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Abstract: The Unruh vacuum is widely used as a quantum state to describe black hole evaporation
since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”,
in the case where a black hole is formed by gravitational collapse. We examine the relation between
these two quantum states in the background spacetime of a Reissner–Nordström black hole (both
extremal and not), highlighting the similarities and striking differences.
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1. Introduction

In quantum field theory regarding black hole (BH) spacetimes, particular relevance
is given to the so-called ‘Unruh vacuum’ [1]. This quantum state is defined using the
maximal analytic extension of the BH spacetime by expanding the quantum field operators
in ingoing modes that have a positive frequency with respect to asymptotic Minkowski
time, whereas for the outgoing modes, emerging from the past horizon, these are chosen
as a positive frequency with respect to Kruskal time. At late retarded time, this state is
expected to describe the quantum state of a field in the spacetime of a collapsing body
forming a BH.

Let us make an explicit example in the simple setting of a two-dimensional
Schwarzschild spacetime, for which the metric reads

ds2 = −(1 − 2m
r
)dt2 + (1 − 2m

r
)−1dr2 = −(1 − 2m

r
)dudv , (1)

where m is the BH mass and

u = t − r∗, (2)

v = t + r∗ (3)

are, respectively, the retarded and advanced Eddington–Finkelstein coordinates. r∗ is the
Regge–Wheeler ‘tortoise’ coordinate

r∗ =
∫ dr

(1 − 2m
r )

= r + 2m ln | r
2m

− 1| . (4)

Kruskal’s null co-ordinates are defined as [2]

U = ±e−κu , (5)

V = ±1
κ

eκv , (6)
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where κ = 1/4m is the surface gravity of the BH horizon located at 2m.
The maximal analytic extension of the Schwarzschild metric is depicted in the Penrose

diagram (see, for example, [3]) in Figure 1, describing an eternal Schwarzschild BH. In
Equation (5), the sign − holds in the asymptotically flat region R and the white hole region
WH; the sign + is the BH region BH and in L. In (6), the sign + refers to the R and BH
regions, while it refers to − in WH and L. We shall limit our discussion to the physically
interesting regions R and BH.

Figure 1. Penrose diagram for Schwarzschild geometry. H+ is the future event horizon, and H− the
past one. I− is the past null infinity, and I+ is the future null infinity.

In this spacetime, we consider a massless scalar quantum field, ϕ̂, minimally coupled
to gravity, the field equation of which is

∇µ∇µϕ̂ = 0 , (7)

where ∇µ∇µ is the covariant D’Alembertian.
In order to obtain the Unruh vacuum, one expands the field as

ϕ̂ = ∑
ω

âI
ω

e−iωv
√

4πω
+ ∑

ωK

âωK

e−iωKU
√

4πωK
+ h.c. . (8)

The first term in Equation (8) represents the ingoing part, while the second represents the
outgoing version. Note that U is locally inertial on H−. The â’s are annihilation operators,
and the Unruh vacuum |U⟩ is defined as

âI
ω |U⟩ = 0 = âωK |U⟩ (9)

for every ω, ωK.
Now, consider a Schwarzschild BH formed by the collapse of a spherically symmetric

star. The corresponding Penrose diagram is depicted in Figure 2.
In this spacetime, we consider, as before, a quantum field ϕ̂, and we suppose the field

is in a quantum state that corresponds to Minkowski vacuum on I−. We call this state |in⟩;
in this state, there are no incoming particles (radiation) associated with ϕ̂.

Now, |U⟩ in the spacetime of Figure 1 approximates the behavior of |in⟩ in the physical
spacetime of Figure 2 at late retarded time, u. For a detailed discussion, see [4]. In particular,
when considering the energy momentum tensor operator T̂µν(ϕ̂), in the Schwarzschild
region, we have

lim
u→+∞

⟨in|T̂µν(ϕ̂)|in⟩ = lim
u→+∞

⟨U|T̂µν(ϕ̂)|U⟩ . (10)
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Figure 2. Penrose diagram of the spacetime of a collapsing star. The shadowed region represents
the star.

