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Abstract: We develop a cosmological model based on a quadratic equation of state
p/c2 = −(α + 1)ρ2/ρP + αρ− (α + 1)ρΛ, where ρP is the Planck density and ρΛ the
cosmological density, “unifying” vacuum energy and dark energy in the spirit of
a generalized Chaplygin gas model. For ρ → ρP , it reduces to p = −ρP c2 leading to
a phase of early accelerating expansion (early inflation) with a constant density equal to
the Planck density ρP = 5.16 × 1099 g/m3 (vacuum energy). For ρΛ � ρ � ρP , we
recover the standard linear equation of state p = αρc2 describing radiation (α = 1/3) or
pressureless matter (α = 0) and leading to an intermediate phase of decelerating expansion.
For ρ → ρΛ, we get p = −ρΛc

2 leading to a phase of late accelerating expansion (late
inflation) with a constant density equal to the cosmological density ρΛ = 7.02× 10−24 g/m3

(dark energy). The pressure is successively negative (vacuum energy), positive (radiation
and matter), and negative again (dark energy). We show a nice “symmetry” between the
early universe (vacuum energy + α-fluid) and the late universe (α-fluid + dark energy).
In our model, they are described by two polytropic equations of state with index n = +1 and
n = −1 respectively. Furthermore, the Planck density ρP in the early universe plays a role
similar to the cosmological density ρΛ in the late universe. They represent fundamental
upper and lower density bounds differing by 122 orders of magnitude. The cosmological
constant “problem” may be a false problem. We study the evolution of the scale factor,
density, and pressure. Interestingly, our quadratic equation of state leads to a fully analytical
model describing the evolution of the universe from the early inflation (Planck era) to the
late accelerating expansion (de Sitter era). These two phases are bridged by a decelerating
algebraic expansion (α-era). Our model does not present any singularity at t = 0 and
exists eternally in the past (although it may be incorrect to extrapolate the solution to the
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infinite past). On the other hand, it admits a scalar field interpretation based on an inflaton,
quintessence, or tachyonic field. Our model generalizes the standard ΛCDM model by
incorporating naturally a phase of early inflation that avoids the primordial singularity.
Furthermore, it describes the early inflation, the intermediate decelerating expansion, and
the late accelerating expansion of the universe simultaneously in terms of a single equation
of state. We determine the corresponding scalar field potential that unifies the inflaton and
quintessence potentials.

Keywords: inflation; dark matter; dark energy; polytropic equation of state

1. Introduction

The evolution of the universe may be divided into four main periods [1]. In the vacuum energy
era (Planck era), the universe undergoes a phase of early inflation that brings it from the Planck size
lP = 1.62× 10−35 m to an almost “macroscopic” size a ∼ 10−6 m in a tiniest fraction of a second [2–5].
The universe then enters in the radiation era and, when the temperature cools down below approximately
103 K, in the matter era [6]. Finally, in the dark energy era (de Sitter era), the universe undergoes a phase
of late inflation [7]. The early inflation is necessary to solve notorious difficulties such as the singularity
problem, the flatness problem, and the horizon problem [2–5]. The late inflation is necessary to account
for the observed accelerating expansion of the universe [8–11]. At present, the universe is composed
of approximately 5% baryonic matter, 20% dark matter, and 75% dark energy [1]. Despite the success
of the standard ΛCDM model, the nature of vacuum energy, dark matter, and dark energy remains very
mysterious and leads to many speculations.

The phase of inflation in the early universe is usually described by some hypothetical scalar field φ,
called inflaton, with its origin in the quantum fluctuations of the vacuum [2–5]. This leads to an equation
of state p = −ρc2, implying a constant energy density, called the vacuum energy. This energy density
is usually identified with the Planck density ρP = c5/G2~ = 5.16 × 1099 g/m3. As a result of the
vacuum energy, the universe expands exponentially rapidly on a timescale of the order of the Planck
time tP = 1/(GρP )1/2 = (~G/c5)1/2 = 5.39× 10−44 s.

The phase of acceleration in the late universe is usually ascribed to the cosmological constant Λ

which is equivalent to a constant energy density ρΛ = Λ/(8πG) = 7.02 × 10−24 g/m3 called the dark
energy [7]. This acceleration can be modeled by an equation of state p = −ρc2 implying a constant
energy density identified with the cosmological density ρΛ. As a result of the dark energy, the universe
expands exponentially rapidly on a timescale of the order of the cosmological time tΛ = 1/(GρΛ)1/2 =

(8π/Λ)1/2 = 1.46 × 1018 s (de Sitter solution). This leads to a phase of late inflation. Instead of
introducing a cosmological constant, some authors have proposed to explain the acceleration of the
universe in terms of a dark energy with a time-varying density associated with a canonical scalar field
called quintessence [12–24], or in terms of a tachyonic field [25–28].

Between the phase of early inflation and the phase of late accelerating expansion, the universe is in
the radiation era, then in the matter era [6]. These phases are described by a linear equation of state



Universe 2015, 1 359

p = αρc2 with α = 1/3 for the radiation and α = 0 for the pressureless matter (including baryonic
matter and dark matter). The scale factor increases algebraically as t2/[3(1+α)] and the density decreases
algebraically as t−2. For α > −1/3, the universe is decelerating.

In recent works [29–32], we have proposed to describe the transition between a phase of algebraic
expansion (p = αρc2) and a phase of exponential expansion (p = −ρc2) by a generalized polytropic
equation of state of the form

p = (αρ+ kρ1+1/n)c2. (1)

This is the sum of a standard linear equation of state p = αρc2 and a polytropic equation of state
p = kργc2 with γ = 1+1/n. Polytropic equations of state play an important role in astrophysics [33,34],
statistical physics [35] and mathematical biology [36], and they may also be relevant in cosmology.
We have studied the equation of state (1) for any values of α, k and n and found the following structure.
Positive indices n > 0 describe the early universe where the polytropic component dominates the linear
component because the density is high. Negative indices n < 0 describe the late universe where the
polytropic component dominates the linear component because the density is low. On the other hand,
a positive polytropic pressure (k > 0) leads to past or future singularities (or peculiarities) while a
negative polytropic pressure (k < 0) leads to a phase of exponential expansion (inflation) in the past
or in the future [Note 1: the polytropic equation of state (1) with k < 0 and n < 0 is equivalent to
the generalized Chaplygin gas model p/c2 = Bρ − A/ρa with a ≥ −1 that has been proposed to
describe the late accelerating expansion of the universe (the original Chaplygin gas model corresponds
to B = 0 and a = 1) [37–45]. Therefore, the polytropic equation of state (1) with k < 0 and n > 0

introduced in [29] can be seen as an extension of the generalized Chaplygin gas model to describe the
early accelerating expansion of the universe (inflation).]. In the early universe (n > 0, k < 0), the
generalized polytropic equation of state (1) leads to a maximum bound for the density that it is natural
to identify with the Planck density ρP = 5.16× 1099 g/m3 (vacuum energy). In the late universe (n < 0,
k < 0), it leads to a minimum bound for the density that it is natural to identify with the cosmological
density ρΛ = 7.02×10−24 g/m3 (dark energy). These bounds differ by 122 orders of magnitude. Taking
n = +1, k = −4/(3ρP ) and α = 1/3 we obtain an equation of state p/c2 = −4ρ2/3ρP + ρ/3 that
describes the transition between the vacuum energy era (ρP ) and the radiation era. On the other hand,
taking n = −1, k = −ρΛ and α = 0 we obtain an equation of state p/c2 = −ρΛ that describes the
transition between the matter era and the dark energy era (ρΛ). More generally, the equation of state
p/c2 = −(α + 1)ρ2/ρP + αρ describes the transition between the vacuum energy era and an α-era in
the early universe, and the equation of state p/c2 = αρ− (α + 1)ρΛ describes the transition between an
α-era and the dark energy era in the late universe.

In this paper, we propose to describe the vacuum energy, the α-fluid, and the dark energy in a “unified”
manner by a single, quadratic, equation of state of the form [Note 2: This idea was sketched in [30,32]
and is here systematically developed.]:

p = −(α + 1)
ρ2

ρP
c2 + αρc2 − (α + 1)ρΛc

2 (2)

involving the Planck density and the cosmological density [Note 3: It is oftentimes argued that the
dark energy (cosmological constant) corresponds to the vacuum energy. This leads to the so-called
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cosmological constant problem [46,47] because the cosmological density ρΛ = 7.02 × 10−24 g/m3 and
the Planck density ρP = 5.16 × 1099 g/m3 differ by about 122 orders of magnitude. We think it is a
mistake to identify the dark energy with the vacuum energy. In this paper, we regard the vacuum energy
and the dark energy as two distinct entities. We call vacuum energy the energy associated with the Planck
density and dark energy the energy associated with the cosmological density. The vacuum energy is
responsible for the inflation of the early universe and the dark energy for the inflation (acceleration) of
the late universe. In this viewpoint, the vacuum energy is due to quantum mechanics and the dark energy
is an effect of general relativity. The cosmological constant Λ is interpreted as a fundamental constant of
nature applying to the cosmophysics in the same way the Planck constant ~ applies to the microphysics.].
In the early universe (ρ � ρΛ), we recover the equation of state p/c2 = −(α + 1)ρ2/ρP + αρ unifying
the vacuum energy (ρP ) and the α-fluid. In the late universe (ρ � ρP ), we recover the equation of
state p/c2 = αρ − (α + 1)ρΛ unifying the α-fluid and the dark energy (ρΛ). The α-fluid may represent
radiation (α = 1/3) or pressureless dark matter (α = 0). Actually, some works [48] indicate that dark
matter may be described by an isothermal equation of state p = αρc2 with a small value of α � 1. It is
therefore useful to leave α unspecified and treat the general case of arbitrary α. However, to simplify the
discussion, we shall assume 0 ≤ α ≤ 1. Moreover, for illustrations, we will select the values α = 1/3

(radiation) and α = 0 (pressureless matter) considered in our previous studies [29–32].
The quadratic equation of state (2) leads to a fully analytical cosmological model describing the

evolution of the universe from the initial inflation (Planck era) to the late accelerating expansion (de
Sitter era). These two phases are bridged by an algebraic decelerating expansion (α-era). The pressure
is successively negative (vacuum energy), positive (α-era), and negative again (dark energy). Our model
does not present any singularity at t = 0—the phase of early inflation avoids the primordial Big Bang
singularity—and exists eternally in the past (although it may be incorrect to extrapolate the solution to
the infinite past). On the other hand, our model admits a scalar field interpretation based on an inflaton,
quintessence, or tachyonic field. This correspondence is interesting because the early inflation and
the late acceleration of the universe are usually described in terms of a scalar field. There exist
general techniques [7,49] to represent a fluid model in terms of a (canonical or tachyonic) scalar field.
Although the hydrodynamic and field representations are equivalent at the background level, they may
totally differ at the level of the perturbations when the fluid has a negative pressure. As a result, it is
important to give the two representations and study the evolution of the perturbations in each case. It is
known that the scalar field representation is more complete than the hydrodynamic representation, and
provides a more realistic model [Note 4: The perfect fluid approach is more rough than the scalar field
approach because for given perfect fluid variables ρ and P one cannot restore the scalar field variables
φ, ∇φ and V (φ) in the inhomogeneous case (while the converse is always possible).]. In this paper,
we only consider the evolution of the background where the hydrodynamic and field representations are
equivalent. The study of the perturbations will be considered in future works.

The paper is organized as follows. In Section 2, we recall the basic equations of cosmology that are
needed in our study. In Section 3, we describe the transition between the vacuum energy era (ρP ) and
the α-era in the early universe. In Section 4, we describe the transition between the α-era and the dark
energy era (ρΛ) in the late universe. In Section 5, we introduce the general model where vacuum energy
+ α-era + dark energy are described by the quadratic equation of state (2). This model reveals a nice
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“symmetry” between the early universe (vacuum energy + α-era) and the late universe (α-era + dark
energy). These two phases are described by two polytropic equations of state with index n = +1 and
n = −1 respectively. The mathematical formulae in the early and in the late universe are strikingly
symmetric. Furthermore, the cosmological density ρΛ in the late universe plays a role similar to the
Planck density ρP in the early universe. They represent fundamental lower and upper density bounds
differing by 122 orders of magnitude. Interestingly, these densities ρP and ρΛ (together with α) appear
as the coefficients of the equation of state (2). Therefore, this equation of state provides a “unification”
of vacuum energy and dark energy. We propose to interpret vacuum energy, radiation and dark energy as
a “generalized radiation” described by the equation of state (2) with α = 1/3 and treat baryonic matter
and dark matter as independent species. This leads to Equation (110) that generalizes Equation (107)
of the standard ΛCDM model. This equation avoids the primordial singularity and describes the whole
evolution of the universe from the early inflation to the late accelerating expansion. In Appendix A, we
develop a scalar field theory and derive the potential V (φ) associated with the quadratic equation of state
(2). This potential (see Equations (119)–(121)) unifies the inflaton potential in the early universe (see
Equation (35)) and the quintessence potential in the late universe (see Equation (62)).

2. Basic Equations of Cosmology

In a space with uniform curvature, the line element of the expanding universe is given by the
Friedmann-Lemaître-Roberston-Walker (FLRW) metric

ds2 = c2dt2 − a(t)2

{
dr2

1− kr2
+ r2 (dθ2 + sin2 θ dφ2)

}
, (3)

where a(t) represents the radius of curvature of the 3-dimensional space, or the scale factor. By an abuse
of language, we shall sometimes call it the “radius of the universe”. On the other hand, k determines the
curvature of space. The universe may be closed (k > 0), flat (k = 0), or open (k < 0).

If the universe is isotropic and homogeneous at all points in conformity with the line element of
Equation (3), and contains a uniform perfect fluid of energy density ε(t) = ρ(t)c2 and isotropic pressure
p(t), the energy-momentum tensor T ij is

T 0
0 = ρc2, T 1

1 = T 2
2 = T 3

3 = −p. (4)

The Einstein equations

Ri
j −

1

2
gijR− Λgij = −8πG

c2
T ij (5)

relate the geometrical structure of the spacetime (gij) to the content of the universe (Tij). For the sake
of generality, we have accounted for a possibly non-zero cosmological constant Λ. Given Equations (3)
and (4), these equations reduce to

8πGρ+ Λ = 3
ȧ2 + kc2

a2
,

8πG

c2
p− Λ = −2aä+ ȧ2 + kc2

a2
, (6)

where dots denote differentiation with respect to time. These are the well-known cosmological equations
describing a non-static universe first derived by Friedmann [6].
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The Friedmann equations are usually written in the form

dρ

dt
+ 3

ȧ

a

(
ρ+

p

c2

)
= 0, (7)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
, (8)

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λ

3
, (9)

where we have introduced the Hubble parameter H = ȧ/a. Among these three equations, only two are
independent. The first equation, which can be viewed as an “equation of continuity”, can be directly
derived from the conservation of the energy momentum tensor ∂iT ij = 0 which results from the Bianchi
identities. For a given barotropic equation of state p = p(ρ), it determines the relation between the
density and the scale factor. Then, the temporal evolution of the scale factor is given by Equation (9).

