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Abstract:

 In this note, we construct Noether charges for the chiral supergravity, which contains the Lorentz Chern–Simons term, by applying Wald’s prescription to the vielbein formalism. We investigate the AdS3/CFT2 correspondence by using the vielbein formalism. The asymptotic symmetry group is carefully examined by taking into account the local Lorentz transformation, and we construct super Virasoro algebras with central extensions from the chiral supergravity.
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1. Introduction

The three dimensional gravity with negative cosmological constant has been one of the interesting testing grounds to uncover quantum natures of gravity. Especially the gauge/gravity correspondence has been investigated from various aspects for decades.

The vacuum solution of the three dimensional gravity with negative cosmological constant is described by global AdS3 geometry [1]. In 1986, Brown and Henneaux showed that the asymptotic symmetry group of the AdS3 geometry consists of left and right Virasoro algebras, and they succeeded to evaluate the same central charges for both algebras [2]. This is a prototype of the gauge/gravity correspondence, which was conjectured sophisticatedly in the context of superstring theory [3]. The three dimensional theory also contains Banados–Teitelboim–Zanelli (BTZ) black hole solution [4,5]. Moreover, the entropy of the BTZ black hole is statistically explained by using the Cardy formula for the boundary conformal field theory (CFT) [6]. It is well known that the three dimensional gravity theory can also be described by the gauge Chern–Simons theory [7,8]. The Virasoro algebras can be derived by using this alternative formulation [9], and the black hole entropy is statistically explained in Reference [10].

There are many important works on the three dimensional gravity, but we just focus on three kinds of generalizations on the Virasoro algebras at the boundary. First one is to deal with the supergravity [11]. As expected, the asymptotic symmetry group enhances to super Virasoro algebras and the central charges can be evaluated including fermionic sector [12,13]. Second one is to add chiral terms to the theory. The three dimensional gravity with the gravitational or Lorentz Chern–Simons term is called topologically massive gravity (TMG) [14,15]. In this theory it has been studied that the central charges for left and right modes are asymmetric [16,17,18,19,20,21,22,23,24]. Third one is to consider higher derivative corrections, such as [image: there is no content] terms. In this case, central charges are modified by some conformal factors [24,25,26].

The purpose of this note is to consider the supergravity with negative cosmological constant which contains the Lorentz Chern–Simons term. The supergravity with the Lorentz Chern–Simons term, which is called the topologically massive supergravity (TMSG), is constructed by Deser and Kay [27], and the cosmological constant is added to the TMSG by Deser (CTMSG) [28]. There are two parameters in CTMSG : the cosmological constant [image: there is no content] and the coefficient of the Lorentz Chern–Simons term β. It is known that fluctuation around the AdS3 geometry contains negative energy mode for generic ℓ and β [22]. The exception occurs at the critical point [image: there is no content], and the theory is called chiral supergravity [22,29]. Since we need stable AdS3 background to explore the gauge/gravity correspondence, the chiral supergravity is investigated in this note. We employ Wald’s prescription to construct the Noether charge for the chiral theory [30,31,32]. Especially we formulate the chiral supergravity in the vielbein formalism [33]. The charges are covariant under the general coordinate transformation, and it is possible to evaluate the asymmetric central charges for left and right modes explicitly. As a result, super Virasoro algebras at the boundary are explicitly constructed, which are expected from the viewpoint of AdS/CFT correspondence [29]. The vielbein formalism is applicable to all supergravity theories [33,34], and this work will be useful to test the gauge/gravity correspondence in superstring theory and M-theory at quantum level [35,36].

In Section 2, we explain some basic properties of the CTMSG. In Section 3, we construct the current for the general coordinate transformation and that for the local supersymmetry. We review the asymptotic symmetry group of the AdS3 in Section 4. The super Virasoro algebras for the chiral supergravity are constructed and the central charges for left and right movers are derived in Section 5. Section 6 is devoted to the conclusion and discussion.