As it is well known, |U⟩ describes at I+ a thermal flux of radiation at the Hawking
temperature

TH =
h̄κ

2πkB
, (11)

which is exactly what Hawking derived in 1974 [5,6] by computing the in-out Bogoliubov
coefficients for the late time behavior of |in⟩. This is the reason for using the Unruh vacuum
to describe Hawking’s BH radiation.

In this paper, we shall investigate the relation between the Unruh vacuum and the |in⟩
vacuum in the setting of a charged BH described by the Reissner-Nordström (RN) metric,
both for non-extremal and extremal configurations.

2. Non-Extremal Reissner-Nordström Black Holes: The Unruh Vacuum

We focus our attention on an RN BH of mass m and charge Q. The BH is supposed to
be non-extremal, i.e., m > |Q|. The metric describing it is

ds2 = −(1 − 2m
r

+
Q2

r2 )dt2 + (1 − 2m
r

+
Q2

r2 )−1dr2 = −(1 − 2m
r

+
Q2

r2 )dudv , (12)

where, again,

u = t − r∗ , (13)

v = t + r∗ , (14)

but now

r∗ =
∫ dr

(1 − 2m
r + Q2

r2 )
= r +

1
2κ+

ln |κ+(r − r+)| −
1

2κ−
ln |κ−(r − r−)| . (15)

In this case, we have two horizons: an event horizon at r+ and an inner one at r− where

r± = m ±
√

m2 − Q2 (16)

and two corresponding surface gravities:

κ± =

√
m2 − Q2

r2
±

. (17)
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We have two possible ways to implement the construction of Kruskal coordinates, namely

U(+) = ∓ 1
κ+

e−κ+u , (18)

V(+) =
1

κ+
eκ+v , (19)

which are regular on r+ but not on r− where they diverge, or [7]

U(−) = − 1
κ−

eκ−u , (20)

V(−) = − 1
κ−

e−κ−v , (21)

where they are regular on r− but singular on r+ where they diverge.The Penrose diagram
of the maximally extended RN solution is given in Figure 3.

Figure 3. Penrose diagram of the maximal analytic extension of the RN metric. H+ is the future event
horizon, H− the past one; co and ci are, respectively, the outgoing and ingoing sheets of the Cauchy
horizon located at r−.

In the regions of our interest, we have indicated H+ as the future event horizon
(U(+) = 0, u = +∞, r = r+) and H− as the past one (V(+) = 0, v = −∞, r = r+). The
Cauchy horizon, C = c0 ∪ ci, is located at r = r−: co is the outgoing sheet (U(−) = 0, u =
−∞, r = r−) while ci is the ingoing version (V(−) = 0, v = +∞, r = r−).

The Unruh vacuum is usually constructed out of U(+), namely expanding the field as

ϕ̂ = ∑
ω

âI
ω

e−iωv
√

4πω
+ ∑

ωK

âωK

e−iωKU(+)

√
4πωK

+ h.c. (22)

and the Unruh vacuum |U(+)⟩ is defined by

âI
ω |U(+)⟩ = 0 = âωK |U(+)⟩ (23)

for every ω, ωK.
We shall focus on the renormalized expectation values of T̂µν(ϕ̂) [8–10] in this state,

which read [11]
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⟨U(+) |̂̂Tvv(ϕ̂)|U(+)⟩ = − 1
192π

[
f ′(r)2 − 2 f (r) f ′′(r)

]
=

1
24π

(
−m

r3 +
3
2
(m2 + Q2)

r4 − mQ2

r5 +
Q4

r6

)
(24)

⟨U(+) |̂̂Tuv(ϕ̂)|U(+)⟩ =
1

96π
f (r) f ′′(r) = − 1

24π

(
1 − 2m

r
+

Q2

r2

)(
m
r3 − 3

2
(m2 + Q2)

r4

)
(25)

⟨U(+) |̂̂Tuu(ϕ̂)|U(+)⟩ = ⟨U(+) |̂̂Tvv(ϕ̂)|U(+)⟩ −
1

24π
{U(+), u}

=
1

48π

(r − r+)2

r2

κ2
+(1 +

2r+
r

+
3r2

+

r2 ) +
(

r2
−

r+ − 3r−)

r3 +
2r2

−
r4

 , (26)

where

f (r) = 1 − 2m
r

+
Q2

r2 (27)

and a prime “ ′ ” indicates the derivative with respect to r. { , } means Schwarzian
derivative, and we obtain

