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Abstract: Renal cell carcinoma (RCC) is a heterogeneous malignancy which often develops and
progresses asymptomatically. Benign oncocytomas are morphologically similar to malignant
chromophobe RCC and distinguishing between these two forms on cross-sectional imaging remains
a challenge. Therefore, RCC-specific biomarkers are urgently required for accurate and non-invasive,
pre-surgical diagnosis of benign lesions. We have previously shown that dysregulation in glycolytic
and tricarboxylic acid cycle intermediates can distinguish benign lesions from RCC in a stage-specific
manner. In this study, preoperative fasting urine samples from patients with renal masses were
assessed by 'H nuclear magnetic resonance (NMR). Significant alterations in levels of tricarboxylic
acid cycle intermediates, carnitines and its derivatives were detected in RCC relative to benign
masses and in oncocytomas vs. chromophobe RCC. Orthogonal Partial Least Square Discriminant
Analysis plots confirmed stage discrimination between benign vs. pT1 (R2 = 0.42, Q2 = 0.27) and
benign vs. pT3 (R2 = 0.48, Q2 = 0.32) and showed separation for oncocytomas vs. chromophobe
RCC (R2 =0.81, Q2 = 0.57) and oncocytomas vs. clear cell RCC (R2 = 0.32, Q2 = 0.20). This study
validates our previously described metabolic profile distinguishing benign tumors from RCC and
presents a novel metabolic signature for oncocytomas which may be exploited for diagnosis before
cross-sectional imaging.

Keywords: Metabolomics; Renal cell carcinoma; Nuclear Magnetic Resonance; Oncocytoma;
Histology

1. Introduction

Kidney cancer is responsible for approximately 4.2% of all cancer cases reported in the United
States in 2019 [1]. Renal cell carcinoma (RCC) is the most common form of kidney cancer (85 %)
and is considered the most lethal genitourinary cancer due to its high mortality rate [2]. RCC is
also a heterogeneous disease culminating in different histological sub-types which feature distinct
morphological, genetic and metabolic differences. Benign renal masses, known to be indolent and
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rarely progress to malignancy, are frequently encountered in medical practice. While many benign renal
lesions have clear radiographic features that distinguish them from RCC, the common benign tumors:
oncocytomas (ONC) and angiomyolipomas (AMLs) are more difficult to differentiate from RCC with
current imaging techniques because they share some morphological and histological resemblances.

Distinguishing oncocytomas from chromophobe and eosinophilic RCC poses a major clinical
challenge due to similarities in the demographics of the presenting patient population, asymptomatic
nature and growth rate [3]. On the other hand, AMLs can be diagnosed by cross-sectional imaging
with a high degree of accuracy due to unique features, such as smooth muscles, aneurysmal blood
vessels and adipose tissue. However, AMLs can be confused with fat-retaining RCCs and fat-lacking
AMLs may be missed or erroneously diagnosed as RCC, leading to overtreatment and unnecessary
morbidity [4].

Heterogeneity in RCC stems from genetic alterations, the most common RCC subtype, clear cell
renal cell carcinoma (ccRCC), is characterized by alterations in the Von Hippel Lindau (VHL) gene which
subsequently impacts downstream metabolic processes such as cellular glucose transport. The papillary
RCC (PRCC) subtype is associated with mutations in the fumarase hydratase gene, where the function of
the resultant and defective tricarboxylic acid (TCA) cycle enzyme fumarase is inhibited [5]. Alterations
in genes (SDHB) encoding yet another TCA cycle enzyme, succinate dehydrogenase, have been
reported in patients with hereditary paragangliomatosis with phaeochromocytomas and in some
ccRCC cases [6]. Additionally, low expression of isocitrate dehydrogenase (IDH1) was recently reported
to be associated with poor prognosis in ccRCC [7]. Isocitrate dehydrogenase catalyzes the conversion
of the TCA intermediate isocitrate to x-ketoglutarate (alphaKG). Taken together, genetic mutations in
RCC result in characteristic metabolic alterations which may be exploited for crucial diagnostic benefits.