In this paper, we consider a flat universe (k = 0) in agreement with the observations of the cosmic
microwave background (CMB) [50,51]. On the other hand, we set Λ = 0 because the contribution of the
dark energy will be taken into account in the equation of state. The Friedmann equations then reduce to

dρ

dt
+ 3

ȧ

a

(
ρ+

p

c2

)
= 0, (10)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
, (11)

H2 =

(
ȧ

a

)2

=
8πG

3
ρ. (12)

The deceleration parameter is defined by

q(t) = − äa
ȧ2
. (13)

The universe is decelerating when q > 0 and accelerating when q < 0. Introducing the equation of state
parameter w = p/ρc2, and using the Friedmann equations (11) and (12), we obtain for a flat universe

q(t) =
1 + 3w(t)

2
. (14)

We see from Equations (11) and (14) that the universe is decelerating if w > −1/3 (strong energy
condition) and accelerating if w < −1/3 [Note 5: According to general relativity, the source for the
gravitational potential is ρ + 3p/c2. Indeed, the spatial part g of the geodesic acceleration satisfies the
exact equation ∇ · g = −4πG(ρc2 + 3p) showing that the source of geodesic acceleration is ρ + 3p/c2

not ρ [47]. Therefore, in general relativity, gravitation becomes “repulsive” when p < −ρc2/3.]. On
the other hand, according to Equation (10), the density decreases with the scale factor if w > −1 (null
dominant energy condition) and increases with the scale factor if w < −1. The latter case corresponds
to a “phantom” universe [52–69].
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3. The Early Universe

In Reference [29], we have proposed to describe the transition between the vacuum energy era and
the α-era in the early universe by a single equation of state of the form of Equation (1) with k < 0 and
n > 0. It can be written as

p/c2 = αρ− |k|ρ1+1/|ne|. (15)

Assuming w > −1, the equation of continuity (10) can be integrated into

ρ =
ρP

[1 + (a/a1)3(1+α)/|ne|]|ne|
, (16)

where ρP = [(α+ 1)/|k|]|ne| and a1 is a constant of integration. We see that ρP corresponds to an upper
bound (maximum value) for the density reached for a → 0. Since this solution describes the early
universe, it is natural to identify ρP with the Planck density ρP = c5/G2~ = 5.16 × 1099 g/m3.
As a result, the equation of state (15) can be rewritten as

p/c2 = αρ− (α + 1)ρ

(
ρ

ρP

)1/|ne|

. (17)

For the sake of simplicity, and for definiteness, we shall select the index ne = 1. The general case ne > 0

has been treated in [29] and leads to qualitatively similar results. Therefore, we propose to describe the
transition between the vacuum energy era and the α-era in the early universe by a single equation of state
of the form

p = αρc2 − (α + 1)
ρ2

ρP
c2, (18)

where ρP is the Planck density. This equation of state corresponds to a generalized polytropic equation
of state (1) with n = +1 and k = −(α + 1)/ρP . For ρ � ρP , we recover the linear equation of state
p ∼ αρc2. For ρ → ρP , we get p → −ρP c2 corresponding to the vacuum energy. The relation of
Equation (16) between the density and the scale factor becomes

ρ =
ρP

1 + (a/a1)3(1+α)
. (19)

The characteristic scale a1 marks the transition between the vacuum energy era and the α-era.
The equation of state (18) interpolates smoothly between the vacuum energy era (p = −ρc2, ρ = ρP )
and the α-era (p = αρc2, ρα = ρP/(a/a1)3(1+α)). It provides therefore a “unified” description of the
vacuum energy (Planck) era and α-era in the early universe. This amounts to summing the inverse of the
densities of these two phases. Indeed, Equation (19) can be rewritten as

1

ρ
=

1

ρP
+

1

ρα
. (20)

At a = a1 we have ρα = ρP so that ρ1 = ρP/2. Writing ρα = ρα,0/(a/a0)3(1+α), where a0 is the
present value of the scale factor and ρα,0 is the present density of the α-fluid, and using the asymptotic
expression ρα ∼ ρP/(a/a1)3(1+α), we find that the transition scale factor a1 is determined by the relation
ρPa

3(1+α)
1 = ρα,0a

3(1+α)
0 .
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The equation of state parameter w = p/ρc2 and the deceleration parameter q are given by

w = −(α + 1)
ρ

ρP
+ α, q =

1 + 3α

2
− 3

2
(α + 1)

ρ

ρP
. (21)

The velocity of sound c2
s = p′(ρ) is given by

c2
s

c2
= −2(α + 1)

ρ

ρP
+ α. (22)

As the universe expands from a = 0 to a = +∞, the density decreases from ρP to 0, the equation of
state parameter w increases from−1 to α, the deceleration parameter q increases from−1 to (1+3α)/2,
and the ratio (cs/c)

2 increases from −α− 2 to α (see Figures 2 and 6 of [29]).

3.1. The Vacuum Energy Era: Early Inflation

When a� a1, the density tends to a maximum value

ρ = ρmax = ρP (23)

and the pressure tends to p = −ρP c2. The Planck density ρP = 5.16 × 1099g/m3 (vacuum energy)
represents a fundamental upper bound for the density. A constant value of the density ρ ' ρP gives rise
to a phase of early inflation. From the Friedmann equation (12), we find that the Hubble parameter
is constant, H = (8π/3)1/2 t−1

P , where we have introduced the Planck time tP = 1/(GρP )1/2 =

(~G/c5)1/2 = 5.39 × 10−44 s. Numerically, H = 5.37 × 1043 s−1. Therefore, for a � a1, the scale
factor increases exponentially rapidly with time as

a(t) ∼ lP e
(8π/3)1/2t/tP . (24)

The timescale of the exponential growth is the Planck time tP = 5.39 × 10−44 s. We have defined
the “original” time t = 0 such that a(0) is equal to the Planck length lP = ctP = (G~/c3)1/2 =

1.62×10−35 m. Mathematically speaking, the universe exists at any time in the past (a→ 0 and ρ→ ρP

for t→ −∞), so there is no primordial singularity (Big Bang). However, when a→ 0, we cannot ignore
the quantum fluctuations associated with the spacetime. In that case, we cannot use the classical Einstein
equations anymore and a theory of quantum gravity is required. It is not known whether quantum
gravity will remove, or not, the primordial singularity. Therefore, we cannot extrapolate the solution
in Equation (24) to the infinite past. However, this solution may provide a semi-classical description of
the phase of early inflation when a ≥ lP .

3.2. The α-Era

When a� a1, we recover the equation

ρ ∼ ρP
(a/a1)3(1+α)

(25)

corresponding to the pure linear equation of state p = αρc2. When a � a1, the Friedmann
equation (12) yields

a

a1

∼

[
3

2
(α + 1)

(
8π

3

)1/2
t

tP

]2/[3(α+1)]

. (26)
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We then have
ρ

ρP
∼ 1[

3
2
(α + 1)

(
8π
3

)1/2 t
tP

]2 . (27)

During the α-era, the scale factor increases algebraically as t2/[3(α+1)] and the density decreases
algebraically as t−2.

3.3. The General Solution

For the equation of state (18), the density is related to the scale factor by Equation (19). It is possible
to solve the Friedmann equation (12) with the density-radius relation of Equation (19) analytically.
Introducing R = a/a1, we obtain∫ √

1 +R3(1+α)
dR

R
=

(
8π

3

)1/2

t/tP (28)

which can be integrated into [29]:√
(a/a1)3(α+1) + 1− ln

(
1 +

√
(a/a1)3(α+1) + 1

(a/a1)3(α+1)/2

)
=

3

2
(α + 1)

(
8π

3

)1/2
t

tP
+ C, (29)

where C is a constant of integration determined such that a = lP at t = 0. Setting ε = lP/a1, we get

C(ε) =
√
ε3(α+1) + 1− ln

(
1 +
√
ε3(α+1) + 1

ε3(α+1)/2

)
. (30)

For t→ +∞, Equation (29) reduces to Equation (26). For t→ −∞, we have the exact asymptotic result

a(t) ∼ a1e
(8π/3)1/2t/tP+D (31)

with D = 2(C + ln 2 − 1)/[3(1 + α)]. In general ε � 1 (for the radiation α = 1/3, we find
ε = 6.20× 10−30 [29]), so that C and D can be approximated by C ' 1 − ln 2 + (3/2)(α + 1) ln ε

and D ' ln ε. With this approximation, Equation (31) returns Equation (24). The time t1 marking the
end of the inflation is obtained by substituting a = a1 in Equation (29). According to Equation (21), the
universe is accelerating when a < ac (i.e., ρ > ρc) and decelerating when a > ac (i.e., ρ < ρc) where
ac/a1 = [2/(1 + 3α)]1/[3(α+1)] and ρc/ρP = (1 + 3α)/[3(α+ 1)]. The time tc at which the universe starts
decelerating is obtained by substituting a = ac in Equation (29). This corresponds to the time at which
the curve a(t) presents an inflexion point. For α = 1/3 (radiation) this inflexion point ac coincides with
a1 so it also marks the end of the inflation (tc = t1). For α 6= 1/3 the two points differ.

3.4. The Pressure

The pressure is given by Equation (18). Using Equation (19), we get

p =
α(a/a1)3(α+1) − 1

[(a/a1)3(α+1) + 1]
2ρP c

2. (32)
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The pressure starts from p = −ρP c2 = −4.64×10116 g/m s2 at t = −∞, remains approximately constant
during the inflation, increases at the end of the inflation, becomes positive, reaches a maximum value pe,
and decreases algebraically during the α-era. At t = ti = 0, pi ' −ρP c2. The point at which the pressure
vanishes (w = 0) corresponds to ρw/ρP = α/(α + 1) and aw/a1 = (1/α)1/[3(α+1)]. On the other hand,
the pressure reaches its maximum (cs = 0) when ρe/ρP = α/[2(α+1)] and ae/a1 = [(α+2)/α]1/[3(α+1)]

[Note 6: The velocity of sound is imaginary (c2
s < 0) when a < ae and real (c2

s > 0) when a > ae. It
is always less than the speed of light.]. The maximum pressure is pe/(ρP c2) = α2/[4(α + 1)]. At the
transition point t = t1, we have p1/(ρP c

2) = −(1 − α)/4. At the deceleration point t = tc, we have
pc/(ρP c

2) = −(1 + 3α)/[9(1 + α)].

3.5. The Evolution of the Early Universe

In our model, the universe “starts” at t = −∞ with a vanishing radius a = 0, a finite density
ρ = ρP = 5.16 × 1099 g/m3, and a finite pressure p = −ρP c2 = −4.64 × 10116 g/m s2. The universe
exists at any time in the past and does not present any singularity. For t < 0, the radius of the universe
is less than the Planck length lP = 1.62 × 10−35 m. In the Planck era, quantum gravity should be taken
into account so our semi-classical approach is probably not valid in the infinite past. At t = ti = 0,
the radius of the universe is equal to the Planck length ai = lP = 1.62 × 10−35 m. The corresponding
density and pressure are ρi ' ρP = 5.16×1099 g/m3 and pi ' −ρP c2 = −4.64×10116 g/m s2. We note
that quantum mechanics regularizes the finite time singularity present in the standard Big Bang theory.
This is similar to finite size effects in second order phase transitions (see Section 3.6). The Big Bang
theory is recovered for ~ = 0. The universe first undergoes a phase of inflation during which its radius
increases exponentially rapidly with time while its density and pressure remain approximately constant.
The inflation “starts” at ti = 0 and ends at t1. The timescale of the inflation corresponds to the Planck
time tP = 5.39 × 10−44 s (for the radiation α = 1/3, we find t1 = 23.3 tP = 1.25 × 10−42 s [29]).
During this very short lapse of time, the scale factor grows from ai = lP = 1.62 × 10−35 m to a1

(for α = 1/3, we find a1 = 2.61 × 10−6 m). By contrast, the density and the pressure do not change
significatively: they go from ρi ' ρP and pi ' −ρP c2 to ρ1 = ρP/2 and p1 = −[(1 − α)/4]ρP c

2 (for
α = 1/3, we find ρ1 = 0.5 ρP = 2.58 × 1099 g/m3 and p1 = −0.167ρP c

2 = −7.73 × 10115 g/m s2).
The pressure passes from negative values to positive values at tw (for α = 1/3, we find tw = 23.4tP =

1.26× 10−42 s, ρw = 0.25ρP = 1.29× 1099 g/m3, aw = 1.32 a1 = 3.43× 10−6 m). After the inflation,
the universe enters in the α-era. The radius increases algebraically as a ∝ t2/[3(α+1)] while the density
decreases algebraically as ρ ∝ t−2. The pressure achieves its maximum value pe at te (for α = 1/3, we
find pe = 2.08 × 10−2ρP c

2 = 9.66 × 10114 g/m s2, te = 23.6 tP = 1.27 × 10−42 s, ρe = 0.125 ρP =

6.44× 1098 g/m3, ae = 1.63 a1 = 4.24× 10−6 m). During the inflation, the universe is accelerating and
during the α-era it is decelerating (if α > −1/3). The transition (marked by an inflexion point) takes
place at a time tc (for α = 1/3 it coincides with the end of the inflation t1). The evolution of the scale
factor and density as a function of time are represented in Figures 1–5 in logarithmic and linear scales
(the figures correspond to the radiation α = 1/3).
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Figure 1. Evolution of the scale factor a with the time t in logarithmic scales. This figure
clearly shows the phase of inflation connecting the vacuum energy era to the α-era
(representing here the radiation era). During the inflation, the scale factor increases
exponentially rapidly on a timescale of the order of the Planck time tP (for α = 1/3 it
increases by 29 orders of magnitude in less than 10−42 s). In the α-era, the scale factor
increases algebraically as t2/[3(α+1)].
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Figure 2. Evolution of the scale factor a with the time t in linear scales. The dashed line
corresponds to a pure linear equation of state p = αρc2 leading to a finite time singularity at
t = 0 where a = 0 (Big Bang). When quantum mechanics is taken into account (as in our
semi-classical model), the initial singularity is smoothed-out and the scale factor at t = 0

is equal to the Planck length lP = 1.62 × 10−35 m. This is similar to a second order phase
transition where the Planck constant plays the role of finite size effects (see Section 3.6 for
a development of this analogy).
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Figure 3. Evolution of the density ρ with the time t in logarithmic scales. During the
inflation, the density remains approximately constant with the Planck value ρmax = ρP

which represents an upper bound. In the α-era, ρ decreases algebraically as t−2.
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Figure 4. Evolution of the density ρ with the time t in linear scales. The dashed line
corresponds to a pure linear equation of state p = αρc2 leading to a finite time singularity
at t = 0. Quantum mechanics limits the rise of the density to the Planck value ρP =

5.16× 1099 g/m3.