2. Cosmologically Topologically Massive Supergravity

The topologically massive supergravity (TMSG) is the three dimensional supergravity with Lorentz Chern–Simons term which was constructed by Deser and Kay [27]. Deser also generalized the theory by adding the cosmological constant (CTMSG) [28]. In this section we review the equations of motion for the CTMSG. Fields of the CTMSG consist of a vielbein eaμ and a Majorana gravitino [image: there is no content]. Here [image: there is no content] are used for space-time indices and [image: there is no content] are for local Lorentz ones. In this note we consider [image: there is no content] CTMSG (If the sign of ℓ is flipped, we obtain [image: there is no content] CTMSG. Although the bulk gravity has three dimensions, by taking into account the AdS/CFT correspondence, we use the notation [image: there is no content] in the boundary CFT.), and the Lagrangian is given by



L=e16π[image: there is no content]{R+2ℓ2-12ψρ¯γμνρψμν(1)+β2ϵμνρωμab∂νωρba+23ωμabωνbcωρca-β2Dρψσ¯γμνγρσDμψν}








Here [image: there is no content] and [image: there is no content] are the gravitational constant and the negative cosmological one, respectively. β is a coefficient for the nonchiral part. Since we evaluate physical quantities in the background of AdS3 with [image: there is no content]=0 in later sections, below we consider the Lagrangian up to [image: there is no content].
In Equation (1), two kinds of covariant derivatives are defined,



Dμψν=∂μψν+14ωμabγabψν,Dμψν=Dμψν+12ℓγμψν



(2)




and the field strength of the Majorana gravitino is given by ψμν≡Dμψν-Dν[image: there is no content]. The gamma matrix in three dimensions satisfy the Clifford algebra [image: there is no content], and [image: there is no content]. The gamma matrix with spacetime index is defined as γμ=eμaγa, and a completely antisymmetric tensor [image: there is no content] is defined so that a coefficient of each term becomes [image: there is no content]. [image: there is no content] is a completely antisymmetric tensor in three dimensions.
The spin connection is expressed in terms of the vielbein and the Majorana gravitino by requiring Dμ2eeμaeνb=14eψρ¯γρμνγab[image: there is no content]. After standard calculations, the explicit forms of the spin connection and its variation can be obtained as



ωρab=eμ[aeνb](-eρc∂μecν+eμc∂νecρ-eμc∂ρecν(3)+14[image: there is no content]¯γρψν-14ψν¯γμψρ+14ψρ¯γμψν),










δωρab=eμ[aeνb](-eρcDμδecν+eμcDνδecρ-eμcDρδecν(4)+12δ[image: there is no content]¯γρψν-12δψν¯γμψρ+12δψρ¯γμψν)








Then , up to [image: there is no content], the variation of the Lagrangian (1) becomes


16π[image: there is no content]δL=2eRaμ-12eaμR+2ℓ2δeμa-eδψρ¯γρμνψμν(5)+β2-eϵρμνRabμνδωρab+2eδψσ¯γabγρσDρDaψb+∂μ2eeμaeνbδωνab+eψν¯γμνρδψρ+β2eϵμνρωνabδωρab-βeδψν¯γρσγμνDρψσ








In the above calculation, we used [image: there is no content] and [image: there is no content]. Note also that [image: there is no content] from Equation (3), and we employed this relation to derive Equation (5).
Let us evaluate the first term in the second line in Equation (5). The Riemann tensor in three dimensions is written in terms of the Ricci tensor and the scalar curvature as



Rμνρσ=gμρRνσ-gμσRνρ-gνρRμσ+gνσRμρ-12(gμρgνσ-gμσgνρ)R,(6)ϵρμνRabμν=2ϵρaσRbσ-2ϵρbσRaσ-ϵρabR








By using Equations (4) and (6), the first term in the second line in Equation (5) is evaluated as


-β2eϵρμνRabμνδωρab=2βeϵμνρCaρ-Dμδeaν+12δ[image: there is no content]¯γaψν



(7)




In this calculation we used


Cμν=Rμν-14gμνR,ϵρμνRabμν=2ϵρaσCbσ-2ϵρbσCaσ



(8)




and we neglected terms of [image: there is no content].
Finally the variation of the Lagrangian Equation (5) is expressed as



δL=e16π[image: there is no content]2Gaμδeμa+δψρ¯Ψρ+116π[image: there is no content]∂μeΘμ(δ)



(9)




In the above we defined


Θμ(δ)=2eμaeνbδωνab+ψ¯νγμνρδψρ      (10)+β2ϵμνρωνabδωρab-2βϵμνρCaρδeaν-βδψν¯γρσγμνDρψσ








and


Gaμ≡Raμ-12eaμR+2ℓ2+βϵaνρebμDνCbρ,(11)Ψρ≡-γμνρψμν+βϵμνρCaνγa[image: there is no content]-βγabγρσDσDaψb








The equations of motion for the CTMSG are given by Gaμ=0 and [image: there is no content].