− 1
24π

{U(+), u} =
κ2
+

48π
. (28)

This last term in Equation (26) describes the Hawking radiation at

TH =
h̄κ+

2πkB
. (29)

The other terms in Equations (24)–(26) represent the vacuum polarization contribution and
correspond to the expectation values calculated in the so-called Boulware vacuum |B⟩ [12],
obtained by expanding the field ϕ̂ in modes that are positive and negative infrequency with
respect to t, namely ( e−iωu

√
4πω

, e−iωv
√

4πω
). We can formally write Equations (24)–(26) as

⟨U(+)|T̂µν|U(+)⟩ = ⟨B|T̂µν|B⟩+ ∆+
µν , (30)

where
∆+

µν = ⟨U(+)|T̂µν|U(+)⟩ − ⟨B|T̂µν|B⟩ (31)

with

∆+
vv = 0 = ∆+

uv , (32)

∆+
uu = − 1

24π
{U(+), u} =

κ2
+

48π
. (33)

The tensor ∆+
µν is conserved and describes radiation propagating along constant u.

Mathematically, one can also define the Unruh vacuum associated with the Kruskal
coordinate U(−) of Equation (20), i.e., expanding the field in outgoing modes of the form
e
−iωKU(−)√

4πωK
. The resulting vacuum state, call it |U(−)⟩, has the following expectation values of

T̂µν

⟨U(−)|T̂µν|U(−)⟩ = ⟨B|T̂µν|B⟩+ ∆−
µν , (34)

where, as before,
∆−

vv = 0 = ∆−
uv , (35)

but now

∆−
uu = − 1

24π
{U(−), u} =

κ2
−

48π
. (36)
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3. Non Extremal Reissner-Nordström Black Holes: The |in⟩ Vacuum

Let us now suppose that the RN BH is formed by the gravitational collapse of a
charged body. We simplify the discussion by considering the collapse of a charged null
shell. One can generalize this to an arbitrary body [13] .

The corresponding Penrose diagram is given in Figure 4.

Figure 4. Penrose diagram of the charged BH resulting from the collapse of a null shell.

The spacetime metric of this model can be given as follows. The shell is located at
v = v0. For v < v0, we have Minkowski spacetime:

ds2
in = −dt2

in + dr2 = −duindv , (37)

where

uin = tin − r , (38)

v = tin + t , (39)

are, respectively, the null outgoing and ingoing directions. From Equations (38) and (39),
we have

r =
v − uin

2
. (40)

For v > v0, we have the RN metric

ds2
out = − f (r)dt2 + f (r)−1dr2 = − f (r)dudv , (41)

where f (r) is given in Equation (27) and u, v, and r∗ in Equations (13)–(15). By matching
the metric across v0, we can relate the null outgoing coordinates u and uin [14]:

u = uin −
1

κ+
ln |κ+(v0 − uin − 2r+)|+

1
κ−

ln |κ−(v0 − uin − 2r−)| . (42)

We can extend the uin co-ordinate in the RN region using the above relation. The event
horizon (r = r+, u = +∞) is located at

uin|H+ = v0 − 2r+ . (43)
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The inner horizon outgoing sheet (r = r−, u = −∞) corresponds to

uin|in = v0 − 2r− . (44)

Note that this null surface, unlike the previous case of the maximal analytic extension of
the RN spacetime (see Figure 3), does not correspond to the outgoing sheet of the Cauchy
horizon anymore (see Figure 4). The latter is, indeed, shifted inside the BH and is located
at (using the reflection condition at r = 0, see Equation (40))

uin|co = v0 . (45)

Note that near H+,

u ≃ − 1
κ+

ln |κ+(v0 − uin − 2r+)| , (46)

i.e., uin behaves as the Kruskal U(+) of Equation (18) up to a shift. When choosing, for
example, v0 = 2r+, they coincide. On the other side, near the outgoing sheet of the inner
horizon (i.e., for u → −∞) we have

u ≃ 1
κ−

ln |κ−(v0 − uin − 2r−)| . (47)