Remark: If we consider the transition between the inflation era and the radiation era (α = 1/3), we
find that the temperature is given by a generalized Stefan-Boltzmann law (see Equation (84a) in [29]).
The evolution of the temperature is discussed in detail in References [29,32,70]. In our model, the
temperature is initially very low, increases exponentially rapidly during the inflation up to a fraction
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(∼ 0.523) of the Planck temperature TP = 1.42 × 1032 K which is of the order of the Grand Unified
Theories (GUT) scale, then decreases algebraically during the radiation era. On the other hand, our
model generates a value of the entropy as large as S/kB = 5.04 × 1087 [29]. This is very different
from the standard inflationary scenario [2–5]. In that scenario, the universe is radiation dominated up
to ti = 10−35 s and expands exponentially rapidly by a factor 1030 in the interval ti < t < tf with
tf = 10−33 s. For t > tf , the evolution is again radiation dominated. At t = ti, the temperature is
about 1027 K (this corresponds to the epoch at which most GUTs have a significant influence on the
evolution of the universe). During the exponential inflation, the temperature drops drastically and one
must advocate a phase of re-heating by various high energy processes (not very well understood) to
restore the initial temperature.
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Figure 5. Evolution of the pressure p with the time t in linear scales. The dashed
line corresponds to a pure linear equation of state p = αρc2 leading to a finite
time singularity at t = 0. Quantum mechanics limits the rise of the pressure to
a maximum value pe/(ρP c

2) = α2/[4(α + 1)]. In the vacuum energy era, the pressure
decreases exponentially rapidly as we go backward in time, becomes negative, and tends
to −ρP c2 = −4.64× 10116 g/m s2 for t→ −∞.

3.6. Analogy with Phase Transitions

The standard Big Bang theory is a classical theory in which quantum effects are neglected. In that
case, it exhibits a finite time singularity: the radius of the universe is equal to zero at t = 0 while its
density is infinite. For t < 0, the solution is not defined and we may take a = 0. For t > 0 the radius
of the universe increases as a ∝ t2/[3(α+1)]. This is similar to a second order phase transition if we view
the time t as the control parameter (e.g., the temperature T ) and the scale factor a as the order parameter
(e.g., the magnetization M ). For α = 1/3 (radiation), it is amusing to note that the exponent in a ∝ t1/2

is the same as in mean field theories of second order phase transitions (i.e., M ∼ (Tc − T )1/2) but this is
essentially a coincidence.
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When quantum mechanics is taken into account, as in our semi-classical model, the singularity at
t = 0 disappears and the curves a(t) and ρ(t) are regularized. In particular, we find that a = lP > 0

at t = 0, instead of a = 0, due to the finite value of ~. This is similar to the regularization due to
finite size effects (e.g., the system size L or the number of particles N ) in ordinary phase transitions.
In this sense, the classical limit ~ → 0 is similar to the thermodynamic limit (L → +∞ or N → +∞)
in ordinary phase transitions. The convergence of our semi-classical solution towards the classical Big
Bang solution when ~→ 0 is shown in Figure 6 for α = 1/3 (radiation).
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Figure 6. Effect of quantum mechanics (finite value of the Planck constant) on the
regularization of the singular Big Bang solution (~ = 0, dashed line) in our semi-classical
model (see [29] for details about the construction of this curve). The singularity at t = 0 is
replaced by an inflationary expansion from the vacuum energy era to the α-era. We can draw
an analogy with second order phase transitions where the Planck constant plays the role of
finite size effects.

3.7. Scalar field theory

The phase of inflation in the very early universe is usually described by a scalar field
called inflaton [5]. A canonical scalar field minimally coupled to gravity evolves according to the
Klein-Gordon equation

φ̈+ 3Hφ̇+
dV

dφ
= 0, (33)

where V (φ) is the potential of the scalar field. The scalar field tends to run down the potential towards
lower energies. The density and the pressure of the universe are related to the scalar field by

ρc2 =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ). (34)
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Using standard techniques [7,49], we find that the inflaton potential corresponding to the equation of
state (18) is (see Section 8.1 of [30]):

V (ψ) =
1

2
ρP c

2 (1− α) cosh2 ψ + α + 1

cosh4 ψ
(ψ ≥ 0), (35)

where we have defined

ψ =

(
8πG

3c2

)1/2
3
√
α + 1

2
φ. (36)

For ψ → 0,
V (ψ)

ρP c2
' 1− 3 + α

2
ψ2 +

9 + 5α

6
ψ4 + ... (37)

which is consistent with the symmetry breaking scalar field potential used to describe inflation.
For ψ → +∞,

V (ψ)

ρP c2
∼ 2(1− α)e−2ψ (α 6= 1), (38)

V (ψ)

ρP c2
∼ 16e−4ψ (α = 1). (39)

We can also show [30] that the relation between the scalar field and the scale factor is(
a

a1

)3(α+1)/2

= sinhψ. (40)

The end of the inflation, and the beginning of the α-era, corresponds to a = a1, hence to ψ = ψ1 =

sinh−1(1) = ln(1 +
√

2) = 0.881374. Combining Equations (18), (19) and (40), we find that the energy
density and the pressure of the universe are related to the scalar field by

ρ =
ρP

cosh2 ψ
, p =

ρP c
2

cosh2 ψ

[
α− (α− 1)

1

cosh2 ψ

]
. (41)

Using Equation (40), and the results of the previous sections, we can obtain the temporal evolution of
the scalar field. In the vacuum energy era (t→ −∞), using Equation (24), we get

ψ ∼
(
lP
a1

)3(α+1)/2

e
3
2

(α+1)( 8π
3 )

1/2
t/tP → 0. (42)

In the α-era (t→ +∞), using Equation (26), we get

ψ ' ln

(
t

tP

)
+

1

2
ln

(
8π

3

)
+ ln [3(α + 1)]→ +∞. (43)

More generally, using Equation (29), the evolution of the scalar field ψ(t) in the early universe is given by

coshψ − ln

(
1 + coshψ

sinhψ

)
=

3

2
(α + 1)

(
8π

3

)1/2
t

tP
+ C. (44)

These results are illustrated in Figures 7 and 8 for α = 1/3 (radiation).
Remark: The canonical scalar field potential of Equation (35) describing the transition between the

inflation (vacuum energy) era and the α-era involves hyperbolic functions. The inflation due to another
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scalar field with a hyperbolic potential was investigated recently in [71] and confronted to the Planck
2015 data set, giving promising results. We are carrying out a similar study with the scalar field potential
of Equation (35) to test its performance against Planck inflationary parameters.
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Figure 7. Potential of the scalar field (inflaton) in the early universe. The field tends to run
down the potential.
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Figure 8. Evolution of the scalar field (inflaton) as a function of time in the early universe.
It displays a phase of early inflation before entering in the α-era.

4. The Late Universe

In Reference [30], we have proposed to describe the transition between the α-era and the dark energy
era in the late universe by a single equation of state of the form of Equation (1) with k < 0 and n < 0. It
can be written as

p/c2 = αρ− |k|ρ1−1/|nl|. (45)
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Assuming w > −1, the equation of continuity (10) can be integrated into

ρ = ρΛ[(a2/a)3(1+α)/|nl| + 1]|nl|, (46)

where ρΛ = [|k|/(α + 1)]|nl| and a2 is a constant of integration. We see that ρΛ corresponds to a lower
bound (minimum value) for the density reached for a → +∞. Since this solution describes the late
universe, it is natural to identify ρΛ with the cosmological density ρΛ = Λ/8πG = 7.02 × 10−24 g/m3.
As a result, the equation of state (45) can be rewritten as

p/c2 = αρ− (α + 1)ρ

(
ρΛ

ρ

)1/|nl|

. (47)

For the sake of simplicity, and for definiteness, we shall select the index nl = −1. The general case
nl < 0 has been treated in [30] and leads to qualitatively similar results. Therefore, we propose to
describe the transition between the α-era and the dark energy era in the late universe by a single equation
of state of the form

p = αρc2 − (α + 1)ρΛc
2, (48)

where ρΛ is the cosmological density. This equation of state corresponds to a generalized polytropic
equation of state (1) with n = −1 and k = −(α + 1)ρΛ. It can be viewed as the “symmetric” version
of the equation of state (18) in the early universe. For ρ � ρΛ, we recover the linear equation of state
p ∼ αρc2. For ρ → ρΛ, we get p ' −ρΛc

2 = −6.31 × 10−7g/ms2 corresponding to the dark energy.
The relation in Equation (46) between the density and the scale factor becomes

ρ = ρΛ

[(a2

a

)3(1+α)

+ 1

]
. (49)

The characteristic scale a2 marks the transition between the α-era and the dark energy era. The equation
of state (48) interpolates smoothly between the α-era (p = αρc2 and ρα = ρΛ(a2/a)3(α+1)) and the dark
energy era (p = −ρc2 and ρ = ρΛ). It provides therefore a “unified” description of the α-era and dark
energy era (de Sitter) in the late universe. This amounts to summing the density of these two phases.
Indeed, Equation (49) can be rewritten as

ρ = ρα + ρΛ. (50)

At a = a2 we have ρα = ρΛ so that ρ = 2ρΛ. Writing ρα = ρα,0/(a/a0)3(1+α), where a0 is the present
value of the scale factor and ρα,0 is the present density of the α-fluid, and using the asymptotic expression
ρα ∼ ρΛ(a2/a)3(α+1), we find that the transition scale factor a2 is determined by the relation ρΛa

3(1+α)
2 =

ρα,0a
3(1+α)
0 . On the other hand, comparing Equations (19) and (49) in the α-era a1 � a� a2 (i.e.,

ρΛ � ρ� ρP ) where the two equations of state overlap, we get ρΛa
3(α+1)
2 = ρPa

3(α+1)
1 .

The equation of state parameter w = p/ρc2 and the deceleration parameter q are given by

w = α− (α + 1)
ρΛ

ρ
, q =

1 + 3α

2
− 3

2
(α + 1)

ρΛ

ρ
. (51)

The velocity of sound c2
s = p′(ρ) is given by

c2
s

c2
= α. (52)
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As the universe expands from a = 0 to a = +∞, the density decreases from +∞ to ρΛ, the equation of
state parameter w decreases from α to −1, the deceleration parameter q decreases from (1 + 3α)/2 to
−1, and the ratio (cs/c)

2 remains constant with the value α (see Figures 1 and 5 of [30]).

4.1. The Dark Energy Era: Late Inflation

When a� a2, the density tends to a minimum value

ρ = ρmin = ρΛ (53)

and the pressure tends to p = −ρΛc
2. The cosmological density ρΛ = Λ/8πG = 7.02 × 10−24 g/m3

(dark energy) represents a fundamental lower bound for the density. A constant value of the density
ρ ' ρΛ gives rise to a phase of late inflation (accelerating expansion). It is convenient to define
a cosmological time tΛ = 1/(GρΛ)1/2 = (8π/Λ)1/2 = 1.46 × 1018 s and a cosmological length
lΛ = ctΛ = (8πc2/Λ)1/2 = 4.38 × 1026 m. These are the counterparts of the Planck scales for the
late universe (see Appendix B of [30]). From the Friedmann equation (12), we find that the Hubble
parameter is constant H = (8π/3)1/2t−1

Λ . Numerically, H = 1.98 × 10−18 s−1. Therefore, the scale
factor increases exponentially rapidly with time as

a(t) ∝ e(8π/3)1/2t/tΛ . (54)

This exponential growth corresponds to the de Sitter solution [1]. The timescale of the exponential
growth is the cosmological time tΛ = 1.46 × 1018 s. This solution exists at any time in the future
(a→ +∞ and ρ→ ρΛ for t→ +∞), so there is no future singularity [Note 7: This is not the case of all
cosmological models. In a “phantom universe” [52–69], violating the null dominant energy condition
(w < −1), the density increases as the universe expands. The models based on phantom dark energy
usually predict a future singularity in which the scale factor, the energy density, and the pressure of the
universe become infinite in a finite time. This would lead to the death of the universe in a singularity
called Big Smash [54], Big Rip, or Cosmic Doomsday [53]. Contrary to the Big Crunch, the universe is
destroyed not by excessive contraction but rather by excessive expansion. Every gravitationally bound
system (e.g., the solar system, the Milky Way, the local group, galaxy clusters) is dissociated before
the singularity [53,59], and the black holes gradually lose their mass and finally vanish at the Big Rip
time [60–62]. This scenario allows the explicit calculation of the rest of the lifetime of the universe.
Actually, as we approach the singularity, the energy scale may grow up to the Planck scale, giving
rise to a second quantum gravity era. Eventually, quantum effects may moderate or even prevent the
singularity [63]. It has also been proposed that, before reaching the Big Rip singularity, the universe
could be swallowed by a wormhole [72]. This is due to the accretion of the ever-increasing phantom
energy by the wormhole. This accretion induces an increase of the wormhole throat so rapid that the
size of the wormhole throat becomes infinite in a finite time preceding the Big Rip. As a result, the
wormhole can engulf the entire universe before it reaches the Big Rip singularity. The wormhole would
then act as a spacetime tunnel (Einstein-Rosen bridge) allowing the universe to pass to another, more
gentle, universe without future singularity. This could be a way to escape the programmed death of the
universe. This has been called the Big Trip. The possibility that we live in a phantom universe is not
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excluded by the observations. Indeed, observational data indicate that the equation of state parameter w
lies in a narrow strip around w = −1, possibly being below this value. It is important to stress, however,
that the phantom models with w < −1 do not necessarily lead to finite-time future singularities, as
discussed in [73]. For example, the scale factor and the density may increase indefinitely and become
infinite in infinite time. This has been called Little Rip [69]. In these models, the black holes disappear
in infinite time while the wormhole’s throat still becomes infinite in a finite time. The phantom models
without future singularity are attractive from the physical viewpoint because the occurrence of a finite
time singularity may lead to some inconsistencies.].

4.2. The α-era

When a� a2, we recover the equation

ρ ∼ ρΛa
3(1+α)
2

a3(1+α)
(55)

corresponding to the pure linear equation of state p = αρc2. When a � a2, the Friedmann
equation (12) yields

a

a2

∼

[
3

2
(α + 1)

(
8π

3

)1/2
t

tΛ

]2/[3(α+1)]

. (56)

We then have
ρ

ρΛ

∼ 1[
3
2
(α + 1)

(
8π
3

)1/2 t
tΛ

]2 . (57)

During the α-era, the scale factor increases algebraically as t2/[3(α+1)] and the density decreases
algebraically as t−2.