3. Currents for the CTMSG

The action of the CTMSG is invariant under the general coordinate transformation and the local supersymmetry. In this section we will construct currents for these transformations via Wald’s procedure [30,31].


3.1. Current for the General Coordinate Invariance

Let us consider the general coordinate transformation [image: there is no content]. The vielbein and the spin connection transform as vector fields, and these behave like



δξeaμ=ξν∂νeaμ+∂μξνeaν=Dμξa-ξνωνaμ,(12)δξωνab=ξρ∂ρωνab+∂νξρωρab=ξρRabρν+Dν(ξρωρab)








Below we apply Wald’s procedure to construct the current for the general coordinate transformation [30,31] (Noether’s procedure is generalized to the gravitational Chern–Simons term in Reference [32]).
First, by imposing the equations of motion Gaμ=0 and [image: there is no content], the variation of the Lagrangian Equation (9) becomes



δξL=116π[image: there is no content]∂μ(eΘμ(ξ))



(13)




And the explicit form of [image: there is no content] up to [image: there is no content] is evaluated as (Although Equation (10) is expressed up to [image: there is no content] for the general coordinate transformation, we also need to know the correct equations of motion Equation (11) up to [image: there is no content] to obtain fermionic bilinear terms of [image: there is no content]. Thus, we evaluate [image: there is no content] up to [image: there is no content], which is enough to obtain the super Virasoro algebras in Section 5.)


[image: there is no content]=2eeμaeνbδξωνab+β2eϵμνρωνabδξωρab-2βeϵμνρCaρδξeaν=2eRμνξν+2eeμaeνbDν(ξρωρab)-β2eϵμνρωνabξσRabρσ+β2eϵμνρωνabDρ(ξσωσab)-2βeϵμνρCaρDνξa+2βeϵμbρCaρξσωσab=2eGμνξν+eR+2ℓ2[image: there is no content]+∂ν2eeμaeνbξρωρab-2βeϵμνρCρσξσ-β2eϵμνρωρabωσabξσ-β2eϵμνρωνabRabρσξσ-β4eϵμνρωσabRabνρξσ-β2eϵμνρωνabωρbcωσcaξσ(14)=2eGμνξν+[image: there is no content]L+∂νeQμν(ξ)








Here, we defined the antisymmetric tensor,


eQμν(ξ)=2eeμaeνbξρωρab-β2eϵμνρ4Cρσ+ωρabωσabξσ



(15)




In order to obtain the last line in Equation (14), we used the relation [image: there is no content] for a completely antisymmetric tensor [image: there is no content].
Second, since the Lagrangian of the CTMSG is covariant under the general coordinate transformation, its variation behaves as a scalar field like



[image: there is no content]



(16)




Note that the Lorentz Chern–Simons term is invariant under the general coordinate transformation.
Subtracting Equation (16) from Equation (13), we obtain the conservation law of the current. The current for the general coordinate invariance is expressed as



eJμ(ξ)=116π[image: there is no content]eΘμ(ξ)-16π[image: there is no content][image: there is no content]L+∂νeQ˜μν(ξ)(17)=116π[image: there is no content]∂νeQμν(ξ)+eQ˜μν(ξ)








Here the equation of motion Gμν=0 is used, and [image: there is no content] is an antisymmetric tensor. According to the Wald’s procedure, in order to make the Hamiltonian well defined, the variation of [image: there is no content] should become


[image: there is no content]



(18)




Then the variation of the current is evaluated as


δeJμ(ξ)=116π[image: there is no content]∂νδeQμν(ξ)+e[image: there is no content]Θν(δ)-ξνΘμ(δ)



(19)




We will use this expression to derive the Virasoro algebras from the chiral supergravity in Section 5.