'H nuclear magnetic resonance (!H NMR) metabolomics is a highly reproducible and
non-destructive technique for evaluating a large complement of metabolites. It is useful for identifying
metabolic alterations in body fluids and the resulting metabolic profile can distinguish between
normal, benign and malignant lesions [8-10]. In our preliminary report, we applied 'H NMR and
gas chromatography mass spectrometry (GCMS) based metabolomics analyses to urine and serum
specimens to differentiate between benign and malignant renal masses in a small patient cohort
(53 samples). In that study, we found that glycolytic and TCA cycle metabolites in blood and urine
significantly separated benign lesions from ccRCC [11]. The present study is aimed at validating this
previously identified urinary metabolic signature within a larger, external RCC cohort (Vanderbilt
Cohort) in addition to exploring the metabolic differences between histologic subtypes of RCC.
Identifying metabolic markers in biofluids that can distinguish between RCC histologic subtypes
has the potential to improve screening and enable differential diagnosis prior to surgical resection.
Metabolic markers also have the potential to enhance prognostication and disease staging of renal
cell carcinoma.

2. Results

2.1. 'H NMR Models Separate Benign Lesions from All RCC Stages

Overall, 145 'H NMR spectra were collected and used for metabolic profiling of urine samples,
described in Table 1. On average, 73 urine metabolites were identified and quantified for each sample.

An unsupervised PCA model was first built for the whole data set which showed no distinct
separation between the (Benign, pT1, pT2, pT3 and pT4) groups (Figure 1a). Seven outliers (three
of the pT1 group, two of the pT2 group and two of the pT3 group) which were samples located
outside the Hotellings T2 ellipse of the PCA model were identified and excluded from further analyses
(Figure 1b—e). Nevertheless, the R2Y and Q2 metrics were comparable before and after outlier exclusion.
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Table 1. Clinicopathologic characteristics of 145 patients with renal masses undergoing metabolomics
analysis. RCC: Renal cell carcinoma.

Sample Group Number of Age at Surgery Mean Age  Number  Number of

Samples (Range in Years) (Years) of Men Women
Benign Control 10 47-89 63 6 4
Angiomyolipoma 5 47-89 66 2 3
Oncocytoma 5 55-73 61 4 1
RCC 134 3599 61 96 38
ccRCC 74 35-99 59 51 23
Papillary 22 51-84 66 18 4
Chromophobe 6 53-68 61 3 3
RCC mixed type 4 53-70 61 2 2
Collecting duct carcinoma 1 62 - - 1
Transitional cell carcinoma 27 44-82 65 22 5
Unclassified 1 35 - - 1
Non-invasive papillary
urothelial carcinoma (pTa) 4 50-66 58 3 1
Stage I (pT1) 59 35-99 63 41 18
Stage II (pT2) 24 35-84 58 17 7
Stage I1I (pT3) 45 37-82 62 30 15
Stage IV (pT4) 7 37-71 62 7 0
BMI 19-25 40 35-89 63 2 19
BMI above 25 102 35-81 61 79 23
BMI unknown 3 41-61 52 2 1

BMI: Body Mass Index. ccRCC: clear cell renal cell carcinoma. The bold categories indicate that the classes under
them are subcategories of the ones in Bold.

To reveal the metabolic differences between groups, two sets of supervised Orthogonal Partial
Least Square Discriminant Analysis (OPLS-DA) models were constructed, OPLS-DA focuses on
creating a model that separates groups of observations on the basis of their x-variables (metabolites
with VIP values > 1) (Figure 1).

Firstly, we observed separation between benign samples and pT1, pT2, pT3 and pT4 samples when
all RCC histological subtypes were considered (Figure 1b—e). Benign versus pT1 (R2Y = 0.30: Q2 = 0.15)
and benign versus pT3 (R2Y = 0.37: Q2 = 0.12) models showed poor separation with relatively low
statistical metrics, while benign versus pT2 (R2Y = 0.75; Q2 = 0.64), and benign versus pT4 (R2Y = 0.97;
Q2 = 0.67) comparisons showed better separation and improved metrics when all histology subtypes
were included. Separation between benign lesions and RCC samples of all histology types did not
show distinct separation (Appendix A Figure A1).

