Analytic factor	Ref	Affected Metabolites
E		Blood Samples
	[1]	Higher in serum than plasma: charged peptides, peptide fragments; higher in plasma
	[1]	than serum: lysoPI.
	[2]	Levels varied between serum and plasma: carbohydrates, organic acids, amino acids
	[4]	and lipids. Details can be found in Nishiumi et al., Figure 2.
		Higher in serum than plasma: glutamine acid, arginine, taurine; higher in EDTA
	[3]	plasma vs serum: sarcosine. Details can be found in Paglia et al., Table 1 and Figures 3
Serum vs. plasma		and 4.
Serun vs. plusinu		Found in serum not plasma: sulfate, dipropylacetic acid, leucine, serine, methionine,
	[4]	arachidonic acid, α -glucopyranosiduronic acid, citrate, cellobiose, eicosanoic acid;
		found in plasma not serum: 2-methylsuccinic acid, α -hydroxybutyric acid, aspartic
		acid, 4-hydroxyproline, 3-phenylpropanoic acid, tyrosine, α -linolenic acid, urea,
	[5]	Higher in serum than plasma: arginine, PC (C38:1), lysoPC (C16:0), lysoPC (C17:0),
		lysoPC (C18:0), lysoPC (C18:1), serine, phenylalanine, and glycine.
	[6]	Methionine sulfoxide higher in serum from a gel-barrier tube than for tube with clot
		activator.
The state	[7]	Variability greater for bile acids and carbohydrates in heparin plasma than in EDTA
Tube additives		plasma. Details can be found in Townsend et al., Table 3.
	[2]	Higher in citrate plasma than EDIA plasma: glutamic acid; higher in EDIA plasma
	[3]	than citrate plasma: sarcosine. Details can be found in Pagila et al., Table 1 and
		Figures 5 ditu 4.
	[8]	found in Caravel et al. Supplementary Table S1
Fasting status	[7]	Eacting status affected hile acids, purines, purimidines, and vitamins
	[9]	Fasting status affected bile acids and vitamins.
	[2]	Metabolites affected include signaling metabolites amino acids linids carbohydrates
	[10]	energy metabolites hormones vitaming cofactors nucleobases and miscellaneous
Hemolysis	[10]	Details can be found in Kamlage et al., Table S1.
	[11]	Hemolysis increased levels of hemoglobin and lysoPCs.
	<u> </u>	Time of day of blood collection affected acylcarnitines, lysophospholipids, bilirubin,
Collection time of	[12]	corticosteroids, and amino acids. Details can be found in Ang et al., Table 1.
day and season	[9]	Time of day of blood collection affected bile acids and vitamins.
5	[9]	Season of blood collection affected bile acids, purines, pyrimidines and organic acids.
		Delayed processing for up to 24 h at either 4°C or 25°C affected glucose, pyruvate, and
	[13]	lactate.
	[14]	Delayed for up to 8 h at 4°C for up to 8 h affected lactate, pyruvate, and glucose.
		Delays for up to 24 h on cold packs affected arginine, methionine, serotonin, hexose
	[6]	and other metabolites. Details can be found in Breier et al., Figures S3-S12.
	[1]]	Delays of up to 36 h at either 4°C or 22°C affected pyruvate, lactate and ornithine.
Dro contributation	[15]	Details can be found in Brunius et al., Supplementary Table S1 and Figure S3
Pre-centrifugation time delay and temperature	[16]	Delays of up to 24 h at either 4°C or room temperature affected lactate and glucose.
	[17]	Delays of up to 6 h at room temperature affected aspartate, glutamate, and
		methionine.
	[18]	Delays of up to 20 h at room temperature affected metabolites involved in
		glycolysis/gluconeogenesis/pyruvate metabolism, phospholipid and purine
		metabolism, the TCA cycle, fatty acids, amino acids and other metabolites. Details can
		be found in Jain et al., Figures 1-3 and Table 2.
	[19]	Delays of up to 6 h at 4°C or 22°C affected lactate, glucose, fatty acids, choline and
		acetone. Details can be found in Jobard et al., Table S1.

