary conditions [38], both at the center r = 0 and at
the surface of the star r = R

η

ξ

∣∣∣∣
r=0

= −3Γ(0), (28)

η

ξ

∣∣∣∣
r=R

=

[
−4 +

(
1 − 2M

R

)−1(
−M

R
− ω2R3

M

)]
. (29)

since ξ ′(r) must be finite as r → 0, and η′(r) must be finite at the surface as ρ, so p → 0.
Furthermore, since the system of equations is linear, the scaling factor is free and therefore
the oscillating functions may be normalized, setting ξ(0) = 1 [78].

Before we proceed, a comment is in order here. When dealing with radial oscillations
of objects made of two fluid components, in general there are two approaches [79]. In the
first, a consistent general relativistic formalism to deal with the couplings between oscil-
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lation amplitudes and Lagrangian perturbations for each fluid was developed in [36,80].
Unfortunately, dealing with a system of highly coupled and non-linear differential equa-
tions requires very time-consuming numerical calculations. In the second approach, which
is in fact simpler, only the radial oscillation of the whole admixed star, namely treated as
a single fluid sphere, is studied without explicitly considering the gravitational coupling
between the two fluid components, see, e.g., [39,81]. This is the approach we are taking in
the discussion to follow.

4. Results and Discussion

We have studied radial oscillations and frequencies of dark stars made of dark matter
and dark energy for their first 10 lowest modes shown in Table 2. For this, we have
selected three different models, which all have the same radius R = 8.145 km and mass
M = 1.216 M⊙ but different dark energy mass fractions. The precise numerical values of
the parameters A, B , k, and f , are shown in Table 1. The three models considered in this
work are as follows

Model 1 → 49% DE mass fraction (30)

Model 2 → 44% DE mass fraction (31)

Model 3 → 41% DE mass fraction (32)

Table 2. Frequencies (in kHz) of radial oscillation modes for the three models discussed here, see text
for more details.

Mode Order n Model 1 Model 2 Model 3

0 4.56 5.50 6.25

1 12.03 13.81 15.28

2 18.74 21.39 23.61

3 25.30 28.83 31.79

4 31.81 36.21 39.91

5 38.29 43.57 48.01

6 44.76 50.92 56.09

7 51.21 58.25 64.16

8 57.66 65.58 72.23

9 64.11 72.90 80.29

In Figure 1, we show the eigenfunctions η(r) and ξ(r) versus normalized (dimension-
less) radial coordinate x = r/R for low, intermediate, and highly excited modes for all
three models considered here. We recall that in a Sturm–Liouville boundary value problem,
the number of zeros of the eigenfunctions corresponds to the overtone number n. In the
graphs, it can be observed that this is indeed the case. For instance, the fundamental mode
n = 0 has no zeros, while the first excited mode n = 1 and the second excited mode have
one and two zeros, respectively. And so on and so forth for higher modes.
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Figure 1. Perturbations η(r) (left panels) and ξ(r) (right panels) vs. x = r/R for low order modes
n = 0 (blue) and n = 1 (red), intermediate modes n = 4 (cyan) and n = 5 (green), and highly excited
modes n = 8 (pink) and n = 9 (purple). Shown are Model 1 (top panels), Model 2 (center panels),
and Model 3 (bottom panels).

In Table 2, where the numerical values of the frequencies are shown, we see that the
frequencies are higher for Model 3 and lower for Model 1. In Figure 2, the large frequency
separations defined as [38]

∆νn ≡ νn+1 − νn, (33)

are displayed for all three models, where n = 0, 1, 2, . . . is the overtone number. As usual,
for highly excited modes, the large frequency separations tend to a constant which is
different from one model to another. They are also larger for Model 3 and smaller for
Model 1. It is worth mentioning that Model 3 is characterized by the largest sound speed,
see Figure 5 below, while regarding the fundamental mode, the ξ function of Model 3
decreases faster than the corresponding function of the other two models. Those features
are in agreement with the results of [38], where radial oscillations of neutron stars were
studied, and a similar behavior was observed.
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Figure 2. Large frequency separation ∆νn vs. frequencies νn, both in kHz, for the lowest 10 modes.
Blue is for Model 1, red for Model 2 and green for Model 3.

Figures 3 and 4 show the perturbations η and ξ, respectively, for the three models
and for the fundamental mode and the first excited mode. Depending on the model, the
values of η(0) start with different values, whereas for ξ they all start with ξ(0) = 1. In
the three models, the values of ξ(r) are very similar for each mode. However, in η(r) they
differ, except for the zeros, which for each mode the three models are the same, as is ξ.
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Figure 3. η(r) perturbations for the fundamental mode n = 0 (left) and the first excited mode n = 1
(right). Blue represents Model 1, red represents Model 2, and green represents Model 3.
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Figure 4. ξ(r) perturbations for the fundamental mode n = 0 (left) and the first excited mode n = 1
(right). Blue denotes Model 1, red Model 2, and green Model 3.
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We obtained that the dark energy mass fraction differs in all models, obtaining 49%,
44%, and 41% in Models 1, 2, and 3, respectively. If radial oscillations are discovered in
dark stars, it will be possible to use their frequencies to infer the properties of their internal
structure, and check if there is evidence for dark matter and dark energy inside the star,
and their percentages or mass fraction.

Furthermore, we have checked that the results comply with the criteria for realistic
solutions. The Buchdahl limit C ≡ M/R < 4/9 [82] is satisfied since C = 0.222. Stability,
Γ > 4/3 [83], energy conditions ρ ≥ 0 and ρ ≥ |p| [21,84–87], and causality, 0 < c2

s < 1 [21],
are fulfilled as well, as can be seen in Figure 5. The values for the speed of sound of Model
3 are the highest and those of Model 1 are the lowest.

Model 1
Model 2
Model 3

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

r (km)

c
s2
(r
)

Figure 5. Speed of sound c2
s vs. radial coordinate r in km. Blue represents Model 1, red Model 2, and

green Model 3.

5. Conclusions

To summarize our work, in the present article, we studied radial oscillations of spher-
ical, non-rotating configurations made of both dark matter and dark energy. For the
latter, we adopted the Extended Chaplygin gas EoS, while for the former, viewed as Bose–
Einstein condensate, we assumed a polytropic EoS with index n = 1. We modeled the
same object with mass M = 1.216 M⊙ and radius R = 8.145 km in three different dark
matter–dark energy compositions. We integrated the equations for the perturbations, im-
posing the appropriate boundary conditions, both at the center and the surface of the
objects, and we computed the frequencies as well as the corresponding eigenfunctions
for the 10 lowest modes, namely fundamental (f mode) and nine excited modes. The
large frequency separations are displayed as well for all three models considered here. A
direct comparison between the three models is made showing (i) the two eigenfunctions of
the fundamental and first excited mode as well as (ii) the speed of sound of the interior
solution. We find that as the objects contain less and less dark energy, the sound speed and
the frequencies increase.
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