Secondly, benign lesions were compared with samples of ccRCC histology, a comparison most
closely related to the groups compared in our previous study in which 92.5% of the RCC samples
analyzed were ccRCC [11]. Distinct group separations were confirmed (Figure 2) and the metrics were
similar to previously reported data; whereby, benign versus pT1 (R2Y = 0.42; Q2 = 0.27; Figure 2a) and
benign versus pT2 showed the best group separation without overlap between the groups (R2Y = 0.96;
Q2 = 0.82; Figure 2b). On the other hand, there was some overlap between benign renal lesions versus
pT3 samples (R2Y = 0.48; Q2 = 0.32; Figure 2c) and benign versus pT4 (R2Y = 0.83; Q2 = 0.65; Figure 2d).
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Figure 1. NMR Statistical Models showing separation between benign lesions and combined
histological subtypes in supervised models (a) Principal Component Analysis; PCA-X scatter score
plot, (b) Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) scatter score plot benign
versus stage 1 cancer cases; (c) benign versus stage 2 cancer cases (d) benign versus stage 3 cancer cases
(e) benign versus stage 4 cancer cases; along their orthogonal partial least squares (OPLS1) and partial
least squares components (PLS1). The white spheres in (a) and (e) describe the 95% confidence interval
of the Hotelling’s T-squared distribution and the orange and red dashed lines in (b-d) describe the 25D
and 3SD limits respectively.

Overall, the urine samples analyzed by NMR and OPLS-DA showed improved separation between
benign and malignant groups in cases where benign lesions were compared with ccRCC histology
samples. Statistical metrics are outlined in Table 2.
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Figure 2. NMR Orthogonal Partial Last Squares Discriminant Analysis (OPLS-DA) score scatter plots
distinguishing between benign and clear cell renal cell carcinoma. (a) benign versus stage 1 cancer cases;

(b) benign versus stage 2 cancer cases (c) benign versus stage 3 cancer cases (d) benign versus stage 4

cancer cases along their orthogonal partial least squares (OPLS1) and partial least squares components
(PLS1). The white spheres in (b) describe the 95% confidence interval of the Hotelling’s T-squared
distribution and the orange and red dashed lines in (a,c,d) describe the 2SD and 3SD limits respectively.

Table 2. Statistical metrics of group separation.

Model Type R2Y Q2 CV ANOVA Q2 Intercept  Sensitivity Specificity
p-Value
Benign vs RCC (All histology types included)
Bvs. pT1 0.30 0.15 7.5¢73 -0.21 1.00 0.30
Bvs. pT2 0.75 0.64 5.4e~7 -0.37 1.00 0.90
Bvs. pT3 037 0.2 44e72 -0.24 0.98 0.40
Bvs. pT4 097  0.67 4.5¢72 -0.41 1.00 1.00
Benign vs RCC (ccRCC only)
Bvs. pT1 0.42 0.27 4.3¢73 -0.25 0.89 0.70
Bvs. pT2 0.96 0.82 3374 -0.65 1.00 1.00
Bvs. pT3 0.48 0.32 1.0e73 -0.32 0.93 0.80
Bvs. pT4 0.82 0.65 8.6e73 —-0.42 1.00 1.00
Histology Comparisons

ONC vs. Chromophobe ~ 0.88  0.77 3.0e72 -0.51 1.00 1.00
ONC vs. ccRCC 032 020 4.8e74 —0.24 1.00 0.20

Separation shown include between all histology subtypes and benign, ccRCC with benign lesions and between RCC
histology subtypes from orthogonal partial least squares discriminant analysis (OPLS-DA) models. B: benign, ONC:
oncocytomas, ccRCC: clear cell renal cell carcinoma.
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We next assessed the utility of NMR spectroscopy for distinguishing between other stages of
renal cell carcinoma when all histologic subtypes were considered as well as, when only ccRCC was
included. OPLS-DA models revealed relatively poor group separation between different RCC stages
when all histology types were included in the analysis; pT1 vs pT2 (R2Y = 0.30; Q2 = 0.19), pT2 vs pT3
(R2Y =0.41; Q2 = 0.26), pT1 vs pT4 (R2Y = 0.33; Q2 = 0.12) and pT3 vs pT4 (R2Y = 0.37; Q2 = 0.16).
Separation between pT2 vs pT4 (R2Y = 0.74; Q2 = 0.42) provided the only statistically significant
model. The OPLS-DA models created to examine group separation between cancer stages in samples
assigned with ccRCC showed no feasible separation between the groups except in pT1 vs pT2 (R2Y =
0.52; Q2 =0.29) and pT2 vs pT3 (R2Y = 0.41; Q2 = 0.16) (Appendix A Table Al).