7	Fahla S1	Matahalitas	affected b	v nre	a-anala	rtical	factors
		victabolites	affected b	y pro	-anary	licar	raciors.

	[10]	Delays of up to 2 h at room temperature or up to 6 h on wet ice affected carbohydrates
	[10]	and lipids. Details can be found in Kamalage et al. 2014, Table 3.
		Delays of up to 6 h at room temperature affected amino acids, carbohydrates, energy
	[20]	metabolism metabolites, nucleobases, vitamins, cofactors, and other metabolites.
	[=0]	Details can be found in Kamlage et al. 2018 Table 1, Figures 2, 3, 4, and 6, and
		Supplemental Tables S1 and S2.
		Delays up to 24 h at either 4°C or 23°C affected amino acids, carboxylic acids, fatty
	[21]	acids, fatty alcohols, monosaccharides, sugar acids, inositol, palmitic acid, lactic acid,
		uric acid, α -ketoglutaric acid, creatinine, adenosine-5-monophosphate, cholesterol,
		taurine, and urea. Details can be found in Malm et al., Figure 2.
	[22]	Delays up 48 h on ice affected B vitamins, amino acids, kynurenines, other
	[2]	metabolites. Details can be found in Midttun et al., Figure 1.
		Delays of up to 30 minutes at room temperature or up to 8 h at cold temperatures
		affected kynurenine, pyruvate, and organic acids. Details can be found in Nishiumi et
		al., Figures 3 and SI.
	[23]	Delays of up to 23 h at either 4°C or room temperature affected factic acid and ascorbic
	[7]	
	[/]	Delays of up to 48 h of 100 effected nucleotides. Details can be found in Wang et al.
	[24]	Figure 1.
	[25]	Delays of up to 8 h at 4°C affected oleoylethanolamine, anandamide,
	[23]	palmitoylethanolamine, and docosahexaenoylethanolamine.
	[11]	Delays of up to 24 h at room temperature affected hypoxanthine, sphingosine-1-
	[11]	phosphate, and linolenyl carnitine.
Centrifugation conditions	[26]	Centrifugation speed affected glycerophosphocholines and sphingomyelins.
		Delays up to 24 h at either 4°C or 23°C before separation of plasma affected amino
Post-centrifugation		acids, carboxylic acids, fatty acids, fatty alcohols, monosaccharides, sugar acids,
time delay and	[21]	inositol, palmitic acid, lactic acid, uric acid, α -ketoglutaric acid, creatinine, adenosine-
temperature		5-monophosphate, cholesterol, taurine, and urea. Details can be found in Malm et al.,
		Figure 2.
Butty-coat	[10]	Contamination with buffy coat affected inositols and lipids. Details can be found in
contamination		Kamlage et al. 2014, Table S1.
	[27]	Post-processing delays of up to 36 h at room temperature affected acylcarnitines,
		amino acids, IyosPCs and PCs. Details can be found in Anton et al., Table 1.
	[28]	Post-processing delays of up to 36 h at 4°C affected trimethylamine-N-oxide (TMAO).
	[13]	Post-processing delays of up to 24 h at room temperature affected albumin,
	[17]	Post-processing delays of up to 60 minutes at room temperature affected tyrosine,
Post-processing time delay and		Serine, prienylaianine, aspartic acid, isoleucine, giutamate, metnionine, and cysteine.
		Details can be found in Anayania et al., Supplementary Table 55.
	[10]	rost-processing delays of up to 16 h at 4°C, 12°C, or foom temperature affected
temperature	[10]	Table 2
		Table 2.
	[20]	and phenylalanine
		Post-processing delays of up 24 h at room temperature or 1 week at 4% affected
		eicosapentaenoate. 2-stearoylglycerophosphocholine glycerophosphocholine other
	[29]	lipids, cysteine, Y-glutamyl amino acids, 5-ocoproline, N ⁶ -methyladenosine and
		allantoin. Details can be found in Moriva et al., Supplemental Figure 2
Storage time	[30]	Storage for up to 5 years at -80°C affected amino acids hexoses acylcarnitines and
		lipids. Details can be found in Haid et al., Figures S1-2