This means that uin behaves like U(−) (see Equation (20)). So, uin, unlike U(±), is a regular
null outgoing coordinate both at (r+, u = +∞) and at (r−, u = −∞). However, this
coordinate is singular on the Cauchy horizon co, as can be seen from

ds2 = −C(r)dudv = −C(r)
du

duin
duindv , (48)

where, from Equation (42),

du
duin

= 1 +
1

κ+(v0 − uin − 2r+)
− 1

κ−(v0 − uin − 2r−)
=

(v0 − uin)
2

(v0 − uin − 2r+)(v0 − uin − 2r−)
, (49)

which vanishes like (uin − v0)
2 for uin → v0. Note that C(r) du

duin
is nonvanishing neither

on H+ nor on the outgoing sheet of r−, making the (uin, v) co-ordinates regular there, as
stated before.

Note that past null infinity, I− (see Figure 4) is a Cauchy surface for our null field for
the spacetime region within the Cauchy horizon co ∪ ci. The initial conditions on our field
ϕ̂ on I− determine its evolution in the above region. We choose the quantum state for our
field to be a Minkowski vacuum on I−. This is achieved by choosing the ingoing modes
to be of the form e−iωv; the ougoing ones are simply the reflection through r = 0 (in the
Minkowski part) of the incoming ones, namely of the form e−iωuin , where the reflection
condition sets uin = v (see Equation (40) at r = 0). We call this quantum state |in⟩.

By using the standard formalism, we obtain

⟨in|T̂µν|in⟩ = 0 (50)

for v < v0 (i.e., in the Minkowski region), while for v > v0, in the RN part, we obtain

⟨in|T̂vv|in⟩ = ⟨B|T̂vv|B⟩ , (51)

⟨in|T̂uv|in⟩ = ⟨B|T̂uv|B⟩ , (52)

⟨in|T̂uu|in⟩ = ⟨B|T̂uu|B⟩ −
1

24π
{uin, u} , (53)

where the last term in Equation (53) is the Schwarzian derivative between uin and u to be
calculated from Equation (42)
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{uin, u} =
3
2

κ2
+

(
1 − κ+

κ−
U2

in
(Uin−2(r+−r−))2

)2

(
1 − κ+Uin − κ+

κ−
Uin

(Uin−2(r+−r−))

)4 − 2κ2
+

(
1 − κ+

κ−
U3

in
(Uin−2(r+−r−))3

)
(

1 − κ+Uin − κ+
κ−

Uin
(Uin−2(r+−r−))

)3 , (54)

where Uin = uin − v0 + 2r+. The following limiting behaviors are interesting. For u → +∞
(i.e., uin = v0 − 2r+, Uin = 0), we have (see Equation (46))

− 1
24π

{uin, u} = − 1
24π

{U(+), u} =
1

48π
κ2
+ , (55)

while for u → −∞ (i.e., uin = v0 − 2r−, Uin = 2(r+ − r−)), see Equation (47),

− 1
24π

{uin, u} = − 1
24π

{U(−), u} =
1

48π
κ2
− . (56)

So, when comparing Equations (51)–(53) with the corresponding ones ((24)–(26) and (34)),
we can conclude that in the RN region,

lim
u→+∞

⟨in|T̂µν|in⟩ = lim
u→+∞

⟨U(+)|T̂µν|U(+)⟩ (57)

and
lim

u→−∞
⟨in|T̂µν|in⟩ = lim

u→−∞
⟨U(−)|T̂µν|U(−)⟩ . (58)

So the Unruh vacuum |U(+)⟩ reproduces |in⟩ at late (u → +∞) retarded time, while this
does not happen at the inner horizon. There the |in⟩ vacuum is well approximated by
|U(−)⟩.

4. Regularity

We shall consider a quantum state to be “regular” if the expectation values of T̂µν in
that given state are finite when expressed in a regular co-ordinate system. Support for
this comes from the fact that the expectation values of T̂µν in the semiclassical Einstein
equations represent the source that drives the backreaction of the quantum fields in the
spacetime metric.