2.2. Group Separation between RCC Histology Subtypes

Given the similarities between some benign lesions and RCC, we wanted to identify possible
metabolic alterations that may distinguish these benign lesions from the RCC histological subtypes
represented in our study. Oncocytomas showed considerable separation from chromophobe
(R2Y = 0.81; Q2 = 0.57; Figure 3a) and ccRCC (R2Y = 0.32 Q2 = 0.20; Figure 3b) (Table 2). However,
AMLs showed no distinct metabolic profile when compared with all RCC subtypes. Also, models
comparing between ccRCC, chromophobe and papillary RCC subtypes showed some separation
between the groups but none were statistically significant.
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Figure 3. NMR Orthogonal Partial Last Squares Discriminant Analysis (OPLS-DA) score scatter plots
distinguishing between histology subtypes (a) chromophobe versus oncocytomas cases; (b) oncocytomas
versus ccRCC cases along their partial least squares component (PLS1). The orange and red dashed
lines describe the 2SD and 3SD limits respectively.

2.3. Confirmed Differential Metabolites; Potential RCC Biomarkers

Metabolites contributing significantly to the separation between benign renal lesions and stages
of RCC were identified and were similar to our previously identified repertoire (Table 3). Citrate and
succinate specifically contributed to the differential separation. Also, a decrease in RCC glycine levels
was confirmed for every group comparison. Increases in pyruvate and lactate levels were not statistically
significant. However increased o-acetylcarnitine and carnitine were detected, with increased gluconate
levels seen in benign vs pT2. Additionally, higher amounts of urinary methylhistidine, histamine,
taurine and methionine contributed to the group separation in the benign vs pT3 and benign vs
pT4 models.
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Table 3. Differential metabolites linked to renal cell carcinoma in 'H NMR analysis of urine.

Comparison Increased in Cancer Decreased in Cancer Relative to
P Relative to Benign Benign Samples
B vs. pT1 O—acetylc.a.rmtme Gliycme
Carnitine Citrate
Gluconate Citrate
B vs. pT2 Carnitine Creat1.rune
- Glycine
- Propylene Glycol
Carnitine Pyridoxine
O-acetylcarnitine Adipate
Bvs. pT3
vs-P O-cresol Citrate
Methylhistidine Glycine
Histamine Citrate
O-acetylcarnitine Succinate
Taurine Glycine
Bvs. pT4 Carnitine Glycerol
5-aminolevulinate -
Carnitine -
Methionine -
Trans-aconitate Citrate
Succinate -
ONC vs. Ch hob
ve. LAromophobe Methylhistidine -
Carnitine -
Tartrate 1-methylnicotinamide
Trans-aconitate Glycine
ONC vs. ccRCC Histamine 2-hydroxyisobutyrate
Carnitine Citrate

Significant metabolites shown were selected based on VIP > 1.

2.4. Metabolic Distinction between Histological Subtypes

The model comparing oncocytomas to chromophobes (Figure 3a) showed distinct group separation
which was attributed to reduced citrate and increased carnitine, trans-aconitate, succinate and
m-methylhistidine in chromophobe RCC, while lower levels of citrate, 1-methylnicotinamide, glycine,
2-hydroxyisobutyrate and higher carnitine, tartrate, trans-aconitate and histamine in ccRCC relative to
oncocytoma were observed (Table 3). This cohort consisted of only one sample of the collecting duct
histology subtype which was excluded from the analysis.

3. Discussion

Most RCC patients are diagnosed incidentally and distinguishing benign renal masses from RCC
on ultrasound (US) and cross-sectional imaging such as computed tomography (CT) and magnetic
resonance imaging (MRI) are not always accurate [11]. In a previous study, we showed the potential of
metabolomics analysis for distinguishing benign renal masses from stages pT1 and pT3 of RCC using
non-invasive means; there were no samples of stages pT2 and pT4 available for similar comparisons in
that cohort [12]. The premise of metabolomics is founded on detecting changes in cellular metabolic
profiles that are induced by oncogenic processes. Measuring the changes of these metabolic products
potentially allows for the identification and differentiation between malignant and benign tissue.