	[31]	Storage for up to 5 years at -80°C affected lysoPCs, acylcarnitines, hypoxanthine, and
		Up to four froezo/thaw cycles affected glycine, methionine, phonylalanine, truntophan
	[27]	and tyrosine. Details can be found in Anton et al., Supplemental Tables 1 and 2.
	[6]	Up to two freeze/thaw cycles affected methionine sulfoxide, amino acids, PCs, and
		acetylornithine. Details can be found in Breier et al., Table S7.
	[16]	Up to five freeze/thaw cycles affected choline, glycerol, methanol, and ethanol. Details
Freeze/thaw cycles		can be found in Fliniaux et al., Tables 2 and 3B.
	[17]	Up to 10 freeze/thaw cycles affected amino acids. Details can be found in Hirayama et
		al., Supplemental Figure 6.
	[32]	Up to five freeze/thaw cycles affected lipids, alanine, glucose, acetone, and pyruvate.
	[25]	Up to three freeze/thaw cycles affected arachidonic acid.
	[11]	Up to four freeze/thaw cycles affected carnitine.
		Urine Samples
	[13]	Glutamate increases in samples not centrifuged prior to storage and/or analysis.
Centrifugation		Centrifugation affected changes in levels observed after four weeks storage at room
conditions	[22]	temperature of acetate, citrate, formate, succinate, trimethylamine, uracil, urea,
contantionis	[00]	creatine, creatinine, and phenylacetylglycine. Details can be found in Saude and
		Sykes, Tables 2 and 3.
	[33]	Filtration affected changes in levels observed after four weeks storage at room
		temperature of acetate, benzoate, formate, glycine, Hippurate, lactate, succinate,
		trimethylamine, uracile, and urea. Details can be found in Saude and Sykes, Tables 2
Filtration and		and 3.
additives		Addition of sodium azide affected changes in levels observed after four weeks storage
uuuur voo	[33]	at room temperature of acetate, citrate, formate, glycine, hippurate, lactate, succinate,
		trimethylamine, uracil, and urea. Details can be found in Saude and Sykes, Table 2.
	[13]	Addition of sodium azide affected urea, succinate, acetate, lactate, and
	r . 1	glutamate/glutamine. Details can be found in Bernini et al., Figure S3.
	[34]	A delay of one h at room temperature affected succinate.
	[35]	Delays up to 24 h at 9°C or 20°C affected arginine, valine, leucine/isoleucine, serine,
		methionine and hexose H1. Details can be found in Rotter et al., Table 1.
Time delay and	[36]	Delays up to 72 h at room temperature affected creatine, cholic acid, valine, aniline
temperature		isomer, threonolactone, orotic, trimetnylamine oxide, 2-hydroxy-3-methylbutyric acid,
-		methylguanosine, methylinosine, glutamine, dimethylguanosine, 3-methyl-2-
		oxovaleric acid, N-acetylcytidine, urobilinogen, urobilin, ketoretinoic acid
		glucuronide isomer, hydroxyretinoic acid glucuronide isomer, and ascorbic acid.
		Details can be found in Roux et al., Table 2.
Cr	[33]	Storage for four weeks at room temperature affected acetate, benzoate, citrate,
Storage time and temperature		creatinine, formate, grycine, nippurate, lactate, maionate, succinate, trimetnylamine,
	[27]	Storage for seven days at 40C affected agetete
	[37]	True freque (there males affected avera
Freeze/thaw cycles	[33]	Three freeze/these meles offseted a miser it is used by the Details and the set
		Rotter et al., Table 4.
	A	obreviations: PI, phosphatidylinositol; PC, phosphatidycholine.

References

1. Denery, J.R., A.A. Nunes, and T.J. Dickerson, *Characterization of differences between blood sample matrices in untargeted metabolomics*. Anal Chem, 2011. **83**(3): p. 1040-7.

- 2. Nishiumi, S., et al., *Differences in metabolite profiles caused by pre-analytical blood processing procedures*. J Biosci Bioeng, 2018. **125**(5): p. 613-618.
- 3. Paglia, G., et al., *Influence of collection tubes during quantitative targeted metabolomics studies in human blood samples.* Clin Chim Acta, 2018. **486**: p. 320-328.
- Wedge, D.C., et al., *Is serum or plasma more appropriate for intersubject comparisons in metabolomic studies? An assessment in patients with small-cell lung cancer*. Anal Chem, 2011. 83(17): p. 6689-97.
- 5. Yu, Z., et al., *Differences between human plasma and serum metabolite profiles*. PLoS One, 2011. **6**(7): p. e21230.
- 6. Breier, M., et al., *Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples.* PLoS One, 2014. **9**(2): p. e89728.
- 7. Townsend, M.K., et al., *Reproducibility of metabolomic profiles among men and women in 2 large cohort studies*. Clin Chem, 2013. **59**(11): p. 1657-67.
- Carayol, M., et al., Reliability of Serum Metabolites over a Two-Year Period: A Targeted Metabolomic Approach in Fasting and Non-Fasting Samples from EPIC. PLoS One, 2015. 10(8): p. e0135437.
- 9. Townsend, M.K., et al., *Impact of Pre-analytic Blood Sample Collection Factors on Metabolomics.* Cancer Epidemiol Biomarkers Prev, 2016. **25**(5): p. 823-829.
- 10. Kamlage, B., et al., *Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling.* Clin Chem, 2014. **60**(2): p. 399-412.
- 11. Yin, P., et al., *Preanalytical aspects and sample quality assessment in metabolomics studies of human blood*. Clin Chem, 2013. **59**(5): p. 833-45.
- 12. Ang, J.E., et al., *Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach.* Chronobiol Int, 2012. **29**(7): p. 868-81.
- 13. Bernini, P., et al., *Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks*. J Biomol NMR, 2011. **49**(3-4): p. 231-43.
- 14. Bervoets, L., et al., *Influence of preanalytical sampling conditions on the* ¹*H NMR metabolic profile of human blood plasma and introduction of the Standard PREanalytical Code used in biobanking*. Metabolomics, 2015. **11**(5): p. 1197-1207.
- 15. Brunius, C., et al., *Prediction and modeling of pre-analytical sampling errors as a strategy to improve plasma NMR metabolomics data*. Bioinformatics, 2017. **33**(22): p. 3567-3574.
- 16. Fliniaux, O., et al., *Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks*. J Biomol NMR, 2011. **51**(4): p. 457-65.
- 17. Hirayama, A., et al., *Effects of processing and storage conditions on charged metabolomic profiles in blood.* Electrophoresis, 2015. **36**(18): p. 2148-2155.
- 18. Jain, M., et al., *Analytes related to erythrocyte metabolism are reliable biomarkers for preanalytical error due to delayed plasma processing in metabolomics studies.* Clin Chim Acta, 2017. **466**: p. 105-111.
- 19. Jobard, E., et al., A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for *Metabolomics Cohort Studies*. Int J Mol Sci, 2016. **17**(12).