Let us start with the Unruh vacuum |U(+)⟩. The expectation values of T̂µν in this
state are given by Equations (24)–(26), and one sees immediately that they diverge on the
physical singularity located at r = 0. However, the Eddington–Finkelstein co-ordinates,
(u, v), used in Equations (24)–(26) are singular on the horizons r±. So, care must be taken
when considering these regions.

We begin with r+. A coordinate system regular there is the Kruskal one (U(+), V(+)) of
Equations (18) and (19). We require the finiteness of ⟨U(+)|T̂µν|U(+)⟩ as r → r+ when
expressed in these Kruskal coordinates. This implies that on the event horizon H+

(r = r+, U(+) = 0), we need the regularity of |U(+)⟩ (see [15]) such that

(i)
⟨U(+)|T̂uu|U(+)⟩

f 2 < ∞ , (59)

(ii)
⟨U(+)|T̂uv|U(+)⟩

f
< ∞ , (60)

(iii) ⟨U(+)|T̂vv|U(+)⟩ < ∞ . (61)

Conditions (ii) and (iii) are easily satisfied using Equation (25) and (24), respectively.
Concerning condition (i), note that

lim
r→r+

⟨B|T̂uu|B⟩ = − 1
48π

κ2
+ . (62)
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So, according to Equation (33), we see that ⟨U(+)|T̂uu|U(+)⟩ vanishes at r = r+ and also, as
can be rapidly checked, its first derivative. This means that ⟨U(+)|T̂uu|U(+)⟩ vanishes as
(r − r+)2 for r → r+, making condition (i) satisfied. So, |U(+)⟩ is regular on H+. Regularity
on H− is given by conditions similar to Equations (59)–(61) but with u and v interchanged,
namely

(i)
⟨U(+)|T̂vv|U(+)⟩

f 2 < ∞ , (63)

(ii)
⟨U(+)|T̂uv|U(+)⟩

f
< ∞ , (64)

(iii) ⟨U(+)|T̂uu|U(+)⟩ < ∞ . (65)

From Equations (25) and (26), we see that (ii) and (iii) are satisfied but not (i). From
Equation (24), we see that

lim
r→r+

⟨U(+)|T̂vv|U(+)⟩ = lim
r→r+

⟨B|T̂vv|B⟩ = − 1
48π

κ2
+ (66)

and, hence, condition (i) is not satisfied, as f → 0. Hence, |U(+)⟩ is not regular on H−.
We now come to the inner horizon, where for a regular coordinate system, this can

be given by Kruskal’s (U(−), V(−)), as per Equations (20) and (21). The regularity con-
ditions on the outgoing sheet of the Cauchy horizon (r = r−, U(−) = 0) are given by
the same requirements of Equations (59)–(61). One rapidly checks the fullfillement of
Equations (60) and (61). Concerning (59), we now have it that

lim
r→r−

⟨B|T̂uu|B⟩ = − 1
48π

κ2
− (67)

implying that (see Equation (33))

lim
r→r−

⟨U(+)|T̂uu|U(+)⟩ = − 1
48π

(κ2
− − κ2

+) . (68)

Because κ+ ̸= κ−, this is not vanishing, and condition (59) is not fullfilled. |U(+)⟩ is not
regular on co. The conditions for regularity on the ingoing sheet of the inner horizon
(r = r−, V(−) = 0) are given by Equations (63)–(65), and one checks that Equation (63) is
not satisfied for f → 0 since

lim
r→r−

⟨U(+)|T̂vv|U(+)⟩ = lim
r→r−

⟨B|T̂vv|B⟩ = − 1
48π

κ2
− . (69)

|U(+)⟩ is also singular on ci [16,17] (see also [18]).
A similar analysis can be performed on the state |U(−)⟩ (see Equations (34)–(36)), and

we will see that |U(−)⟩ is not regular for the future horizon H+, past horizon H−, and also
on the ingoing sheet of the inner horizon ci, whereas it is regular on the outgoing sheet co.