3.2. Supercurrent

Let us construct the supercurrent for the CTMSG. Under the local supersymmetry transformation, the vielbein and the Majorana gravitino transform as



δϵeaμ=ϵ¯γa[image: there is no content],δϵ[image: there is no content]=2Dμϵ



(20)




Here [image: there is no content] represents a spacetime dependent parameter which belongs to the Majorana representation. From these, we see that the variation of the spin connection and that of the field strength of the Majorana gravitino become


δϵωρab=eμ[aeνb](-ϵ¯γρDμψν+ϵ¯γμDνψρ-ϵ¯γμDρψν-12ℓϵ¯γμγρψν+12ℓϵ¯γνγμψρ-12ℓϵ¯γργμψν),(21)δϵψμν=12Rabμνγabϵ+1ℓ2γμνϵ








up to [image: there is no content].
First, by imposing the equations of motion Gaμ=0 and [image: there is no content], the variation of the Lagrangian Equation (9) becomes



δϵL=116π[image: there is no content]∂μ(eΘμ(ϵ))



(22)




and the explicit form of [image: there is no content] up to [image: there is no content] is evaluated as


[image: there is no content]=2eμaeνbδϵωνab+ψ¯νγμνρδϵψρ    (23)+β2ϵμνρωνabδϵωρab-2βϵμνρCaρδϵeaν-βδϵψν¯γρσγμνDρψσ








Next, by consulting the calculations in Section 2, the variation of the Lagrangian under the local supersymmetry is evaluated as



16π[image: there is no content]δϵL=2eRaμ-12eaμR+2ℓ2δϵeμa-12eδϵψρ¯γρμνψμν-12eψρ¯γρμνδϵψμν+2βeϵμνρCaρ-Dμδϵeaν+12δϵ[image: there is no content]¯γaψν-eβDρδϵψσ¯γμνγρσDμψν(24)+∂μ2eeμaeνbδϵωνab+β2eϵμνρωνabδϵωρab








In the above, terms of [image: there is no content] are neglected. The second and third terms in the first line of Equation (24) are deformed as


-∂ρeϵ¯γρμνψμν+eϵ¯γρμνDρψμν+14eRabμνϵ¯γabγρμνψρ+12ℓ2eϵ¯γμνγρμνψρ(25)=-∂μeϵ¯γμνρψνρ+2eRaμ-12eaμR+2ℓ2ϵ¯γμψa








and the second line of Equation (24) is calculated like


-2βeϵμνρCaρϵ¯γaDμψν+12ℓϵ¯γμγaψν+β4eRabρσϵ¯γabγμνγρσDμψν+βℓeDρϵ¯γσγμνγρσDμψν=βℓeϵμνρCaρϵ¯γνγa[image: there is no content]+2βℓeDρϵ¯γμνρDμψν(26)=∂μ2βℓeϵ¯γμνρDνψρ








In order to derive the above expressions, we noted [image: there is no content], [image: there is no content], [image: there is no content], and used relations below.


γμνγρσ=-2gρ[μγν]σ+2gσ[μγν]ρ-2gρ[μgν]σ,γσγμνγρσ=2gρ[μγν]+2γ[μγν]ρ=2γμνρ,(27)-ϵμνρRaρϵ¯γaDμψν=-Raρϵ¯γμνργaDμψν=-2ϵ¯R[μργν]ρDμψν-Rϵ¯γμνDμψν,Rabρσγabγμνγρσ=16R[μργν]ρ+6Rγμν








Eventually the variation of the Lagrangian for the CTMSG (24) becomes


16π[image: there is no content]δϵL=∂μ2eeμaeνbδϵωνab-eϵ¯γμνρψνρ+β2eϵμνρωνabδϵωρab+2βℓeϵ¯γμνρDνψρ



(28)




Thus, the CTMSG is invariant under the local supersymmetry.
By subtracting Equation (28) from Equation (22), it is possible to obtain the current conservation for the local supersymmetry. The supercurrent for the CTMSG is expressed as



eSμ(ϵ)=e16π[image: there is no content](ψ¯νγμνρδϵψρ+ϵ¯γμνρψνρ-2βϵμνρCaρδϵeaν-βδϵψν¯γabγμνDaψb-2βℓϵ¯γμνρDνψρ)(29)=116π[image: there is no content]∂νeUμν(ϵ)








Here the antisymmetric tensor [image: there is no content] is given by


[image: there is no content]=-2ϵμνρϵ¯ψρ-2βϵ¯γabγμνDaψb



(30)




In order to derive Equation (29), we used the second line in Equation (27) and imposed the equation of motion [image: there is no content].