- 20. Kamlage, B., et al., *Impact of Prolonged Blood Incubation and Extended Serum Storage at Room Temperature on the Human Serum Metabolome*. Metabolites, 2018. **8**(1).
- 21. Malm, L., et al., *Metabolomic Quality Assessment of EDTA Plasma and Serum Samples*. Biopreserv Biobank, 2016. **14**(5): p. 416-423.
- 22. Midttun, O., et al., Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J Nutr, 2014. **144**(5): p. 784-90.
- 23. Trezzi, J.P., et al., *LacaScore: a novel plasma sample quality control tool based on ascorbic acid and lactic acid.* Metabolomics, 2016. **12**(6): p. 96.
- 24. Wang, Y., et al., *Reproducibility of non-fasting plasma metabolomics measurements across processing delays*. Metabolomics, 2018. **18**(11): p. 129.
- Wood, J.T., et al., *Comprehensive profiling of the human circulating endocannabinoid metabolome: clinical sampling and sample storage parameters*. Clin Chem Lab Med, 2008. 46(9): p. 1289-95.
- 26. Lesche, D., et al., *Does centrifugation matter? Centrifugal force and spinning time alter the plasma metabolome.* Metabolomics, 2016. **12**(10): p. 159.
- 27. Anton, G., et al., *Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples.* PLoS One, 2015. **10**(3): p. e0121495.
- 28. Barton, R.H., et al., *High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study.* Int J Epidemiol, 2008. **37 Suppl 1**: p. i31-40.
- 29. Moriya, T., Y. Satomi, and H. Kobayashi, *Intensive determination of storage condition effects on human plasam metabolomics*. Metabolomics, 2016. **12**(12): p. 179.
- 30. Haid, M., et al., *Long-Term Stability of Human Plasma Metabolites during Storage at -80 degrees C. J Proteome Res, 2018.* **17**(1): p. 203-211.
- 31. Yang, W., et al., *Liquid chromatography-tandem mass spectrometry-based plasma metabonomics delineate the effect of metabolites' stability on reliability of potential biomarkers*. Anal Chem, 2013. **85**(5): p. 2606-10.
- 32. Pinto, J., et al., *Human plasma stability during handling and storage: impact on NMR metabolomics*. Analyst, 2014. **139**(5): p. 1168-77.
- 33. Saude, E.J. and B.D. Sykes, *Urine stability for metabolomic studies: effects of preparation and storage*. Metabolomics, 2007. **3**(1): p. 19-27.
- 34. Budde, K., et al., *Quality assurance in the pre-analytical phase of human urine samples by (1)H NMR spectroscopy.* Arch Biochem Biophys, 2016. **589**: p. 10-7.
- 35. Rotter, M., et al., *Stability of targeted metabolite profiles of urine samples under different storage conditions*. Metabolomics, 2017. **13**(1): p. 4.
- 36. Roux, A., et al., *Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy*. Metabolomics, 2015. **11**(5): p. 1095-1105.
- 37. Lauridsen, M., et al., *Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage.* Anal Chem, 2007. **79**(3): p. 1181-6.