In the present study, we applied 'H NMR to validate our previously identified RCC-specific
metabolic signature in urine and to assess the metabolic difference in distinguishing benign oncocytomas
and angiomyolipomas from malignant renal cell carcinoma histologic subtypes. For these purposes,
urine is an ideal biofluid for metabolomics studies of RCC due to its direct contact with the urinary
system and ease of obtaining substantial sample volumes. Overall, this study confirms our previous
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report on the discriminatory power of 'H NMR coupled with multivariate statistical analysis (OPLS-DA)
in separating benign lesions from pT1 and pT3 disease based on differential urinary citrate, glycine
and succinate levels, and in addition shows metabolic difference between benign lesions and pT2 and
pT4 RCC.

We confirmed group separation between benign lesions and all RCC stages and validated
previously identified RCC metabolites. The prevalence of aerobic glycolysis is reiterated by significantly
reduced TCA cycle metabolites: citrate and succinate in all RCC stages coupled with elevated but not
significantly increased pyruvate and lactate levels. Downregulation of glycine in RCC is confirmed in
this cohort, a finding which correlates with previous studies of urine of prostate cancer patients [13].
Glycine is an essential amino acid required by proliferating cancer cells for energetic purposes
and performs a similar function as serine in sustaining the one-carbon metabolic pathway which
supplies precursors for the biosynthesis of biomolecules essential for cancer cell growth [14]. Rapidly
proliferating cancer cells have shown increased glycine-dependence, correlation between increased
glycine consumption and rapid proliferation. Using consumption and release (CORE) analysis, rapidly
proliferating LOX IMVI cells were shown to consume glycine and harness it for de novo biosynthesis
of purine nucleotides [15].

Metabolic dysregulation in RCC, especially glucose metabolism is known to be differentially
partitioned. Such that metabolites in the upper half of the glycolytic pathway and genes encoding
glucose transporters are significantly increased, while intermediates in the lower half of the pathway
and specific TCA cycle metabolites and genes are reduced in response to RCC [16,17]. This partitioning
is attributed to the diversion of upper glycolytic intermediates towards the pentose phosphate pathway
for the synthesis of ribose-5-phosphate and NADPH and the lower intermediate towards the TCA cycle
or one-carbon metabolism [16]. In the current study, intermediates of the upper and lower glycolytic
pathway such as glucose, G6P, and fructose 6-phosphate (F6P) and metabolites after FOP were absent,
it is important to note that these metabolites were measured in tissue extracts in the studies reporting
alterations, compared to our urine-based analysis. Also, glucose is metabolized in the human body
and filtered in the glomeruli (about 180g/day), it would be detrimental to the human system to lose
such enormous amount of glucose, so it is reabsorbed in the proximal tubule and this may explain the
absence of glucose and other glycolytic intermediates in our urine samples [18].

Conversely, lower amounts of TCA cycle metabolites such as citrate and succinate but not malate
and fumarate were detected in our urine samples. Citrate and succinate levels reduced throughout our
analysis and in agreement with the findings of previous urine-based studies [19,20]. These observations
are reflective of an impaired TCA cycle with possible impact on mitochondrial bioenergetics and
oxidative phosphorylation.

In this study, we identified a distinct urinary metabolic signature which distinguishes benign
oncocytomas from malignant chromophobes. Benign oncocytomas and malignant chromophobe RCC
are both derived from intercalated cells of the collecting duct. Based on this similarity in origin, these
variants share morphological features which pose a clinical challenge in accurately distinguishing them
for pre-surgical diagnosis [21]. Several immunohistochemical and molecular markers are reported
to distinguish between ONC and chromophobes; however, the clinical utility of these markers is
limited [22,23].

We identified lower citrate and higher carnitine and trans-aconitate in chromophobes and ccRCC
compared to oncocytomas. This agrees with our previous study where urinary citrate decreased in
RCC relative to benign controls and downregulation of citrate in chromophobes may corroborate
the prevalence of the RCC metabolic hallmark (i.e., Warburg effect), partly evidenced by reduced
TCA-cycle intermediates.