4. Asymptotic Symmetry Group for AdS3 Geometry

In this section we briefly review the asymptotic behavior of AdS3 geometry including supersymmetry. At the spatial infinity [image: there is no content], the metric of AdS3 geometry becomes



ds2=-N2dt2+r2dϕ2+N-2dr2,N=rℓ



(31)




where t, ϕ and r are time, angular and radial directions, respectively. This background corresponds to the massless BTZ black hole. The Riemann tensor is simply given by [image: there is no content]. In the background of the massless BTZ black hole, the vielbein and the spin connection become


e0=rℓdt,e1=rdϕ,e2=ℓrdr,



(32)






ωt02=rℓ2,ωϕ12=rℓ



(33)




[image: there is no content] are used for spacetime indices and [image: there is no content] are done for local Lorentz ones.
Since we are interested in the boundary behavior of the symmetry group, we explore general coordinate transformation [image: there is no content] which does not change the geometry of AdS3 only at the spatial infinity. The condition to be imposed for the variation of the metric is written as follows.



[image: there is no content]



(34)




The behaviors of the diagonal components of [image: there is no content] are determined so that these go to zero faster than the background Equation (31) as r goes to infinity. Then the behaviors of [image: there is no content] and off diagonal components of [image: there is no content] around the boundary are simultaneously fixed. After some calculations, the general coordinate transformation [image: there is no content] which satisfy the above condition is solved as


[image: there is no content]








where [image: there is no content] and [image: there is no content]. The isometry group only at the boundary is called asymptotic symmetry group. The the asymptotic symmetry group is parametrized by arbitrary functions [image: there is no content] and [image: there is no content], and we often expand these by


[image: there is no content]



(36)




Now let us calculate the transformation of the vielbein under Equation (35). As discussed in Reference [33], the transformation should be combined with local Lorentz transformation δΛeaμ=Λabebμ, where



Λab=0-∂+T++∂-T-ℓr∂+2T++∂-2T--∂+T++∂-T-0-ℓr∂+2T+-∂-2T-ℓr∂+2T++∂-2T-ℓr∂+2T+-∂-2T-0



(37)




Then the variation δξeaμ=ξρ∂ρeaμ+∂μξρeaρ+Λabebμ is evaluated as


δξeaμ=00ℓ2r2∂+2T++∂-2T-00-ℓ2r2∂+2T+-∂-2T-000



(38)




This variation goes to zero faster than the background Equation (32). In a similar way, the transformation of the spin connection is given by δξωμab=ξρ∂ρωμab+∂μξρωρab-∂μΛab+Λacωμcb+Λbcωμac. After some calculations, the variation of the spin connection becomes


δξωtab=00-1r∂+3T++∂-3T-001r∂+3T+-∂-3T--1r∂+3T++∂-3T--1r∂+3T+-∂-3T-0,










(39)ξωϕab=00-ℓr∂+3T+-∂-3T-00ℓr∂+3T++∂-3T--ℓr∂+3T+-∂-3T--ℓr∂+3T++∂-3T-0,δξωrab=00ℓr2∂+2T++∂-2T-00-ℓr2∂+2T+-∂-2T-ℓr2∂+2T++∂-2T-ℓr2∂+2T+-∂-2T-0








The variation of the spin connection also goes to zero faster that the background Equation (33). These results will be employed to calculate central charges in the next section.
Next let us explore local supersymmetric transformation [image: there is no content] which satisfy the boundary condition at the spatial infinity. Notations are the same as in Reference [33]. Because [image: there is no content]=0 for AdS3 solution, the condition for the supersymmetric variation is imposed as