We come now to the |in⟩ state. In view of the previous discussion on the states |U(±)⟩,
and the relations of these with the |in⟩ state found in Section 3, we see the following
behavior. On H+ (r = r+, u = +∞), we see that |in⟩ is regular since (see (57))

lim
u→+∞

⟨in|T̂µν|in⟩ = lim
u→+∞

⟨U(+)|T̂µν|U(+)⟩ (70)

and |U(+)⟩ is regular on H+. On the inner horizon (r = r−, u = −∞), which is no longer
the outgoing sheet of the Cauchy horizon, (see Equation (58))

lim
u→−∞

⟨in|T̂µν|in⟩ = lim
u→−∞

⟨U(−)|T̂µν|U(−)⟩ (71)



Universe 2024, 10, 18 10 of 14

where we see that |in⟩, unlike |U(+)⟩, is regular because |U(−)⟩ is. Furthermore, the
nonregularity of |in⟩ on the past horizon H− (r = r+, v = −∞) and on the ingoing sheet of
the inner horizon ci (r = r−, v = +∞) is rapidly established since

⟨in|T̂vv|in⟩ = ⟨U(+)|T̂vv|U(+)⟩ = ⟨U(−)|T̂vv|U(−)⟩ = ⟨B|T̂vv|B⟩ , (72)

and we have seen that |U(±)⟩ are not regular on these regions. As we have remarked when
presenting the spacetime of the collapsing shell (see Figure 4), the outgoing sheet of the
Cauchy horizon is no longer located at (r = r−, u = −∞) but is at uin = v0. In order to
check regularity on this surface, we just need to examine the component of ⟨in|T̂µν|in⟩ in
the Eddington–Finkelstein coordinates (u, v) since they are regular there. By examining
Equations (51)–(53), we find that the Schwarzian derivative {uin, v} entering in (53) diverges
as (uin − v0)

−6, and all other terms in Equations (51)–(53) are finite (except at the singularity
at r = 0). We conclude that |in⟩ is not regular on co.

5. Extremal Reissner-Nordström BHs

So far, we have considered non-extremal BHs, i.e., m > |Q|, but what happens if the
BH is extremal?

Extremal BHs are very interesting objects; they also appear in supergravity theories [19]
and represent, in some sense, a stable ground state for these theories. For extremal BHs,
the surface gravity vanishes (see Equation (17) for m2 = Q2); therefore, they do not emit
Hawking radiation. They can be considered the end state of the evaporation of a non-
extremal BH when the U(1) charge Q is conserved during the process.

We shall now discuss how we can extend the results of our previous investigation to
the extremal BH case. The extremal RN BH is characterized by the metric

ds2 = −
(

1 − m
r

)2
dt2 +

(
1 − m

r

)−2
dr2 = −

(
1 − m

r

)2
dudv , (73)

where, as usual,

u = t − r∗ , (74)

v = t + r∗ , (75)

but now

r∗ =
∫ dr

(1 − m
r )

2 = r + 2m ln | r
m

− 1| − m2

(r − m)2 . (76)

Note the presence of the last term in (76) compared to the non-extremal case. The Penrose
diagram of the extremal RN BH is given in Figure 5.

Figure 5. Penrose diagram of the extremal RN BH.
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The inner and outer horizon now coincide at r+ = m.
We start by considering the Unruh vacuum. If we simply look at the final expression

for the expectation values of T̂µν in the state |U(+)⟩ (Equations (24)–(33)) and naively set
m = |Q|, hence κ+ = 0, we see that the Schwarzian derivative term (28) vanishes, so the
Unruh state coincides with the Boulware version, leading to

⟨B|T̂vv|B⟩ = − 1
24π

m
r3

(
1 − m

r

)3
, (77)

⟨B|T̂uv|B⟩ = − 1
24π

(
1 − m

r

)2
(

m
r3 − 3

2
m2

r4

)
, (78)

⟨B|T̂uu|B⟩ = − 1
24π

m
r3

(
1 − m

r

)3
, (79)

which only describes the vacuum polarization induced by the BH, and this seems consistent
with the fact that extremal BHs do not give Hawking radiation.

It is easy to see that ⟨B|T̂µν|B⟩ is not regular on the horizon r+ = m [20]. When we
require regularity in the free-falling frame across the future horizon, we obtain conditions
identical to Equations (59)–(61), and we see that (59) is not satisfied since the denominator
there now vanishes as (r − m)4 while the numerator is only (r − m)3 (see Equation (79)).
Similarly, one finds a singular behavior on the past horizon and on the Cauchy horizon. It
is not yet clear if this singular behavior is an artifact of the two-dimensional theory [21,22].