Significantly higher urinary carnitine was detected in chromophobes and ccRCC relative to
oncocytomas. This finding is particularly interesting as elevated levels of carnitine and its derivatives
have been previously reported in the urine of RCC patients and confirmed in xenograft models and
RCC cell lines [9,24]. These authors, however, did not define the histological class of the samples
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involved but revealed a stage-dependent increase of urinary carnitine and acylcarnitines in RCC.
In addition, we have detected increased o-acetylcarnitine in all RCC stages relative to benign samples
(Table 2). Carnitine and acylcarnitines are essential intermediates for the transfer of long chain fatty
acids to the mitochondria for -oxidation and an accumulation in the cell may imply an increased
demand as a result of rapid fatty acid oxidation to meet higher tumoral energy requirements [24].
Conversely, Wettersten et al., found that the accumulation of acylcarnitine did not overlap with
upregulation of fatty acid oxidation enzymes in RCC [25]. These authors suggested that, in this case,
fatty acid 3-oxidation may be downregulated as RCC progresses, with the resultant effect being the
accumulation of unused acylcarnitines which may be used in non-energy related processes.

Taken together, carnitine and its derivatives, specifically o-acetylcarnitine, have a unique
association with chromophobe and clear cell RCC histological subtypes as identified in our results
and may point to elevated fatty acid oxidation in these RCC subtypes which differentiates them from
benign oncocytomas. Be that as it may, the prevalence of 3-oxidation in RCC remains to be confirmed,
as conflicting results have thus far been reported [26].

While the present study confirmed the prevalence of metabolites that are a hallmark of aerobic
glycolysis in RCC, this metabolic signature may be insufficient as biomarkers for overcoming the
clinical dilemma that RCC heterogeneity brings. A metabolic panel that synergizes the confirmed
metabolic signature and carnitine/derivatives which have shown considerable histology differentiation
may have promising clinical applicability in differentiating benign from RCC lesions, specifically
oncocytic tumors where imaging techniques fail.

We recognize that the ONC/Chromophobe model in our study is flawed by small sample number,
which are fewer than required to achieve a statistically strong comparison. Given that benign lesions
are not often encountered but stumbled upon during surgical intervention of renal cell carcinoma,
this number of oncocytomas is typical in practice. Nevertheless, to ensure reduced bias in computing
this model, we used a five-fold cross validation for the model calculation. A validation of the model
separation and differential metabolite(s) associated with oncocytomas is required in future follow-up
studies with larger sample size.

4. Materials and Methods

4.1. Patient Enrollment and Sample Collection

Ethics approval for this study was obtained from the Vanderbilt University Institutional Review
Board (IRB# 140888) and the Institutional Research Information Services Solution (IRISS) of the
University of Calgary. Ethical guidelines were followed in the conduct of the research. Urine samples
were collected by Foley catheter at the time of nephrectomy but prior to incision from fasting patients.
Urine samples were stored at —80 °C from 2013 to 2015, thawed in batches on ice to aliquot into 1.5 mL
freezer tubes, and then again stored at —80 °C until usage/shipping. Benign lesions were determined by
post-operative pathology and compared to pathologically confirmed RCC. We performed a case-control
analysis on 135 malignant samples and 10 benign samples of urine from the same cohort of patients.
The malignant groups were stratified by pathological stage pT1 (n = 59), pT2 (n = 24), pT3 (n = 45) and
pT4 (n = 7). The clinicopathologic characteristics of the samples are shown in Table 1.

4.2. 'H NMR Spectral Collection

NMR analysis was performed on a 600 MHz Bruker Ultrashield Plus NMR spectrometer (Bruker
BioSpin Ltd., Milton, ON, Canada) following procedures described previously [27,28]. Briefly,
145 urine samples were thawed on ice and 200 uL of each sample filtered in prewashed 3 kDa NanoSep
microcentrifuge filters (Pall, Inc., East Hills, NY, USA) to remove protein and other large impurities.
The filtrates were then transferred to clean microcentrifuge tubes and phosphate buffer, sodium azide
and D,0 were added. Untargeted one-dimensional proton 'H NMR analysis was carried out using the
‘noesygpprld.2’ standard pulse program for improved water suppression [29]. The resulting spectra
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were manually processed (phasing, baseline correction, referencing to the DSS peak at 0.0 ppm) and
profiled using the Processor and Profiler modules of the Chenomx NMR Suite 7.5 software (Chenomx
Inc. Edmonton, Canada) respectively. Metabolites were detected and quantified using the Chenomx
Suite reference libraries [30].