4.3. The General Solution

For the equation of state (48), the density is related to the scale factor by Equation (49). It is possible
to solve the Friedmann equation (12) with the density-radius relation of Equation (49) analytically.
Introducing R = a/a2, we obtain∫

dR

R
√

1
R3(1+α) + 1

=

(
8π

3

)1/2

t/tΛ (58)

which can be integrated into [30]:

a

a2

= sinh2/[3(1+α)]

[
3

2
(1 + α)

(
8π

3

)1/2
t

tΛ

]
. (59)

The density is then given by

ρ

ρΛ

=
1

tanh2
[

3
2
(1 + α)

(
8π
3

)1/2 t
tΛ

] . (60)
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For t → 0, Equation (59) reduces to Equation (56) and for t → +∞ we obtain Equation (54) with
a prefactor a2/2

2/[3(1+α)].
The time t2 corresponding to the transition between the α-era and the dark energy era is obtained by

substituting a = a2 in Equation (59). On the other hand, according to Equation (51), we find that the
universe is decelerating when a < a′c (i.e., ρ > ρ′c) and accelerating when a > a′c (i.e., ρ < ρ′c) where
a′c/a2 = [(1 + 3α)/2]1/[3(α+1)] and ρ′c/ρΛ = 3(α+ 1)/(1 + 3α). The time t′c at which the universe starts
accelerating is obtained by substituting a = a′c in Equation (59). This corresponds to the time at which
the curve a(t) presents an inflexion point. For α = 1/3 (radiation), this inflexion point a′c coincides with
a2 (t′c = t2). For α 6= 1/3 the two points differ.

4.4. The Pressure

The pressure is given by Equation (48). Using Equation (49), we get

p =

[
α
(a2

a

)3(α+1)

− 1

]
ρΛc

2. (61)

For α > 0, the pressure decreases algebraically during the α-era and tends to a negative constant value
p = −ρΛc

2 for t → +∞. The point at which the pressure vanishes (w = 0) corresponds to ρ′w/ρΛ =

(α + 1)/α and a′w/a2 = α1/[3(α+1)]. For α = 0, the pressure is a constant p = −ρΛc
2. At the transition

point t = t2, we have p2/(ρΛc
2) = −(1 − α). At the acceleration point t = t′c, we have p′c/(ρΛc

2) =

−(1 + α)/(1 + 3α).

4.5. The Evolution of the Late Universe

When a � a2, the universe is in the α-era. Its radius increases algebraically as t2/[3(α+1)] while its
density decreases algebraically as ρ ∝ t−2. For α > −1/3, the expansion of the universe is decelerating.
When a � a2, the universe is in the dark energy era. It undergoes a phase of accelerating expansion
(late inflation) during which its radius increases exponentially rapidly with time while its density remains
constant and equal to the cosmological density ρΛ = 7.02 × 10−24 g/m3. The Hubble constant, the
Hubble time, the Hubble radius, and the density of the present universe are H0 = 2.27 × 10−18 s−1,
H−1

0 = 0.302tΛ = 4.41 × 1017 s, a0 = c/H0 = 0.302 lΛ = 1.32 × 1026 m, and ρ0 = 3H2
0/8πG =

1.31ρΛ = 9.20 × 10−24 g/m3. For α = 0 (pressureless matter), the transition between the matter era
and the dark energy era takes place at a2 = 0.677a0 = 0.204lΛ = 8.95 × 1025 m, ρ2 = 1.52 ρ0 =

2ρΛ = 1.40 × 10−23 g/m3, and t2 = 0.674H−1
0 = 0.203tΛ = 2.97 × 1017 s [30]. The moment

at which the universe starts accelerating corresponds to t′c = 0.504H−1
0 = 0.152tΛ = 2.22 × 1017 s,

a′c = 0.538a0 = 0.162lΛ = 0.794a2 = 7.11 × 1025 m, and ρ′c = 2.29 ρ0 = 3ρΛ = 2.11 × 10−23 g/m3.
The age of the universe is t0 = 1.03H−1

0 = 0.310tΛ = 4.54 × 1017s ∼ 14 Gyrs (t0 = 13.7 Gyrs if
we use a more precise value of H0 [30]). The present values of the deceleration parameter and of the
equation of state parameter are q0 = −0.645 and w0 = −0.763. The evolution of the scale factor and
density as a function of time are represented in Figures 9–12 in logarithmic and linear scales (the figures
correspond to pressureless matter α = 0).
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Figure 9. Evolution of the scale factor a with the time t in logarithmic scales. This figure
clearly shows the transition between the α-era and the dark energy era (de Sitter). In the
α-era, the radius increases as t2/[3(α+1)]. In the dark energy era, the radius increases
exponentially rapidly on a timescale of the order of the cosmological time tΛ = 1.46×1018 s.
This corresponds to a phase of late inflation. The universe is decelerating for a < a′c
and accelerating for a > a′c. The transition between the α-era and the dark energy era
takes place at a2.
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Figure 10. Evolution of the scale factor a with the time t in linear scales.
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Figure 12. Evolution of the density ρ with the time t in linear scales. General relativity
(cosmological constant) limits the decay of the density to the cosmological value
ρΛ = 7.02× 10−24 g/m3.

4.6. Scalar Field Theory

In alternative theories to the cosmological constant, the dark energy is usually described by a scalar
field, defined by Equations (33) and (34), called quintessence [12–24]. Using standard techniques [7,49],
we find that the quintessence potential corresponding to the equation of state (48) is (see Section 8.1
of [30]):
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V (ψ) =
1

2
ρΛc

2
[
(1− α) cosh2 ψ + α + 1

]
(ψ ≤ 0), (62)

where we have defined

ψ =

(
8πG

3c2

)1/2
3
√
α + 1

2
φ. (63)

For ψ → −∞,
V (ψ)

ρΛc2
' 1

8
(1− α)e−2ψ (α 6= 1). (64)

For ψ → 0,
V (ψ)

ρΛc2
' 1 +

1− α
2

ψ2 +
1− α

6
ψ4 + ... (65)

For α = 1, the scalar field potential V (ψ) = ρΛc
2 is constant. We can also show [30] that the relation

between the scalar field and the scale factor is(a2

a

)3(α+1)/2

= − sinhψ. (66)

The end of the α-era, and the beginning of the dark energy era, corresponds to a = a2, hence to ψ =

ψ2 = sinh−1(−1) = − ln(1 +
√

2) = −0.881374. Combining Equations (48), (49) and (66), we find
that the energy density and the pressure of the universe are related to the scalar field by

ρ = ρΛ cosh2 ψ, p = ρΛc
2(α cosh2 ψ − α− 1). (67)

Using Equation (66), and the results of the previous sections, we can obtain the temporal evolution of
the scalar field. For t→ 0, using Equation (56), we get

ψ ' ln

(
t

tΛ

)
+

1

2
ln

(
3π

2

)
+ ln(1 + α)→ −∞. (68)

For t→ +∞, using Equation (54) with the prefactor a2/2
2/[3(1+α)], we get

ψ ∼ −2e−
3
2

(1+α)( 8π
3 )

1/2
t/tΛ → 0. (69)

More generally, using Equation (59), the evolution of the scalar field ψ(t) in the late universe is given by

ψ = − sinh−1

{
1/ sinh

[
3

2
(1 + α)

(
8π

3

)1/2
t

tΛ

]}
. (70)

These results are illustrated in Figures 13 and 14 for α = 0 (pressureless matter).
Some authors have proposed to represent the dark energy by a rolling tachyon condensate appearing

in a class of string theories [25]. A tachyonic scalar field [26–28] has an equation of state p = w(t)ρc2

with −1 ≤ w(t) ≤ 0. This scalar field evolves according to the equation

φ̈

1− φ̇2
+ 3Hφ̇+

1

V

dV

dφ
= 0. (71)
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The tachyonic field tends to run down the potential towards lower energies. The density and the pressure
of the universe are related to the tachyonic field by

ρc2 =
V (φ)√
1− φ̇2

, p = −V (φ)

√
1− φ̇2. (72)
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Figure 13. Potential of the quintessence field and tachyonic field in the late universe.
The field tends to run down the potential.
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Let us consider the equation of state (48) with the specific index α = 0 (pressureless matter). Since
w = p/ρc2 = −ρΛ/ρ is between −1 and 0, the equation of state (48) can be associated with a tachyonic
field. Using standard techniques [7,49], we find that its potential is (see Section 8.2 [30]):

V (ψ) =
ρΛc

2

cosψ
(−π/2 ≤ ψ ≤ 0), (73)

where we have defined

ψ =
√
ρΛc2

(
6πG

c2

)1/2

φ. (74)

For ψ → −π
2

+,
V (ψ)

ρΛc2
' 1

ψ + π
2

. (75)

For ψ → 0,
V (ψ)

ρΛc2
' 1 +

ψ2

2
+

5ψ4

24
+ ... (76)

We can also show [30] that the relation between the scalar field and the scale factor is(a2

a

)3/2

= − tanψ. (77)

The end of the matter-era (α = 0), and the beginning of the dark energy era, corresponds to a = a2,
hence to ψ = ψ2 = tan−1(−1) = −π/4 = −0.785398. Combining Equations (48), (49) and (77), we
find that the energy density and the pressure of the universe are related to the scalar field by

ρ =
ρΛ

cos2 ψ
, p = −ρΛc

2. (78)

Using Equation (77), and the results of the previous sections, we can obtain the temporal evolution of
the scalar field. In the matter era (t→ 0), using Equation (56), we get

ψ ' −π
2

+
√

6π
t

tΛ
→ −π

2
. (79)

In the dark energy era (t→ +∞), using Equation (54) with a prefactor a2/2
2/3, we get

ψ ∼ −2e−
√

6πt/tΛ → 0. (80)

More generally, using Equation (59), the evolution of the tachyonic field ψ(t) in the late universe is
given by

ψ = −Arctan

[
1/sinh

(√
6π

t

tΛ

)]
. (81)

These results are illustrated in Figures 13 and 14 for α = 0 (pressureless matter).
Remark: The canonical scalar field potential of Equation (62) describing the transition between

the α-era and the dark energy era involves hyperbolic functions. It corresponds to the scalar field
potential associated with the generalized Chaplygin gas (see Note 1) [37–45]. Other types of hyperbolic
scalar field potentials have been introduced in the past. The first potential with hyperbolic functions
driving the observed acceleration of the universe was proposed by Sahni and Wang [74] and has been
confronted to the observations in [75]. Related potentials were considered in [76–78]. Models with
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hyperbolic potentials exploiting dynamical Noether symmetries of the field equations and admiting
analytical solutions were constructed and compared with cosmological data in [79], finding a good
agreement. On the other hand, the tachyonic scalar field potential of Equation (73) describing the
transition between the α-era and the dark energy era involves trigonometric functions. A tachyonic
field with a trigonometric potential was proposed in [80] to describe the transition between dark matter
and dark energy. Interestingly, this model admits different solutions depending on the initial condition.
It can either describe an eternally expanding universe or lead to a future finite time singularity, called
Big Brake, which is characterized by an infinite deceleration. This model has been recently subjected to
several cosmological tests in [81].

5. The General Model

5.1. The Quadratic Equation of State

We propose to describe the vacuum energy, the α-fluid, and the dark energy by a unique
equation of state

p/c2 = −(α + 1)ρ

(
ρ

ρP

)1/|ne|

+ αρ− (α + 1)ρ

(
ρΛ

ρ

)1/|nl|

, (82)

where ne > 0 and nl < 0 are the polytropic indices of the early and late universe, respectively. For the
sake of simplicity, and for definiteness, we shall select the indices ne = +1 and nl = −1. Therefore, we
consider the quadratic equation of state

p = −(α + 1)
ρ2

ρP
c2 + αρc2 − (α + 1)ρΛc

2. (83)

For ρ → ρP , p → −ρP c2 (vacuum energy). For ρΛ � ρ � ρP , p ∼ αρc2 (α-fluid). For ρ → ρΛ,
p → −ρΛc

2 (dark energy). The pressure vanishes at ρw = [α/(α + 1)]ρP and at ρ′w = [(α + 1)/α]ρΛ.
It has a maximum pe = α2ρP c

2/[4(α+ 1)] at ρe = [α/2(α+ 1)]ρP . The pressure is negative for ρ > ρw,
positive for ρ′w < ρ < ρw and negative for ρ < ρ′w (to obtain these results, we have used the fact that
ρP � ρΛ). The quadratic equation of state (83) combines the properties of the equation of state (18)
valid in the early universe, and of the equation of state (48) valid in the late universe. A nice feature of
this equation of state is that both the Planck density (vacuum energy) and the cosmological density (dark
energy) explicitly appear. Therefore, this equation of state reproduces both the early inflation and the late
inflation, described by an equation of state p = −ρc2, in which the scale factor increases exponentially
rapidly. They are connected by the α-era, with a linear equation of state p = αρc2, in which the scale
factor increases algebraically. For α > −1/3, the universe is decelerating during this period.

The equation of state parameter w = p/ρc2 and the deceleration parameter q are given by

w = −(α + 1)
ρ

ρP
+ α− (α + 1)

ρΛ

ρ
, q =

1 + 3α

2
− 3

2
(α + 1)

ρ

ρP
− 3

2
(α + 1)

ρΛ

ρ
. (84)

The velocity of sound c2
s = p′(ρ) is given by

c2
s

c2
= −2(α + 1)

ρ

ρP
+ α. (85)
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Using the equation of continuity (10), we get

ρ =
ρP

(a/a1)3(α+1) + 1
+ ρΛ. (86)

To obtain this expression, we have used the fact that ρP � ρΛ so that p/c2 + ρ ' [(α + 1)/ρP ](ρ −
ρΛ)(ρP − ρ) (see Appendix C). When a → 0, ρ → ρP (vacuum energy). When ρΛ � ρ � ρP , ρ ∼
ρP (a1/a)3(1+α) (α-era). When a → +∞, ρ → ρΛ (dark energy). In the early universe, the contribution
of dark energy is negligible and we recover Equation (19). In the late universe, the contribution of
vacuum energy is negligible and we recover Equation (49) with ρPa

3(1+α)
1 = ρΛa

3(1+α)
2 .

Using ρPa
3(1+α)
1 = ρα,0a

3(1+α)
0 , where ρα,0 is the present density of the α-fluid and a0 = c/H0 =

1.32× 1026 m is the present distance of cosmological horizon determined by the Hubble constant H0 =

2.27× 10−18 s−1 (the Hubble time is H−1
0 = 4.41× 1017 s), we can rewrite Equation (86) in the form

ρ =
ρα,0

(a/a0)3(1+α) + (a1/a0)3(1+α)
+ ρΛ. (87)

Substituting this relation in the Friedmann equation (12), and writing ρα,0 = Ωα,0ρ0 and ρΛ = ΩΛ,0ρ0,
where ρ0 = 3H2

0/8πG = 9.20× 10−24 g/m3 is the present density of the universe, we obtain

H

H0

=

√
Ωα,0

(a/a0)3(1+α) + (a1/a0)3(1+α)
+ ΩΛ,0. (88)

Using Equations (83) and (86), the pressure can be written in very good approximation as

p =
α(a/a1)3(α+1) − 1

[(a/a1)3(α+1) + 1]
2ρP c

2 − ρΛc
2. (89)

Finally, if we assume that the α-fluid represents the radiation (α = 1/3), we find that the temperature
associated with the quadratic equation of state (83) is given by a generalized Stefan-Boltzmann law (see
Equation (C.4) in [30]).