Besides regularity issues, one can question if the limiting procedure we used to
derive Equations (77)–(79), as the κ+ → 0 limit of the non-extremal version (24)–(26) is
correct. If we go back to the original definition of the Unruh state |U(+)⟩, starting with
the outgoing modes that are positive in frequency with respect to Kruskal U(+), we see
that the Equation (18) defining U(+) in terms of Eddington–Finkelstein u makes no sense if
κ+ = 0. So, one may wonder if the stress tensor of Equations (77)–(79) really describes the
behavior of an extremal RN BH at late retarded time after its formation, as, indeed, this
happens for a non-extremal BH, as we saw in Section 3. In order to answer this, one should
investigate the formation of an extremal RN BH, then construct the corresponding |in⟩
state, compute the expectation values of T̂µν in this state, and see if at late u, they coincide
with the predictions of Equations (77)–(79).

Therefore, consider the formation of an extremal RN BH, as we did before, via the
collapse of a charged null shell. One could consider, instead, a generic collapse without
changing our conclusions. The Penrose diagram is given in Figure 6.

Figure 6. Penrose diagram of an extremal RN BH formed by the collapse of a null shell.



Universe 2024, 10, 18 12 of 14

For v < v0, we have Minkowski spacetime:

ds2
in = −dt2

in + dr2 = −duindv , (80)

uin = tin − r , (81)

v = tin + r , (82)

whereas for v > v0, the extreme RN metric is given by Equation (73). Matching across the
shell located at v = v0 gives

u = uin − 4m

[
ln |v0 − uin

2m
− 1| − 1

2( v0−uin
2m − 1)

]
. (83)

The event horizon H+ (r = m, u = +∞) is at uin = v0 − 2m. The ingoing sheet of the
Cauchy horizon ci is at (r = m, v = +∞), while the outgoing one co is at uin = v0. By using
Equation (83), one can calculate the Schwarzian derivative, and the complete stress tensor
reads

⟨in|T̂vv|in⟩ = ⟨B|T̂vv|B⟩ = − 1
24π

m
r3

(
1 − m

r

)3
, (84)

⟨in|T̂uv|in⟩ = ⟨B|T̂uv|B⟩ = − 1
24π

(
1 − m

r

)2
(

m
r3 − 3

2
m2

r4

)
, (85)

⟨in|T̂uu|in⟩ = ⟨B|T̂uu|B⟩ −
1

24π
{uin, u} (86)

= − 1
24π

m
r3

(
1 − m

r

)3
− 1

24π

8m(uin − v0 + 2m)3

(uin − v0)
6 .

When looking at the (u, u) component, we immediately see that it has an extra contribution
with respect to the static vacuum polarization ⟨B|T̂uu|B⟩ of Equation (79). This term
represents the transient radiation created by the time-dependent collapse of the shell
decaying at late retarded time (u → +∞, uin = v0 − 2m) as (uin − v0 + 2m)3. However,
near the horizon, we have uin − v0 + 2m ∼ −2(r − m), so the two terms in Equation (86)
vanish with the same power law, and they are opposite in sign. This makes the crucial limit
for the regularity condition on H+, i.e., Equation (59), satisfied [23]:

⟨in|T̂uu|in⟩
(1 − r

m )4 = − 1
24π

(
3

2m2 ) < ∞ . (87)

So, |in⟩ is regular on H+. We conclude that |B⟩ cannot represent the state of a quantum
field emerging at late retarded time for a collapse forming an extremal RN BH.

Note that in order to obtain the nonvanishing term from the Schwarzian derivative,
it is necessary to also keep the subleading logarithmic term in Equation (83) in the limit
uin → v0 − 2m. The omission of it would result in a vanishing Schwarzian derivative,
missing, therefore, the correct result.1

Finally, one can verify that |in⟩ is not regular on the ingoing sheet of the Cauchy
horizon and on the outgoing version, (uin = v0), where the Schwarzian derivative diverges,
like (uin − v0)

−6.