4.3. Multivariate Statistical Analysis

NMR data was normalized using the median fold change method [31]. Normalized data was used
for multivariate statistical analysis in SIMCA-P+ 14.1 software (Umetrics, Umea, Sweden) where log
transformation, centering and unit variance scaling were carried out [32-34]. All measured metabolites
were used for further analysis using an untargeted and comparative approach. Unsupervised principal
component analysis (PCA) models were initially constructed to identify potential outliers and groups
of observations that may form distinct patterns, this was followed by generating supervised orthogonal
partial least squares-discriminant analysis (OPLS-DA) statistical models in which two groups were
compared per time after outliers were excluded [35]. These models were based on selected metabolites
that had a Variable Influence on Projection (VIP) value greater than 1 [32,36,37]. In SIMCA, the presence
of an orthogonal component in an OPLS-DA model determines the appearance of the score plot, a model
calculated with more than one component (orthogonal and predictive components) is presented in a
score-plot which shows observations bounded by an ellipsoid representing the 95% confidence interval
of the Hotelling’s T-squared distribution. Observations that fall outside this ellipsoid are considered
outliers. When an OPLS-DA model is calculated based on one predictive component, the visual plot is
displayed in a score plot with the observations bounded by lines which represent the 2SD and 35D
limits. The variation (R2Y) and predictive ability (Q2) of the OPLS-DA models were calculated based
on seven-fold cross-validation, except for the oncocytoma vs. chromophobe model where a k-fold cross
validation (k = 5) was applied considering that the sample number was less than 20 [38]. Statistically
significant OPLS-DA models were confirmed by the CV-ANOVA p-value (p < 0.05) and significantly
different metabolites between classes were considered potential biomarkers. A 999 times permutation
test was also conducted for OPLS-DA models in which negative Q2 intercepts were calculated [39].
In addition, the area under the receiver operating characteristics curve (AUC) was generated using the
ROC tool in SIMCA-P+ 14.1 (Umetrics, Umea, Sweden).

To confirm the predictive ability and the validity of the OPLS-DA models generated in the previous
study [12], separate OPLS-DA models were constructed based on samples from the current study
using the same comparisons as before (B vs pT1 and B vs pT3).

Author Contributions: Conceptualization, M.E.H. and H.J.V,; Data curation, O.S.F. and S.A.A.E.; Funding
acquisition, M.E.H. and H.].V.; Investigation, O.S.F.; Resources, A.Z.; Supervision, M.E.H. and H.].V,; Writing —
original draft, O.S.F,; Writing — review & editing, O.S.F,, S.A.A.E.,, A.Z, M.EH., HJ.V.

Funding: This research was funded by a research team CRIO grant from Alberta Innovates Health Solutions. HJV
was the holder of the Armstrong Chair in molecular cancer research, which was funded in part by the Alberta
Cancer Foundation.

Acknowledgments: The authors are grateful to Karen Kopciuk for providing advice regarding biostatistics.

Conflicts of Interest: The authors declare no conflict of interest.



Metabolites 2019, 9, 155 11 of 13

Appendix A

Table A1. Statistical metrics of group separation between RCC stages of all histology subtypes and
between RCC stages of ccRCC histology subtype from orthogonal partial least squares discriminant
analysis (OPLS-DA) models.

CV ANOVA

Model type R2 Q2 (p-Value) Q2 Intercept
All Histology Subtypes
pT1vs pT2 0.30 0.19 6.7x 1074 -0.20
pT2 vs pT3 0.41 0.26 1.1x 107 -0.23
pT1vs pT4 0.33 0.12 2.5x 1072 -0.23
pT2 vs pT4 0.74 0.42 1.0 x 1072 -0.57
pT3 vs pT4 0.37 0.16 1.8 x 1072 —-0.24
ccRCC Histology Only
pT1vs pT2 0.52 0.29 29x1073 —-0.31
pT2vs pT3 0.41 0.16 48x1072 -0.30
A We
All RCC

PLS1

0 20 40 60 80 100 120
Number of Samples

Figure A1l. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) score scatter plot of
benign lesions versus all histological subtypes; along their partial least squares component (PLS1).
The orange and red dashed lines describe the 25D and 3SD limits respectively.
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