It may be useful to re-express the results of Sections 3 and 4 in terms of the present-day
variables. To that purpose, we use the following relations a1/a0 = (ρα,0/ρP )1/[3(1+α)], a2/a0 =

(Ωα,0/ΩΛ,0)1/[3(1+α)], H0tP = (8π/3)1/2(ρ0/ρP )1/2, and H0tΛ = (8π/3)1/2(ΩΛ,0)−1/2.

5.2. The Early Universe

In the early universe, we can neglect the contribution of the dark energy in the density. We only
consider the contribution of the vacuum energy and of the α-fluid. Equation (87) then reduces to

ρ =
ρα,0

(a/a0)3(1+α) + (a1/a0)3(1+α)
. (90)

The Friedmann equation (88) becomes

H

H0

=

√
Ωα,0

(a/a0)3(1+α) + (a1/a0)3(1+α)
. (91)

It has the analytical solution given by Equation (29).
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In the vacuum energy era (a� a1), the density is constant:

ρ ' ρP . (92)

Therefore, the Hubble parameter is also a constant H = (8π/3)1/2t−1
P . In that case, the scale factor

increases exponentially rapidly with time according to Equation (24).
In the α-era (a� a1), we have

ρ ' ρα,0
(a/a0)3(1+α)

. (93)

The Friedmann equation (91) reduces to

H

H0

=

√
Ωα,0

(a/a0)3(1+α)
. (94)

The scale factor increases algebraically rapidly as

a

a0

∼
[

3

2
(α + 1)

√
Ωα,0H0t

]2/[3(1+α)]

, (95)

and the density decreases as

ρ

ρ0

∼ 1[
3
2
(α + 1)H0t

]2 . (96)

The transition between the vacuum energy era and the α-era corresponds to ρα = ρP . This yields
a1/a0 = (ρα,0/ρP )1/[3(1+α)] and ρ1/ρP = 1/2. The inflation ends at the time t1. The universe
starts decelerating when ac/a0 = {2ρα,0/[(1 + 3α)ρP ]}1/[3(1+α)] and ρc/ρP = (1 + 3α)/[3(α + 1)].
This corresponds to the first inflexion point of the curve a(t). The universe is accelerating for t < tc and
decelerating for t > tc. For α = 1/3, tc = t1.

5.3. The Late Universe

In the late universe, we can neglect the contribution of the vacuum energy in the density. We only
consider the contribution of the α-fluid and of the dark energy. Equation (87) then reduces to

ρ =
ρα,0

(a/a0)3(1+α)
+ ρΛ. (97)

The Friedmann equation (88) becomes

H

H0

=

√
Ωα,0

(a/a0)3(1+α)
+ ΩΛ,0. (98)

It has the analytical solution

a

a0

=

(
Ωα,0

ΩΛ,0

)1/[3(1+α)]

sinh2/[3(1+α)]

[
3

2
(1 + α)

√
ΩΛ,0H0t

]
. (99)

This corresponds to the ΛCDM model. The density evolves as

ρ

ρ0

=
ΩΛ,0

tanh2
[

3
2
(1 + α)

√
ΩΛ,0H0t

] . (100)
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Setting a = a0 in Equation (99), we find the age of the universe [Note 8: Of course, for the determination
of the age of the universe, we can neglect the contribution of the vacuum energy in the early universe
and take a1 = 0 (strictly speaking, the age of the universe is infinite since it has no origin; however, we
define the age of the universe from the time t = 0 at which a = lP ).]:

t0 =
1

H0

2

3(1 + α)

1√
ΩΛ,0

sinh−1

[(
ΩΛ,0

Ωα,0

)1/2
]
. (101)

The present values of the equation of state parameter and deceleration parameter are

w0 = α− (α + 1)ΩΛ,0, q0 =
1 + 3α

2
− 3

2
(α + 1)ΩΛ,0. (102)

In the dark energy era (a� a2), the density is constant:

ρ ' ρΛ. (103)

Therefore, the Hubble parameter is also a constant H = H0

√
ΩΛ,0. Using Equation (99), we find that

the scale factor increases exponentially rapidly as

a

a0

∼
(

Ωα,0

4ΩΛ,0

)1/[3(1+α)]

e
√

ΩΛ,0H0t. (104)

This corresponds to de Sitter’s solution.
In the α-era (a� a2), we recover Equations (93)–(96).
The transition between the α-era and the dark energy era corresponds to ρα = ρΛ. This yields

a2/a0 = (Ωα,0/ΩΛ,0)1/[3(1+α)] and ρ2/ρΛ = 2. The universe starts accelerating when a′c/a0 =

[(1 + 3α)Ωα,0/2ΩΛ,0]1/[3(1+α)] and ρ′c/ρ0 = 3(α + 1)ΩΛ,0/(1 + 3α). This corresponds to the second
inflexion point of the curve a(t). The universe is decelerating for t < t′c and accelerating for t > t′c.
For α = 1/3, t′c = t2.

5.4. The General Solution

For the quadratic equation of state (83), the density is related to the scale factor by Equation (86).
It is possible to solve the Friedmann equation (12) with the density-radius relation of Equation (86)
analytically. Introducing R = a/a1 and λ = ρΛ/ρP = 1.36× 10−123 � 1, we obtain∫ √

1 +R3(α+1)

R
√

1 + λR3(α+1)
dR =

(
8π

3

)1/2

t/tP (105)

which can be integrated into

1√
λ

ln
[
1 + 2λRκ + 2

√
λ(1 +Rκ + λR2κ)

]
− ln

[
2 +Rκ + 2

√
1 +Rκ + λR2κ

Rκ

]
= κ

(
8π

3

)1/2
t

tP
+ C, (106)

where κ = 3(α + 1) and C is a constant determined such that a = lP at t = 0. This solution is
interesting because it describes analytically a phase of early inflation and a phase of late inflation (or late
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accelerating expansion) connected by a power-law expansion (α-era). The corresponding scalar field
theory is developed in Appendix A. We obtain a scalar field potential (see Equations (119)—(121)) that
unifies the inflaton potential of Section 3.7 and the quintessence potential of Section 4.6.

5.5. The Whole Evolution of the Universe

In our model, the evolution of the scale factor is given by Equation (88). For a1 = 0, we obtain the
same equation as in the ΛCDM model (slightly generalized to account for a possibly non-zero value of
α) where the contributions of matter and dark energy are added individually [1]. However, the ΛCDM
model does not describe the phase of early inflation and presents a singularity at t = 0 (Big Bang).
For a1 6= 0, we obtain a generalized model which does not present a primordial singularity and which
displays a phase of early inflation. In this model, the universe always existed in the past but, for t < 0,
it has a very small radius, smaller than the Planck length [Note 9: Our semi-classical model certainly
breaks down in this period since it does not take quantum fluctuations into account. The Planck era may
not be described in terms of an equation of state p(ρ), or even in terms of the Einstein equations, as we
have assumed. It probably requires the development of a theory of quantum gravity that does not exist
for the moment. An interesting description of the early inflation has been given by Monerat et al. [82]
in terms of a quantized model based on a simplified Wheeler-DeWitt (WdW) equation. In that model, a
quantum tunneling process explains the birth of the universe with a well defined size after tunneling.].
At t = 0, it undergoes an inflationary expansion in a very short lapse of time of the order of the Planck
time. For t� tP , this model gives the same results as the ΛCDM model (see Equation (98)): the universe
first undergoes an algebraic expansion in the α-era, then an exponential expansion (late inflation) in the
dark energy era. A nice feature of this model is its simplicity since it incorporates a phase of early
inflation in a very simple manner. We just have to add a term +(a1/a0)3(1+α) in the standard Equation
(98) of the ΛCDM model. This term has the effect of a small scale cut-off. Therefore, the modification
implied by Equation (88) to describe the early inflation is very natural. On the other hand, this model
gives the same results in the late universe as the standard ΛCDM model, so this does not bring any
modification to the usual Equation (98). Therefore, our model completes the standard ΛCDM model by
incorporating the phase of early inflation in a natural manner. This is an interest of this description since
the standard ΛCDM model gives results that agree with the observations after the Planck era.

In Figures 15 and 16, we have represented the evolution of the scale factor and density of the universe
as a function of time. The universe exhibits two types of inflations: an early inflation due to the Planck
density ρP = 5.16 × 1099 g/m3 (vacuum energy) and a late inflation due to the cosmological density
ρΛ = 7.02×10−24 g/m3 (dark energy). They are connected by an α-era during which the scale factor and
the density evolve algebraically. In this period, the universe is decelerating (for α > −1/3). There exists
a striking “symmetry” between the early and the late evolution of the universe. The early universe
is described by a polytropic equation of state of index n = +1 and the late universe is described by
a polytropic equation of state of index n = −1. On the other hand, the cosmological constant Λ in the late
universe plays the same role as the Planck constant ~ in the early universe. In particular, Figure 16 shows
that the density varies between two bounds ρmax = ρP and ρmin = ρΛ that are fixed by fundamental
constants [Note 10: these bounds come from the properties of the polytropic equation of state (1). This
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is a bit similar to the bound on the mass of white dwarf stars (Chandrasekhar’s mass) which also comes
from the properties of a polytropic equation of state with index n = 3 describing an ultra-relativistic
degenerate fermionic gas [83].]. These values differ by a factor of the order of 10122. The early universe
is governed by quantum mechanics (~) and the late universe by general relativity (Λ).
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Figure 15. Evolution of the scale factor a as a function of time in logarithmic scales.
The universe exists at all times in the past and in the future and there is no singularity
(aioniotic universe). The universe first undergoes a phase of early inflation (Planck era)
due to the vacuum energy during which the scale factor increases exponentially rapidly
on a timescale of the order of the Planck time tP (for α = 1/3 it increases by 29 orders
of magnitude in less than 10−42 s). This is followed by the α-era during which the scale
factor increases algebraically (a ∼ t2/[3(α+1)]). The dashed line corresponds to α = 1/3

(radiation) and the dotted line corresponds to α = 0 (matter). Without the early inflation,
the universe would exhibit a primordial singularity (Big Bang). Finally, the universe
undergoes a phase of late inflation (de Sitter era) due to the dark energy during which the
scale factor increases exponentially rapidly on a timescale of the order of the cosmological
time tΛ. The universe exhibits two types of inflation: an early inflation corresponding to
the Planck density ρP (vacuum energy) due to quantum mechanics (Planck constant) and
a late inflation corresponding to the cosmological density ρΛ (dark energy) due to general
relativity (cosmological constant). The evolution of the early and late universe is remarkably
symmetric. In our model, it is described by two polytropic equations of state with index
n = +1 and n = −1 that can be combined into a single quadratic equation of state (83).
The expansion of the universe is accelerating during the phases of inflation and decelerating
during the α-era (if α > −1/3). We have also represented the location of the present universe
(bullet). It happens to be just at the transition between the matter era and the dark energy era
(see Section 5.6).
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Figure 16. Evolution of the density ρ as a function of time in logarithmic scales. The density
goes from a maximum value ρmax = ρP determined by the Planck constant (quantum
mechanics) to a minimum value ρmin = ρΛ determined by the cosmological constant
(general relativity). These two bounds, which are fixed by fundamental constants of physics,
are responsible for the early and late inflation of the universe. In between, the density
decreases as t−2.

5.6. The Cosmic Coincidence Problem

Let us consider the transition between the matter era (α = 0) and the dark energy era described by
Equation (98). It is striking to note that the present size of the universe a0 = 0.302lΛ = 1.32 × 1026 m

is precisely of the order of the transition scale a2 = 0.204lΛ = 8.95 × 1025 m (a0 = 1.48a2). We have
a0 ∼ a2 ∼ lΛ and t0 ∼ t2 ∼ tΛ. Therefore, we live just at the transition between the matter era and
the dark energy era (see the bullets in Figures 9–12, 15 and 16). In the context of the standard ΛCDM
model, the way to state this observation is to say that the present ratio ΩΛ,0/Ωm,0 = 3.22 between dark
energy and matter is of order unity. Since the matter density changes as a−3 the ratio between matter
and dark energy is of order unity only during a “brief” period of time in the evolution of the universe.
It turns out that we live precisely in this period. This coincidence [Note 11: We should be careful about
this statement. It is true that the order of magnitude of t0 = 4.54 × 1017 s and t2 = 2.97 × 1017 s

is the same. As a result, these two times appear very close to each other on a logarithmic scale (see
Figures 9 and 11). However, on a linear scale, these two times differ by t2 − t0 ∼ 5 Gyrs (see Figures
10 and 12). In this sense, there is no real coincidence.] is intriguing and often referred to as the “cosmic
coincidence problem” [84]. Several theories have been proposed to explain why ΩΛ,0/Ωm,0 ∼ 1 [85–88].
However, this may be just a pure coincidence without deeper reason. Life (and researchers inquiring
about cosmology) may have emerged at this special moment of the history of the universe, ∼ 14 Gyrs
after the Big Bang, precisely at the epoch where ΩΛ/Ωm ∼ 1. Life cannot have emerged much earlier
because galaxies, stars and planets are not created, and it may not persist much later because planets,
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stars, and galaxies will die. Therefore, this coincidence is not really a “problem”. Furthermore, we note
that, in our model, matter and dark energy are two manifestations of the same fluid described by a single
equation of state (48). Since we are considering a single “dark” fluid, the cosmic coincidence problem
discussed above may be alleviated.

5.7. The Cosmological Constant Problem

The cosmological constant Λ is equivalent to a constant density ρΛ = Λ/(8πG) called dark
energy. Its value resulting from observations is ρΛ = 7.02 × 10−24 g/m3. It is oftentimes argued
that the cosmological density ρΛ should correspond to the vacuum energy density due to quantum
fluctuations [89–91]. However, according to particle physics and quantum field theory, the vacuum
energy density is of the order of the Planck density ρP = 5.16 × 1099 g/m3 which is 10122 times larger
than the cosmological density. This leads to the so-called cosmological constant problem [46,47].

Actually, as illustrated in Figure 16, the Planck density and the cosmological density represent
fundamental upper and lower density bounds acting in the early and late universe, respectively. It is not
surprising therefore that they are so different: ρΛ � ρP . Because of these bounds, the universe undergoes
two phases of inflation. The inflation in the early universe is due to quantum mechanics (Planck constant)
and is related to the Planck density ρP (vacuum energy). The inflation in the late universe is due to
general relativity (cosmological constant) and is related to the cosmological density ρΛ (dark energy).
Quantum mechanics is negligible in the late universe. Therefore, we should not identify the dark energy
(or the cosmological constant) with the vacuum energy. The cosmological constant should be interpreted
as a fundamental constant of physics. It applies to the very large universe (cosmophysics) exactly like
the Planck constant applies to the very small universe (microphysics). Actually, there is a complete
symmetry between the small and large universe where ~ and Λ play symmetric roles. Therefore, we
propose to interpret the cosmological constant as a fundamental constant of physics describing the
cosmophysics (late universe) in the same sense that the Planck constant describes the microphysics
(early universe).