δϵ[image: there is no content]=O(r-1/2)O(r-1/2)O(r-5/2)



(40)




The solution of Equation (40) becomes


[image: there is no content]



(41)




where [image: there is no content] is a Majorana fermion with [image: there is no content]. The solution depends only on [image: there is no content], so the remaining local supersymmetry is chiral in this sense. We often expand [image: there is no content] and ϵ([image: there is no content]) by Fourier modes,


χs=eis[image: there is no content]01,ϵs=eis[image: there is no content]-r1/2iℓsr-1/2



(42)




which satisfy the following relation


χsTχt=2T+,s+t,ϵs¯γμϵt=-2iξ+,s+tμ



(43)




From Equation (43), it is clear that [image: there is no content] should take some integer value. When [image: there is no content], those modes are called in the Neveu–Schwarz sector. On the other hand, when [image: there is no content], those modes are done in the Ramond sector.


5. Super Virasoro Algebras from Chiral Supergravity

So far we have constructed Noether currents for the CTMSG. Since the CTMSG has stable AdS3 background for the critical point [image: there is no content] [22,29], we consider the chiral supergravity below. Now we evaluate super Virasoro algebras at the boundary of the chiral supergravity. The Hamiltonian for the general coordinate transformation [image: there is no content] is given by



H(ξ)=∫drdϕeJt(ξ)=116π[image: there is no content]∮r=∞dϕeQtr(ξ)+eQ˜tr(ξ)



(44)




The variation of the Hamiltonian is related to the Poisson bracket of the algebra as


[image: there is no content]



(45)




The last term represents the central extension of the algebra. Let us evaluate the above quantity in the background of the massless BTZ black hole Equation (31) with [image: there is no content]=0. The energy of the massless black hole is zero, so [image: there is no content] in this background. Thus, [image: there is no content] and it is evaluated like


δξ2H(ξ1)=116π[image: there is no content]∮r=∞dϕδξ2eQtr(ξ1)+eξ1tΘr(ξ2)-ξ1rΘt(ξ2)=116π[image: there is no content]∮r=∞dϕ{δξ22eetaerbξ1ρωρab+β2δξ24Cϕσ+ωϕabωσabξ1σ+4eξ1[ter]aeνbδξ2ωνab+βeξ1[tϵr]νρ4Caνδξ2eaρ+ωνabδξ2ωρab}(46)=-ℓ4π[image: there is no content]∮r=∞dϕ1-βℓT1+∂+3T2++1+βℓT1-∂-3T2-








In order to derive the last expression, we used [image: there is no content], Equation (38), Equation (39) and following relations.


δξ24Cρσ+ωρabωσab=4ℓ2(∂+3T2++∂-3T2-)4ℓ(∂+3T2+-∂-3T2-)04ℓ(∂+3T2+-∂-3T2-)4(∂+3T2++∂-3T2-)0000,(47)δξ24Cρσ+ωρabωσabξ1σ=8ℓ(T1+∂+3T2++T1-∂-3T2-)8(T1+∂+3T2+-T1-∂-3T2-)0,4Caνδξ2eaρ+ωνabδξ2ωρab=2ℓ2(∂+3T2++∂-3T2-)2ℓ(∂+3T2+-∂-3T2-)02ℓ(∂+3T2+-∂-3T2-)2(∂+3T2++∂-3T2-)0000








Notice that left and right modes are separated in a nontrivial way in Equation (46).
Now we substitute the Fourier mode expansion of Equation (36). Then the variation of the Hamiltonian becomes



δξ±,nH(ξ±,m)=-iℓ8[image: there is no content]1∓βℓm3δm+n,0



(48)




This gives the central extensions of left and right Virasoro algebras. By expanding [image: there is no content] and replacing the Poisson bracket with the commutator, we obtain Virasoro algebras for left and right modes.