6. Conclusions

We have investigated two particularly interesting quantum states for a field that
propagates in RN spacetime: the Unruh state |U(+)⟩ and the |in⟩ state. They are defined
in two different spacetime manifolds. The Unruh state |U(+)⟩ is defined on the maximal
analytic extension of the RN metric (see Figure 3). It is a mathematical manifold. The |in⟩
state is defined on the manifold associated with the formation of an RN BH (see Figure 4).
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This is the physical manifold. We have seen if and when the Unruh state |U(+)⟩ can mimic
the behavior of the physical state |in⟩.

These two states differ according to the choice of outgoing modes in the expansion
of the field operator, while the ingoing ones are identical. For the Unruh vacuum, for a
non-extremal BH, the outgoing modes have a positive frequency with respect to Kruskal’s
null retarded co-ordinate U(+) (see Equation (18)). This co-ordinate is locally inertial on
the past horizon H−. On the other hand, for the |in⟩ vacuum, the outgoing modes are
simply the reflection of the ingoing ones at the center of the collapsing body. The incoming
modes, in this case, are chosen in a way that the corresponding vacuum |in⟩ coincides
past null infinity I− (which is a Cauchy surface), with a Minkowski vacuum. One can see
that the definition of the |in⟩ vacuum has a very solid physical motivation; it is not just a
mathematical construction.

We have seen that for a non-extremal BH, |U(+)⟩ approximates very well |in⟩ at late
retarded time (u → +∞): this means near the horizon, H+, and asymptotically at late-
time. This motivates the use of the Unruh vacuum to discuss BH evaporation. However,
although it is certainly true that the agreement between the two states is quite good near
the horizon H+, this is no longer true as soon as one moves inside the BH. While both
states are regular on the event horizon H+, the Unruh vacuum is singular on the outgoing
sheet of the inner horizon at r− for the maximal analytic extension of the RN metric. The
state |in⟩, on the other hand, is perfectly regular on this outgoing null surface, which is no
longer a Cauchy horizon for the collapse spacetime manifold of Figure 4. For this physical
spacetime, the outgoing sheet of the Cauchy horizon is shifted inside the inner horizon r−
at uin = v0, where |in⟩ is singular. Note that in the maximal analytic extension, this surface
is completely regular and has no particular physical significance. From Equation (53), we
see that it is the Schwarzian derivative term that diverges as uin → v0 for the state |in⟩.
This term represents the radiation emitted by the shell during its collapse. We see that
this flux diverges as the shell radius goes to zero, meaning we have a thunderbolt null
singularity [26,27].

Concerning the inner sheet of the Cauchy horizon, located for both spacetimes at
(r = r−, v = +∞), we see that |U(+)⟩ and |in⟩ are both irregular, making the full Cauchy
horizon singular. One expects large backreaction effects (through the semiclassical Einstein
equations) to occur there, leading to the formation of a spacetime singularity, as predicted
by the mass inflation mechanism [28,29].

We finally analyzed the case of an extreme BH. It is often said that the Unruh vacuum
(and also the Hartle–Hawking–Israel version [30,31]) coincides with the Boulware version
since the surface gravity of these BHs horizons is vanishing. One may further support this
idea by remarking on the fact that the Unruh vacuum is constructed by outgoing modes
that are positive in frequency with respect to a null co-ordinate (U(+) for a non-extremal
BH), which is locally inertial on the past horizon. For an extremal RN BH, the Eddington–
Finkelstein u is locally inertial on the past horizon, and the outgoing modes of the Boulware
vacuum are, indeed, positive in frequency with respect to u. However, we have clearly
shown that this Boulware vacuum for an extremal BH does not correctly describe (at a large
u) the physical state of a quantum field if the extreme RN BH is formed by the collapse
of a star. So, its physical significance is quite unclear, and the results for extremal BHs
obtained by simply taking the κ → 0 limit of the expressions calculated for the Unruh or
Hartle–Hawking–Israel states in non-extremal BHs should be regarded with suspicion.
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Note
1 An expression like Equation (83), with the first term omitted, has been proposed in Refs. [24,25] as a definition of Kruskal U

coordinate in the extreme RN metric. The vacuum state constructed out of it would approximate |in⟩ quite well for u → +∞.
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