If this interpretation is correct, the origin of the dark energy density ρΛ should not be sought in
quantum mechanics, but in pure general relativity. In this sense, the cosmological constant “problem”
may be a false problem. If Λ is a fundamental constant of physics, independent from the others, its value
should not cause problem. It is fixed by nature, just like the values of G, c, and ~. In other words, it has
the value that it has! One can just expect that ρP is “very large” and ρΛ is “very small”. Of course, the
origin of the cosmological constant still needs to be understood by developing a theory of cosmophysics.
In addition, it would be important to understand why ρP and ρΛ represent upper and lower bounds, and
if these bounds are as fundamental as, for example, the bound on the velocity fixed by the speed of light.

5.8. A Generalization of the ΛCDM Model Incorporating a Phase of Early Inflation

In the standard ΛCDM model, radiation, baryonic matter, dark matter and dark energy are treated
as four independent species characterized by different equations of state [1]. The equation of state
is p = ρc2/3 for radiation, p = 0 for baryonic matter and dark matter, and p = −ρc2 for dark energy.
We then solve the equation of continuity (10) for these four species in order to obtain the relation between



Universe 2015, 1 390

their density and the scale factor, i.e., ρrad = ρrad,0/(a/a0)4, ρB = ρB,0/(a/a0)3, ρDM = ρDM,0/(a/a0)3,
and ρΛ = ρΛ,0. Finally, we add their individual densities ρ = ρrad + ρB + ρDM + ρΛ and substitute in
the Friedmann equation (12). This leads to the standard equation [1]:

H

H0

=

√
Ωrad,0

(a/a0)4
+

ΩB,0

(a/a0)3
+

ΩDM,0

(a/a0)3
+ ΩΛ,0 (107)

with Ωrad + ΩB + ΩDM + ΩΛ = 1. From observations Ωrad,0 = 8.48× 10−5, ΩB,0 = 0.0455, ΩDM,0 =

0.1915, Ωm,0 = 0.237, and ΩΛ,0 = 0.763 [1]. The ΛCDM model provides a good description of the
universe after the Planck era. It describes the radiation era, the matter era, and the dark energy era (late
accelerating expansion). However, it exhibits a primordial singularity at t = 0 (Big Bang). Furthermore,
it does not describe the phase of early inflation. This phase is usually described by another theory, e.g.,
a scalar field theory [2–5], that is then connected to the ΛCDM model.

Our approach is physically different from the ΛCDM model and generalizes it. In our model, based
on the quadratic equation of state (83), the evolution of the scale factor is given by Equation (88). For
a1 = 0, Equation (88) takes a form similar to Equation (107) of the ΛCDM model. For α = 1/3,
it describes the transition between the radiation era and the dark energy era. For α ' 0, it describes
the transition between the matter era (having possibly a small temperature) and the dark energy era.
However, this approach is incomplete. Indeed, the equation of state (83) is not able to describe the
transition between the radiation era and the matter era. It can only describe one of these two phases
depending on the chosen value of α. This is not a drawback of the model. Indeed, there is no reason to
“unify” radiation and matter in a single equation of state. Radiation and matter are different entities that
should be treated as two different species as in the standard ΛCDM model. By contrast, our approach
suggests that vacuum energy, radiation, and dark energy may be the manifestation of a unique form of
“generalized radiation”. Therefore, by selecting α = 1/3 in Equation (83) we obtain an equation of state

p = − 4ρ2

3ρP
c2 +

1

3
ρc2 − 4

3
ρΛc

2 (108)

that unifies vacuum energy, radiation, and dark energy. This leads to the density (see Equation (87)):

ρ =
ρrad,0

(a/a0)4 + (a1/a0)4
+ ρΛ. (109)

This “generalized radiation” is one component of the Friedmann equation (12). Then, the contribution of
baryonic matter and dark matter is introduced in the Friedmann equation (12) as other species described
by the equation of state p = 0 leading to a density ρm = ρm,0/(a/a0)3 (or by the equation of state
p = αρc2 with α � 1 leading to a density ρm = ρm,0/(a/a0)3(1+α) if we take into account the effect
of a small temperature). As a result, we obtain the complete equation [Note 12: By selecting α = 0

in Equation (83) we could unify vacuum energy, matter and dark energy, then introduce radiation as an
independent species with an equation of state p = ρc2/3 leading to a density ρrad = ρrad,0/(a/a0)4.
However, we believe that it is more relevant to unify vacuum energy, radiation and dark energy, and treat
baryonic matter and dark matter as independent species. We note that baryonic matter and dark matter
must be introduced at sufficiently late time in Equation (110) in order to avoid a spurious divergence
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when a → 0 due to the fact that a1 6= 0 in our model. For exemple, we can replace ΩB,0 and ΩDM,0 by
ΩB,0H(a− a1) and ΩDM,0H(a− a1), where H is the Heaviside function.]:

H

H0

=

√
Ωrad,0

(a/a0)4 + (a1/a0)4
+

ΩB,0

(a/a0)3
+

ΩDM,0

(a/a0)3
+ ΩΛ,0 (110)

with a1/a0 = (ρrad,0/ρP )1/4. For a1 = 0, our model gives the same result as the ΛCDM model of
Equation (107), although the justification is different. This is a good thing because it ensures that our
model produces results that agree with the observations after the Planck era (i.e., for a� a1). For a1 6=
0, our model generalizes the ΛCDM model of Equation (107) by naturally incorporating a phase of
early inflation and avoiding the primordial singularity, as discussed in Section 5.5. Equation (110) is
interesting because it describes the early inflation (Planck era), the radiation era, the matter era, and the
dark energy era (de Sitter era) in a self-consistent manner. The evolution of the scale factor with time is
obtained by solving the first order differential Equation (110). This yields∫ a/a0

ai/a0

dx

x
√

Ωrad,0
x4+(a1/a0)4 +

(ΩB,0+ΩDM,0)

x3 + ΩΛ,0

= H0t, (111)

where ai = a1 = 0 in the standard ΛCDM model and ai = lP in our model. This is how we have
obtained the solid curves of Figures 15 and 16. They provide the complete evolution of the universe
from the early inflation to the late acceleration. The age of the universe is

t0 =
1

H0

∫ 1

0

dx

x
√

Ωrad,0
x4 +

ΩB,0
x3 +

ΩDM,0
x3 + ΩΛ,0

. (112)

Of course, for the determination of the age of the universe we can neglect the vacuum energy era and take
a1 = 0. We obtain the standard result t0 = 1.03H−1

0 = 4.53× 1017 s = 14.4 Gyr [Note 13: The Hubble
constant is usually written as H0 = 2.268h7× 10−18 s−1 where the dimensionless parameter h7 is about
10% of unity [1]. For simplicity, we have taken h7 = 1 in the numerical applications. The current value
is h7 = 1.05± 0.05. If we take h7 = 1.05, the age of the universe is t0 = 13.7 Gyr.]. Actually, we find
the same result if we neglect radiation and use the analytical expression of Equation (101) with α = 0

instead of Equation (112).

5.9. Discussion

The main novelty of our paper is the quadratic equation of state (2). To the best of our knowledge,
this equation of state has never been introduced before. A nice feature of this equation of state is that it
incorporates both the Planck density ρP (vacuum energy) and the cosmological density ρΛ (dark energy).
We are not aware of any equation of state of that kind. For example, the usual equation of state p = −ρc2

used to model the primordial inflation or the late acceleration of the universe leads to a constant density
but the value of this density cannot be read from the equation of state itself and it has to be adapted,
rather arbitrarily, to the situation (e.g., one takes ρP to describe the early inflation and ρΛ to describe the
late acceleration). In Equation (2) there is no arbitrariness since this equation of state explicitly contains
ρP and ρΛ as parameters. This equation of state naturally imposes ρ = ρP in the early universe and
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ρ = ρΛ in the late universe. These two densities appear as fundamental upper and lower bounds in the
model. In this sense, the equation of state (2) with α = 1/3 suggests a sort of “unification” of vacuum
energy, radiation, and dark energy. This may be the same entity, a “generalized radiation”, described by
a unique equation of state (2), but its density is very different in the early and in the late universe causing
an early inflation and a late acceleration.

Our aim was to show that this equation of state is “viable” and that it can reproduce the basic features
of the universe. To that purpose, we considered its limiting behavior in the early and in the late universe:

(i) In the late universe, the equation of state (2) reduces to Equation (48) which can be viewed as a
generalized Chaplygin/polytropic gas model with nl = −1. This model is physically different from the
usual ΛCDM model but it gives the same results. Therefore, it is able to reproduce the observations.
This shows that the equation of state (2) is viable in the late universe.

(ii) In the early universe, the equation of state (2) reduces to Equation (18) which can be viewed as
a generalized Chaplygin/polytropic gas model with ne = +1. This model is different from the usual
models of inflation [2–5] but it gives similar results. In particular, it can account for an increase of the
scale factor by about 29 orders of magnitude in less than 10−42 s. It would be important to determine
whether this equation of state can reproduce the observed primordial fluctuations and power spectrum.
This problem has been considered recently in [92–94]. The conclusion of these works is that the
polytropic equation of state represents a robust and interesting scenario to study the evolution of the
universe. Therefore, the equation of state (2) may be viable in the early universe.

(iii) In between, the equation of state (2) reduces to a linear equation of state p = αρc2 describing a
phase of decelerating expansion (when α > −1/3).

As a whole, the equation of state (2) describes an early and late acceleration connected by
a deceleration phase. Therefore, it accounts for the basic features of the universe and it may be viable.
The drawback of the ΛCDM model is that it does not describe a phase of early inflation and displays
instead a primordial singularity (Big Bang). The equation of state (2) returns the result of the ΛCDM
model for sufficiently late times but it also naturally incorporates a phase of early inflation. As a result,
it describes the early inflation and the late acceleration simultaneously. This is the main interest of
this model.

Interestingly, the phase of early inflation and the phase of late acceleration are described by
two symmetric (or dual) Chaplygin/polytropic gas models with index +1 and −1, respectively.
The quadratic equation of state (2) combines these two symmetric models into a single equation of
state. As a result, this equation of state displays both a phase of early inflation driven by the Planck
density ρP and a phase of late acceleration driven by the cosmological density ρΛ. These two phases
are bridged by a phase of deceleration. The pressure is successively negative (vacuum energy), positive
(α-era), and negative again (dark energy).

There has been many works attempting to unify two phases (deceleration + acceleration) in the
evolution of the universe with a unique equation of state of the Chaplygin form [37–45]. We have
proposed in this paper to unify three phases (inflation + deceleration + acceleration) with the quadratic
equation of state (2), or more generally with Equation (82), which can be viewed as a generalized
Chaplygin gas model.
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6. Conclusions

We have constructed a cosmological model based on the quadratic equation of state (2). This equation
of state describes the evolution of a universe presenting a phase of early inflation (Planck era), a phase
of decelerating expansion (α-era), and a phase of late accelerating expansion (de Sitter era). An interest
of this model is its simplicity (while being already quite rich) and the fact that it admits a fully analytical
solution (see Equation (106)). It provides a particular solution of the Friedmann equations. In addition,
it is in qualitative agreement with the evolution of our own universe. Finally, it admits a scalar field
interpretation based on an inflaton, quintessence, or tachyonic field.

This model does not present any singularity and exists “eternally” in the past and in the future, so that
it has no origin nor end (we call it aioniotic universe). In particular, the phase of early inflation avoids the
Big Bang singularity and replaces it by a sort of second order phase transition where the non-zero value
of the Planck constant ~ plays the same role as finite size effects in statistical mechanics. Of course, it
is probably incorrect to extrapolate the results in the infinite past since our model is purely classical, or
semi-classical, and does not take quantum gravity into account. In our model, the universe starts from
t = −∞ but, for t < 0, its size is less than the Planck length lP = 1.62 × 10−35 m. In the Planck era,
the classical Einstein equations may be incorrect and should be replaced by a theory of quantum gravity
that still has to be constructed.

Another interest of this model is that it describes the early universe and the late universe in
a symmetric manner. The early universe is described by a polytrope n = +1 and the late universe by
a polytrope n = −1. The mathematical formulae are then strikingly symmetric (we sum the inverse of
the densities in the early universe and we sum the densities in the late universe). Furthermore, the Planck
density ρP in the early universe plays the same role as the cosmological density ρΛ in the late universe.
They represent fundamental upper and lower density bounds differing by 122 orders of magnitude.
They lead to phases of early and late inflation with very different timescales tP = 1/(GρP )1/2 =

5.39× 10−44 s and tΛ = 1/(GρΛ)1/2 = 1.46× 1018 s. The densities ρP and ρΛ (together with α) appear
as the coefficients of the equation of state (2). Therefore, this equation of state provides a “unification”
of vacuum energy and dark energy.

A limitation of this equation of state is that it cannot describe the transition between the radiation era
and the matter era because they are both described by a linear equation of state p = αρc2 with α = 1/3

and α = 0 respectively. Therefore, the equation of state (2) with α = 1/3 describes a universe without
matter while the equation of state (2) with α = 0 describes a universe without radiation. A better model
can be achieved by letting α(t) vary with time and decrease smoothly from 1/3 to 0. Alternatively, we
can “unify” vacuum energy + radiation + dark energy into a “generalized radiation” described by the
equation of state (2) with α = 1/3 and treat baryonic matter and dark matter as independent species
described by the equations of state pB = 0 and pDM = 0. This general approach (see Section 5.8) allows
us to describe the complete evolution of the universe (inflation + radiation + matter + acceleration).
It leads to an interesting generalization of the ΛCDM model where Equation (107) is replaced by
Equation (110). As a result, our model generalizes the standard ΛCDM model by incorporating naturally
a phase of early inflation that avoids the primordial singularity. Furthermore, it describes the early
inflation and the late acceleration simultaneously with a single equation of state that unifies vacuum
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energy and dark energy, and a single scalar field potential that unifies the inflaton potential and the
quintessence potential (see Appendix A).

Dark matter is usually described by a pressureless equation of state p = 0. This leads to the famous
Einstein-de Sitter (EdS) model. However, there are indications that dark matter may be described by
an isothermal equation of state p = αρc2 with α � 1 [48]. Therefore, it is useful to provide general
results valid for arbitrary values of α as we have done here. This allows us to describe either radiation
(α = 1/3), pressureless matter (α = 0), or isothermal matter (α 6= 0).