[Lm+,Ln+]=(m-n)Lm+n++c+12m3δm+n,0,(49)m-,Ln-]=(m-n)Lm+n-+c-12m3δm+n,0








Here the central charges are given by


c±=3ℓ2[image: there is no content]1∓βℓ



(50)




Note that the sign is flipped compared with Reference [24] because of the definition [image: there is no content]. At the critical point, one of the central charges vanishes.
Next let us evaluate the Poisson bracket of the supercharge. The supercharge for the local supersymmetry is written as



F(ϵ)=∫drdϕeSt(ϵ)=116π[image: there is no content]∮r=∞dϕeUtr(ϵ)



(51)




It is obvious that the supercharge is zero in the background of [image: there is no content]=0. The variation of the supercurrent under the local supersymmetry is evaluated as


[image: there is no content]



(52)




where [image: there is no content] is the central extension of the algebra. Let us evaluate the above quantity in the background of the massless BTZ black hole Equation (31) with [image: there is no content]=0. The energy of the massless black hole is zero, so [image: there is no content] in this background. Thus, [image: there is no content] and its explicit form is calculated as


δϵ2F(ϵ1)=116π[image: there is no content]∮r=∞dϕ4ϵ1¯Dϕϵ2-β2eRρσabϵ1¯γabγtrγρσϵ2-2βℓeϵ1¯γabγtrγbDaϵ2=14π[image: there is no content]1-βℓ∮r=∞dϕϵ1¯Dϕϵ2,(53)=iℓ4π[image: there is no content]1-βℓ∮r=∞dϕχ1Tχ2′′








In the above we employed Equation (27). Let us substitute Fourier mode expansion of Equation (42). Then the variation of the supercharge is evaluated as


δϵtF(ϵs)=-iℓ2[image: there is no content]1-βℓs2δs+t,0



(54)




This corresponds to the central extension of the super Virasoro algebra. Notice that [image: there is no content]. By expanding F(ϵs)=Gseis[image: there is no content], the algebra is expressed as


{Gs,Gt}=2L[image: there is no content]+c+3s2δs+t,0



(55)




The Neveu–Schwarz sector corresponds to [image: there is no content], and the Ramond sector does to [image: there is no content].
Finally let us examine the variation of the supercharge under the general coordinate transformation [33]. When the transformation [image: there is no content] depends only on [image: there is no content], we obtain



[image: there is no content]



(56)




where [image: there is no content]. Notice that the integral constant should be zero since [image: there is no content] for [image: there is no content]=0. By setting [image: there is no content] and [image: there is no content], we obtain


[image: there is no content]



(57)




In a similar way, it is possible to show [image: there is no content]. Therefore we conclude that there are left and right Virasoro algebras at the boundary with different central charges, and left mode is extended to the super Virasoro algebra.


6. Conclusions and Discussion

In this note, we investigated the chiral supergravity in three dimensions. The charges for the general coordinate transformation and local supersymmetry are explicitly constructed by applying Wald’s prescription to the vielbein formalism. Commutation relations of the charges are explored in detail and super Virasoro algebras are constructed for AdS3 background. Especially, the central extensions of the left and right super Virasoro algebras are evaluated by calculating the variations of the charges. The asymmetric central charges are obtained and those expressions are given by c±=3ℓ2[image: there is no content](1∓βℓ).

Note that the super Virasoro algebras Equations (49) and (55) are not in the canonical form. In order to make the expressions canonical, we just shift the zero point energy as



L0±→L0±-c±24



(58)




Then the algebras become


[Lm±,Ln±]=(m-n)Lm+n±+c±12(m3-m)δm+n,0,(59){Gs,Gt}=2L[image: there is no content]+c+3s2-14δs+t,0








At the same time, the energy of the global AdS3 geometry is shifted to zero. Thus, the effective central charge is the same as the central charge, and the entropy of the BTZ black hole can be correctly explained by the Cardy formula (As a review on the BTZ black hole entropy and Cardy formula, see Reference [37] for example.). Though this conclusion was obtained in the supersymmetric theory, it is also true for the bosonic case if we truncate the fermionic sector.
Since the vielbein formulation of the chiral supergravity is well established, it is interesting to apply these results to other geometries, such as warped AdS3 [38,39], or Kerr/CFT correspondence [40]. For these cases, it is important to generalize the covariant formalism of refs. [41,42] to the chiral supergravity. It is also important to apply the vielbein formalism to the higher spin supergravity and derive the central charges [43,44,45,46].
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