In this paper, for definiteness, we have selected the indices ne = +1 and nl = −1 in Equation (82)
to describe the early and the late universe respectively. As we have seen, the equation of state (82) with
nl = −1 leads to results that coincide with the ΛCDM model in the late universe. This equivalence
is not trivial since our approach is fundamentally different from the ΛCDM model (in particular this
coincidence is not true anymore for nl 6= −1). Since the ΛCDM model provides a good description of
the universe after the Planck era, this implies that observations tend to favor the value nl = −1 of the
polytropic index. This is a reason why we have selected this index. However, we can obtain more general
models by taking nl different from −1. In particular, a value of nl close to −1 may be consistent with
the observations and may improve upon the ΛCDM model. In this respect, Asadzadeli et al. [95] have
shown that the observations constrain the index nl to be in the range −1.05+0.08

−0.08 or −1.05+0.15
−0.16 at 68.3%

and 95.4% confidence levels, respectively. On the other hand, we have selected the index ne = +1 in
Equation (82) to describe the inflation in the early universe. More general models of inflation can be
obtained by selecting other values of ne. The value of ne could be determined from the measurements of
the cosmic microwave background (CMB) radiation. Therefore, possible extensions of our study would
be to consider the generalized equation of state (82) with arbitrary values of ne and nl. General results
valid for the asymptotic expressions (Equations (17) and (47)) of the equation of state (82) in the early
and late universe are given in [29–31].

A weakness of our work is that we have not given a justification of the quadratic equation of state (2)
[Note 14: It would be of considerable interest to justify this equation of state from a microscopic model
of radiation since we argued that this equation of state provides an effective model of “generalized
radiation”. The quadratic equation of state (18) and the analytical solution of Equation (29) describing
the phase of inflation were first given in [96] in relation to Bose-Einstein condensates (BECs) with
an attractive self-interaction (negative scattering length as < 0). Although this BEC model may be
too simplistic (see the discussion in Appendix B of [29]), it shows how a quadratic equation of state
with a negative pressure may arise in practice. We may also draw an analogy between the BEC model
and the primeval atom of Lemaître [97].]. However, since this equation of state is connected to the
Chaplygin gas model, there is some hope that this equation of state could arise from fundamental theories
since the original Chaplygin gas model [37–45] is motivated by some works on string theory. It can be
obtained from the Nambu-Goto (or Born-Infeld) action for d-branes moving in a (d + 2)-dimensional
spacetime in the light-cone parametrization [Note 15: We also note that a theoretical justification of a
polytropic equation of state of the form p = kρ1+1/nc2 with n ∈ N for a perfect relativistic fluid in
cosmology has been given recently by Kazinski [98] in relation to the quantum gravitational anomaly.].
We may also argue that the quadratic equation of state (2) (and its generalization in Equation (82)) is the
“simplest” equation of state that we can imagine in order to obtain a non singular model of universe (see
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the discussion in Section 7.4 of [30]). This “simplest” model is in agreement with the known properties
of our universe. It is interesting that these properties can be reproduced by an equation of state of the
form ax2 + bx+ c where the three coefficients are related to ~, α, and Λ.

In this paper, the quadratic equation of state (2) has been introduced heuristically in order to obtain a
cosmological model that describes simultaneously a phase of inflation, a phase of decelerating expansion,
and a phase of acceleration. The Planck constant ~ and the cosmological constant Λ are interpreted as two
fundamental constants fixed by nature that appear in the coefficients of this equation of state. In a sense,
this equation of state can be viewed as a simple interpolation formula between different, well-motivated,
equations of state. Interpolation formulae are often useful in physics and the equation of state (2) is also
interesting in this respect.

The next step would be to study the growth of perturbations in our model. In particular, it would
be important to confront the model of inflation based on the polytropic equation of state (15) to the
Planck 2015 data set. In this respect, it may be necessary to use the scalar field interpretation instead
of the hydrodynamic interpretation because it is known that, although the hydrodynamic and scalar field
equations coincide at the background level, they may show differences at the level of the perturbations.
A first study has been made in this direction by Freitas and Gonçalves [94] using our model of inflation.
They studied the primordial quantum fluctuations in the slow-roll approximation and calculated the scalar
perturbations, the scalar power spectrum, and the spectral index. They obtained encouraging results, but
some of their results need to be further developed. This will be considered in future works.

Remark: In this paper, we have proposed to describe the complete evolution of the universe (early and
late inflation) by the quadratic equation of state (2). A quadratic equation of state aiming at describing the
late acceleration of the universe has been considered in [63,64,99,100] and compared to the observations
by Sharov [101]. Sharov mentions that a quadratic equation of state with a positive coefficient in front
of ρ2 can lead to past singularities. In the present paper, we have considered a quadratic equation of state
with a small negative coefficient in front of ρ2 (of the order of ρ−1

P ), so that the quadratic term accounts
for the early inflation, not for the late acceleration. This is why we do not have past singularities in
our model (the universe exits at any time in the past). The possibility of past singularities when the
coefficient in front of ρ2 is positive is discussed in [29].
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Appendix

A. Scalar Field Theory

In this Appendix, we determine the canonical scalar field potential and the tachyonic potential
corresponding to the quadratic equation of state (83). Interestingly, this scalar field theory describes, with
a single potential, the whole evolution of the universe, from the early inflation to the late acceleration,
passing through a phase of algebraically decelerating expansion.
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A.1. Canonical Scalar Field

We consider a canonical scalar field defined by Equations (33) and (34). From Equation (34), we get

φ̇2 = (w + 1)ρc2, (113)

where we recall that w = p/ρc2. Using φ̇ = (dφ/da)Ha and the Friedmann equation (12) valid for a flat
universe, we find that the relation between the scalar field and the scale factor is given by

dφ

da
=

(
3c2

8πG

)1/2 √
1 + w

a
. (114)

On the other hand, according to Equation (34), the potential of the scalar field is given by

V =
1

2
(1− w)ρc2. (115)

For the quadratic equation of state (83), we have

w = −(α + 1)
ρ

ρP
+ α− (α + 1)λ

ρP
ρ

(116)

and

ρ

ρP
=

1

R3(α+1) + 1
+ λ, (117)

where R = a/a1 and λ = ρΛ/ρP = 1.36× 10−123. With the change of variables

x = R3(α+1)/2, ψ =

(
8πG

3c2

)1/2
3
√
α + 1

2
φ, (118)

we obtain after simple calculations (using the fact that λ� 1 to simplify some terms):

ψ =

∫ x

0

ds

(λs2 + 1)1/2(s2 + 1)1/2
= sc−1(x, 1− λ), (119)

V =
1

2
ρP c

2 2 + (1− α)x2 + 2λx4

(x2 + 1)2
, (120)

where sc is the Jacobian Elliptic function. We have sc−1(x, 1 − λ) = −iF (i sinh−1(x), λ) where
F (φ, λ) =

∫ φ
0

(1 − λ sin2 θ)−1/2 dθ =
∫ sin(φ)

0
(1 − t2)−1/2(1 − λt2)−1/2 dt is the Elliptic integral of

the first kind. We have taken ψ = 0 when x = 0. Equations (119) and (120) define the potential
V (ψ) in parametric form with parameter x going from 0 to +∞. The scalar field goes from ψ = 0 to
ψmax =

∫ +∞
0

ds/[(λs2 + 1)1/2(s2 + 1)1/2] = K(1− λ) where K is the complete Elliptic integral of the
first kind [Note 16: For λ� 1, we have ψmax = K(1− λ) ' (1/2) ln(16/λ) as will be found below by
a different method.]. Eliminating x between Equations (119) and (120), we get

V (ψ) =
1

2
ρP c

2 2 + (1− α)sc(ψ, 1− λ)2 + 2λsc(ψ, 1− λ)4

[sc(ψ, 1− λ)2 + 1]2
(0 ≤ ψ ≤ ψmax). (121)

In the early universe, we can neglect the dark energy (λ = 0) so that Equations (119) and (120) reduce to

ψ = sinh−1(x), (122)
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V =
1

2
ρP c

2 2 + (1− α)x2

(x2 + 1)2
. (123)

Equations (122) and (123) are equivalent to Equations (35) and (40) defining the inflaton potential

V (ψ) =
1

2
ρP c

2 (1− α) cosh2 ψ + α + 1

cosh4 ψ
(ψ ≥ 0). (124)

In the late universe, we can neglect the vacuum energy (which amounts to taking x � 1) so that
Equations (119) and (120) reduce to

ψ − ψmax = − sinh−1

(
1√
λx

)
, (125)

V =
1

2
ρP c

2

(
1− α
x2

+ 2λ

)
, (126)

where ψmax is a constant of integration. Equations (125) and (126) are equivalent to Equations (62)
and (66) defining the quintessence potential

V (ψ) =
1

2
ρΛc

2
[
(1− α) cosh2(ψmax − ψ) + α + 1

]
(ψ ≤ ψmax), (127)

where we have arbitrarily taken ψmax = 0 in Equations (62) and (66). Therefore, the scalar field potential
defined by Equation (121) provides a unification of the inflaton and quintessence potentials defined by
Equations (124) and (127) respectively.

The constant ψmax can be obtained by matching the solutions from Equations (122), (123), (125)
and (126) in the intermediate region of algebraic expansion (α-era). First, we note that V = ρP c

2 for
ψ = 0 (x = 0) and V = ρΛc

2 for ψ = ψmax (x → +∞). For x � 1, Equations (122) and (123) reduce
to ψ ∼ ln(2x) and V ∼ (1/2)ρP c

2(1− α)x−2 yielding

V (ψ) ' 2ρP c
2(1− α)e−2ψ (ψ � 1). (128)

On the other hand, for x � 1, Equations (125) and (126) reduce to ψmax − ψ ∼ ln(2/
√
λx) and

V ∼ (1/2)ρP c
2(1− α)x−2 yielding

V (ψ) ' 1

8
ρP c

2(1− α)λe2(ψmax−ψ) (ψ � ψmax). (129)

This exponential potential corresponds to the potential of a scalar field with a linear equation of state
p = αρc2 (see, e.g., Section 8.1 of [30]). Comparing Equations (128) and (129), we find that

ψmax =
1

2
ln

(
16

λ

)
' 142.84. (130)

We note that ψmax is of the order of the famous number log(ρP/ρΛ) ' 123 appearing in relation to the
cosmological constant problem [46,47]. Using Equations (106) and (119), we can obtain the evolution
of the scalar field with time. Using the asymptotic results of Sections 3 and 4, we find that the scalar
field evolves as ψ ' (lP/a1)3(α+1)/2exp[(3/2)(α + 1)(8π/3)1/2t/tP ] in the vacuum energy era, as
ψ ' ln(t/tP ) + (1/2) ln(8π/3) + ln[3(α + 1)] in the α-era, and as ψ ' ψmax − 2exp[−(3/2)(α +
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1)(8πλ/3)1/2t/tP ] in the dark energy era. Some representative curves are shown in Figures A1–A4 for
α = 0.
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Figure A1. Potential V (x) in logarithmic coordinates.
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Figure A2. Evolution of the scalar field ψ with the normalized scale factor x in
logarithmic coordinates.
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Figure A3. Potential V (ψ) in logarithmic coordinates.
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Figure A4. Evolution of the scalar field ψ with the normalized time t/tP in
logarithmic coordinates.

Remark: Using matched asymptotics, we can propose a simple analytical expression of the scalar
field potential that unifies the inflaton and quintessence potentials. Indeed, the following potential

V (ψ) =
1

2
ρP c

2 (1− α) cosh2 ψ + α + 1

cosh4 ψ
+

1

2
ρΛc

2
[
(1− α) cosh2(ψmax − ψ) + α + 1

]
−2ρP c

2(1− α)e−2ψ (0 ≤ ψ ≤ ψmax) (131)

provides a good approximation of the exact potential given by Equation (121).
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A.2. Tachyonic field

We consider a tachyonic field defined by Equations (71) and (72). From Equation (72), we get

φ̇2 = 1 + w. (132)

Using φ̇ = (dφ/da)Ha and the Friedmann equation (12) valid for a flat universe, we find that the relation
between the tachyonic field and the scale factor is given by

dφ

da
=

(
3c2

8πG

)1/2 √
1 + w√
ρc2a

. (133)

On the other hand, according to Equation (72), the potential of the scalar field is given by

V 2 = −wρ2c4. (134)

The tachyonic field is defined provided that−1 ≤ w ≤ 0. This is the case for all times with the quadratic
equation of state (83) when α = 0. Using Equations (116) and (117) and making the change of variables

x = R3(α+1)/2, ψ =
√
ρP c2

(
8πG

3c2

)1/2
3
√
α + 1

2
φ, (135)

we obtain after simple calculations (using the fact that λ� 1 to simplify some terms):

ψ =

∫ x

0

ds

1 + λs2
=

1√
λ

tan−1
(√

λx
)
, (136)

V = ρP c
2

√
1− αx2 − (α− 1)λx4 + λ2x6

(x2 + 1)3/2
. (137)

We have taken ψ = 0 when x = 0. Equations (136) and (137) define the potential V (ψ) in parametric
form with parameter x going from 0 to +∞. The scalar field goes from ψ = 0 to ψmax = π/(2

√
λ).

Eliminating x between Equations (136) and (137), we obtain

V (ψ)

ρP c2
=

√
1− α 1

λ
tan2(

√
λψ)− (α− 1) 1

λ
tan4(

√
λψ) + 1

λ
tan6(

√
λψ)[

1
λ

tan2(
√
λψ) + 1

]3/2
. (138)

For α = 0, we get

V (ψ)

ρP c2
=

√
1 + 1

λ
tan4(

√
λψ) + 1

λ
tan6(

√
λψ)[

1
λ

tan2(
√
λψ) + 1

]3/2
. (139)

In the early universe, we can neglect the dark energy (λ = 0) so that Equations (136) and (137) reduce to

ψ = x, V = ρP c
2

√
1− αx2

(x2 + 1)3/2
, (140)

giving

V (ψ) = ρP c
2

√
1− αψ2

(ψ2 + 1)3/2
. (141)
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For α = 0, we get

V (ψ) =
ρP c

2

(ψ2 + 1)3/2
. (142)

For ψ = x = 0, we have V = ρP c
2. For ψ = x � 1 we obtain V ∼ ρP c

2
√
−α/ψ2 if α 6= 0 and

V ∼ ρP c
2/ψ3 if α = 0. In the late universe, we can neglect the vacuum energy (which amounts to

taking x� 1) so that Equation (136) and (137) reduce to

ψ =
1√
λ

tan−1
(√

λx
)
, V = ρP c

2

√
−α− (α− 1)λx2 + λ2x4

x2
, (143)

giving

V (ψ)

ρP c2
=

√
−α− (α− 1) tan2(

√
λψ) + tan4(

√
λψ)

1
λ

tan2(
√
λψ)

. (144)

For α = 0, we get

V (ψ) =
ρΛc

2

sin(
√
λψ)

. (145)

Equations (143) and (145) are equivalent to Equations (73) and (77) where we have arbitrarily shifted√
λψ by −π/2. For ψmax = π/(2

√
λ) = 4.26 × 1061 (x → +∞), we have V = ρΛc

2. For ψ � ψmax

(x � 1), we have ψ ∼ x and we obtain V ∼ ρP c
2
√
−α/ψ2 if α 6= 0 and V ∼ ρP c

2
√
λ/ψ if α = 0.

The algebraic potential V ∼ ρP c
2
√
−α/ψ2 corresponds to the potential of a tachyonic field with a linear

equation of state p = αρc2 (see, e.g., Section 8.2 of [30]) [Note 17: For α = 0, the tachyonic scalar
field potential behaves as ψ−3 at the end of the early universe and as ψ−1 at the beginning of the late
universe (this is because the potential of a tachyonic field with an equation of state p = αρc2 degenerates
to V (φ) = 0 when α = 0; see, e.g., Section 8.2 of [30]). This implies a discontinuity of d lnV/d lnψ

during the matter era as is apparent on Figures A1 and A3.]. Using Equations (106) and (136), we can
obtain the evolution of the scalar field with time. Using the asymptotic results of Sections 3 and 4, we
find that the tachyonic field evolves as ψ ' (lP/a1)3/2exp[(6π)1/2t/tP ] in the vacuum energy era, as
ψ ' (6π)1/2t/tP in the α-era, and as ψ ' ψmax − (2/

√
λ)exp[−(6πλ)1/2t/tP ] in the dark energy era.

Some representative curves are shown in Figures A1–A4 for α = 0.

B. Further Generalizations of the Cosmological Model

In the standard model of cosmology, the universe undergoes a radiation era, a (baryonic + dark) matter
era, and a dark energy era. These different phases are described by a linear equation of state p = αρc2

with α = 1/3 for the radiation, α = 0 for the pressureless matter (including baryonic matter and dark
matter), and α = −1 for the dark energy. The corresponding evolution of the universe is described by
Equation (107). It has been proposed in certain cosmological models [102–106] that the universe also
experiences a primordial stiff matter era during which the speed of sound is equal to the speed of light
(cs = c). This phase is described by a linear equation of state p = αρc2 with α = 1. If we take into
account a stiff matter era, Equation (107) is generalized into

H

H0

=

√
Ωs,0

(a/a0)6
+

Ωrad,0

(a/a0)4
+

Ωm,0

(a/a0)3
+ ΩΛ,0. (146)
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For convenience, we have written Ωm,0 = ΩB,0+ΩDM,0. Even more generally, we can introduce an α-era
with an equation of state p = αρc2 so that Equation (146) becomes

H

H0

=

√
Ωα,0

(a/a0)3(1+α)
+

Ωs,0

(a/a0)6
+

Ωrad,0

(a/a0)4
+

Ωm,0

(a/a0)3
+ ΩΛ,0. (147)

The α-fluid may describe a new hypothetical fluid that dominates in the very early universe (if α ≥ 0).
Alternatively, the exponent α may be a convenient notation standing for stiff matter (α = 1), radiation
(α = 1/3) or pressureless matter (α = 0) depending on the situation contemplated.

The cosmological model defined by Equation (147) generates a primordial Big Bang singularity in
which the energy density diverges as the scale factor goes to zero. Using the procedure introduced in
this paper, it is easy to modify Equation (147) so as to incorporate an inflation era that replaces the initial
Big Bang singularity. Indeed, we can describe the transition between an inflation era and a generic α-era
by an equation of the form

H

H0

=

√
Ωα,0

(a/a0)3(1+α) + (a1/a0)3(1+α)
+

Ωs,0

(a/a0)6
+

Ωrad,0

(a/a0)4
+

Ωm,0

(a/a0)3
+ ΩΛ,0 (148)

with a1/a0 = (ρα,0/ρP )1/[3(1+α)]. This corresponds to the model of Section 3 based on the quadratic
equation of state (18). We can generalize this model further by considering a polytropic equation of state
of the form of Equation (17) with an arbitrary index n > 0. In that case, we obtain

H

H0

=

√
Ωα,0

[(a/a0)3(1+α)/n + (a1/a0)3(1+α)/n]
n +

Ωs,0

(a/a0)6
+

Ωrad,0

(a/a0)4
+

Ωm,0

(a/a0)3
+ ΩΛ,0. (149)

The cosmological model defined by Equation (149) exhibits a phase of early inflation followed by an
α-era (which may represent a new exotic era, a stiff matter era, or a radiation era), a radiation era (if
different from the α era), a matter era, and a dark energy era.

Remark: An additional generalization may be introduced if dark matter is made of Bose-Einstein
condensates (BECs) instead of being pressureless. In that case, the term ΩDM,0/(a/a0)3 should be
replaced by ΩDM,0/[(a/a0)3 ∓ (aBEC/a0)3] as proposed in References [96,107]. It is shown in these
papers that the presence of BECs can substantially accelerate the formation of large-scale structures in
the universe.

C. Exact Solution of the Quadratic Equation of State

In this Appendix, we present the exact solution of the quadratic equation of state (83) and show the
extreme relevance of the approximations made in the core of the paper.

Substituting the equation of state (83) in the equation of continuity (10) and solving the resulting
differential equation by retaining all the terms, we obtain after elementary calculations

ρ =
ρP
√

1− 4λ

1 + (a/a1)3(α+1)
√

1−4λ
+

1

2
ρP

(
1−
√

1− 4λ
)
, (150)

where we recall that λ = ρΛ/ρP = 1.36× 10−123. Since λ � 1 by 123 orders of magnitude (!), we see
that the approximations leading to Equation (86) are excellent.
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Substituting Equation (150) into the Friedmann equation (12) and introducing the notation R = a/a1,
we obtain ∫ √

1 +Rκ∗

R
√

1 + λ∗Rκ∗
dR =

(
8π

3

)1/2

t/t∗P , (151)

with

κ∗ = 3(α + 1)
√

1− 4λ, λ∗ =
1−
√

1− 4λ

1 +
√

1− 4λ
, (152)

t∗P =
tP√

1
2

+ 1
2

√
1− 4λ

, t∗Λ =
t∗P√
λ∗

= tΛ

√
2λ

1−
√

1− 4λ
. (153)

Since λ � 1, we have κ∗ ' κ, λ∗ ' λ, t∗P ' tP , and t∗Λ ' tΛ in excellent approximation. We note that
Equation (151) has the same form as Equation (105) with the star variables. Therefore, its solution is
given by Equation (106) where κ, λ and tP are replaced by κ∗, λ∗ and t∗P . For t→ −∞ (early inflation),
we get

a ∝ e(8π/3)1/2t/t∗P . (154)

For t→ +∞ (late inflation), we get

a ∝ e(8π/3)1/2t/t∗Λ . (155)

Again, since λ = 1.36 × 10−123, we commit almost no mistake by replacing the star variables by
the naked ones.

D. Scalar Field Theory Taking into Account the Presence of Radiation and Matter

We assume that the universe contains radiation

Prad =
1

3
ρradc

2 ⇒ ρrad
ρ0

=
Ωrad,0

(a/a0)4
(156)

and (baryonic + dark) matter

Pm = 0 ⇒ ρm
ρ0

=
Ωm,0

(a/a0)3
. (157)

The relations on the right between the density and the scale factor have been obtained from the equation
of continuity (10) applied to each species considered as a perfect fluid.

In order to unify vacuum energy (ρP ) and dark energy (ρΛ), we assume that the universe contains
a scalar field with a quadratic equation of state

pφ = −(α + 1)
ρ2
φ

ρP
c2 + αρφc

2 − (α + 1)ρΛc
2. (158)



Universe 2015, 1 404

The α-component may represent radiation (α = 1/3) or dark matter (α = 0), or be a new species. The
scalar field evolves according to the Equations (33) or (71) that describe a canonical or a tachyonic scalar
field, respectively. We can check that they imply the equation of continuity for the scalar field

dρφ
dt

+ 3
ȧ

a

(
ρφ +

pφ
c2

)
= 0. (159)

Therefore, the energy density of the scalar field is given by (see Section 5.1):

ρφ
ρ0

=
Ωα,0

(a/a0)3(α+1) + Ωα,0
ΩP,0

+ ΩΛ,0. (160)

The Friedmann equation taking into account the contribution of all the species writes

H2 =

(
ȧ

a

)2

=
8πG

3
(ρrad + ρm + ρφ). (161)

If radiation or dark matter is included in the scalar field, it should not be counted as a new species, i.e.,
one should set ρrad = 0 or ρDM = 0 in Equation (161). Following the suggestion of Section 5.8, we
should include radiation in the scalar field so that α = 1/3 [and ρrad = 0 in Equation (161)] but, for the
sake of generality, we leave α unspecified.

Generalizing the procedure of Appendix A by taking into account the presence of radiation and matter,
we find that the potential of the canonical scalar field is determined by the equations

φ(R) =

(
3c2

8πG

)1/2 ∫ R

1

√
1 + wφ(x)

x

√
ρφ(x)

ρrad(x) + ρm(x) + ρφ(x)
dx, (162)

V (R)

ρ0c2
=

1

2
[1− wφ(R)]

ρφ(R)

ρ0

. (163)

We have defined wφ = pφ/ρφc
2, R = a/a0, and x = a′/a0. We have assumed that φ = 0 at the present

epoch (R = 1). If we take ρrad = ρm = 0, considering a single scalar field, we recover the results
of Appendix A. Therefore, the present Appendix generalizes the results of Appendix A by taking into
account the presence of radiation and matter. Although it does not seem possible to obtain the scalar
field potential V (φ) analytically, it can be obtained numerically and it provides a unification of vacuum
energy (inflaton) and dark energy (quintessence) in the presence of radiation and matter. In very good
approximation (using the fact that λ = ρΛ/ρP = 1.36× 10−123 � 1), we obtain

φ(R) =

(
3c2

8πG

)1/2√
1 + α

∫ R

1

(
ΩP,0
Ωα,0

)1/2

x3(α+1)/2√
1 +

ΩP,0
Ωα,0

x3(α+1)

√
1 +

ΩΛ,0

Ωα,0
x3(α+1)

×

√√√√√√
Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

+ ΩΛ,0

Ωrad,0
x4 + Ωm,0

x3 + Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

+ ΩΛ,0

dx

x
, (164)

V (R)

ρ0c2
=

1

2
ΩP,0

2 + (1− α)
ΩP,0
Ωα,0

(a/a0)3(α+1) + 2
ΩΛ,0ΩP,0
(Ωα,0)2 (a/a0)6(α+1)[

ΩP,0
Ωα,0

(a/a0)3(α+1) + 1
]2 . (165)
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In the early universe (ΩΛ = 0), we can make the approximation

φ(R) =

(
3c2

8πG

)1/2√
1 + α

∫ R

1

(
ΩP,0
Ωα,0

)1/2

x3(α+1)/2√
1 +

ΩP,0
Ωα,0

x3(α+1)

√√√√√√
Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

Ωrad,0
x4 + Ωm,0

x3 + Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

dx

x
, (166)

V (R)

ρ0c2
=

1

2
ΩP,0

2 + (1− α)
ΩP,0
Ωα,0

(a/a0)3(α+1)[
ΩP,0
Ωα,0

(a/a0)3(α+1) + 1
]2 . (167)

In the late universe (ΩP → +∞), we can make the approximation

φ(R) =

(
3c2

8πG

)1/2√
1 + α

∫ R

1

1√
1 +

ΩΛ,0

Ωα,0
x3(α+1)

√√√√ Ωα,0
x3(α+1) + ΩΛ,0

Ωrad,0
x4 + Ωm,0

x3 + Ωα,0
x3(α+1) + ΩΛ,0

dx

x
, (168)

V (R)

ρ0c2
=

(1− α)Ωα,0

2(a/a0)3(α+1)
+ ΩΛ,0. (169)

Generalizing the procedure of Appendix A by taking into account the presence of radiation and matter,
we find that the potential of the tachyonic scalar field is determined by the equations

φ(R) =

(
3c2

8πGρ0c2

)1/2 ∫ R

1

√
1 + wφ(x)

x
√

ρφ(x)

ρ0

√
ρφ(x)

ρrad(x) + ρm(x) + ρφ(x)
dx, (170)

V (R)

ρ0c2
=
√
|wφ(R)|ρφ(R)

ρ0

. (171)

If we take ρrad = ρm = 0, considering a single scalar field, we recover the results of Appendix A. In very
good approximation (using the fact that λ = ρΛ/ρP = 1.36× 10−123 � 1), we obtain

φ(R) =

(
3c2

8πGρ0c2

)1/2 √
1 + α√
Ωα,0

∫ R

1

x3(α+1)/2

1 +
ΩΛ,0

Ωα,0
x3(α+1)

×

√√√√√√
Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

+ ΩΛ,0

Ωrad,0
x4 + Ωm,0

x3 + Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

+ ΩΛ,0

dx

x
, (172)

V (R)

ρ0c2
=

ΩP,0

√
1− αΩP,0

Ωα,0
(a/a0)3(α+1) − (α− 1)

ΩP,0ΩΛ,0

(Ωα,0)2 (a/a0)6(α+1) +
ΩP,0(ΩΛ,0)2

(Ωα,0)3 (a/a0)9(α+1)[
ΩP,0
Ωα,0

(a/a0)3(α+1) + 1
]3/2

.(173)

In the early universe (ΩΛ = 0), we can make the approximation

φ(R) =

(
3c2

8πGρ0c2

)1/2 √
1 + α√
Ωα,0

∫ R

1

x3(α+1)/2

√√√√√√
Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

Ωrad,0
x4 + Ωm,0

x3 + Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

dx

x
, (174)
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V (R)

ρ0c2
=

ΩP,0

√
1− αΩP,0

Ωα,0
(a/a0)3(α+1)[

ΩP,0
Ωα,0

(a/a0)3(α+1) + 1
]3/2

. (175)

In the late universe (ΩP → +∞), we can make the approximation

φ(R) =

(
3c2

8πGρ0c2

)1/2 √
1 + α√
Ωα,0

∫ R

1

x3(α+1)/2

1 +
ΩΛ,0

Ωα,0
x3(α+1)

×

√√√√ Ωα,0
x3(α+1) + ΩΛ,0

Ωrad,0
x4 + Ωm,0

x3 + Ωα,0
x3(α+1) + ΩΛ,0

dx

x
, (176)

V (R)

ρ0c2
=

Ωα,0

√
−α− (α− 1)

ΩΛ,0

Ωα,0
(a/a0)3(α+1) +

(
ΩΛ,0

Ωα,0

)2

(a/a0)6(α+1)

(a/a0)3(α+1)
. (177)

In conclusion, we have given the general equations that allow us to construct the scalar field potential
V (φ) that unifies the inflaton and quintessence potentials in the presence of radiation and matter.
The physical consequences of this model will be developed elsewhere.
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