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Abstract: This study aimed to assess the effect of training loads on plasma adenosine triphosphate
responsiveness in highly trained athletes in a 1 y cycle. Highly trained futsal players (11 men,
age range 20–31 y), endurance athletes (11 men, age range 18–31 y), sprinters (11 men, age range
21–30 y), and control group (11 men, age range 22–34 y) were examined across four characteristic
training phases in response to an incremental treadmill test until exhaustion. A considerably
higher exercise and post-exercise plasma adenosine triphosphate concentrations were observed in
consecutive training phases in highly trained athletes, with the highest values reached after the
competitive period. No differences in plasma adenosine triphosphate concentrations were found in
the control group during the 1 y cycle. Sprinters showed a higher absolute and net increase in plasma
adenosine triphosphate concentration by 60–114% during exercise in consecutive training phases
than futsal players (63–101%) and endurance athletes (64–95%). In this study, we demonstrated
that exercise-induced adenosine triphosphate concentration significantly changes in highly trained
athletes over an annual training cycle. The obtained results showed that high-intensity but not low-
to moderate-intensity training leads to an increased adenosine triphosphate response to exercise,
suggesting an important role of ATP for vascular plasticity.

Keywords: annual training cycle; ATP release; plasma nucleotides; training adaptation; incremental
exercise test

1. Introduction

Exercise-related shear stress, local hemoglobin desaturation, and increased temperature in
the working muscle are typical phenomena that induce adenosine triphosphate (ATP) release,
predominantly from erythrocytes, to improve local blood flow [1–3]. The vasodilatory response
during prolonged dynamic exercise is due to thermal and metabolic rate-sensing mechanisms within
skeletal muscle, presumably through signaling pathways that regulate the intravascular concentration
of ATP [4]. Plasma ATP levels are increased in the venous effluent from exercising muscle [5].
Intravascular ATP can independently attenuate α1-adrenergic vasoconstriction, which further supports
the potential blood flow regulative role of ATP during exercise in humans [6–8]. Furthermore, ATP can
elicit prolonged vasodilatation for up to 3 h [9]; therefore, it is an attractive mediating signal because of
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its sympatholytic and skeletal muscle blood flow regulation properties. Adenosine diphosphate (ADP),
an ATP derivative, has been proposed to mediate the middle phase of reactive hyperemia via endothelial
P2Y1 receptors [10]. ADP also activates a negative feedback pathway of ATP release from erythrocytes
via P2Y13 receptors [11]. Therefore, an increased ADP concentration during exercise [12] may be of
great physiological importance to diminishing ATP release. Plasma adenosine monophosphate (AMP),
alongside from ATP and ADP, has also been shown to increase during submaximal and maximal
exercise intensity [13]. However, its importance to the vasodilatory response is minor [7].

Repeated elevated shear stress improves the flow-mediated dilatation of large conduit arteries as
well as enhancing vasodilatory capacity during isolated exercise in trained muscles [14]. Long-lasting
physical training causes specific adaptations in response to the unique demands of different types
of training, i.e., enhanced oxygen (O2) efflux through increased maximal cardiac output, improved
blood flow resulting from vascularization, and improved erythrocyte deformability [15]. It appears
that high-volume, low-intensity training is crucial to providing a platform for specific adaptations that
are developed in response to high-intensity exercise [16]. For example, endurance training programs
promote skeletal muscle capillary supply and muscle fiber oxidative capacity with little increase in
either muscle strength and muscle size [17,18]. In particular, aerobically trained athletes show enhanced
vasodilatory and venous capacity in their muscles [19]. Well-trained endurance athletes perform
~80% of their training at intensities below the lactate threshold (low-intensity exercise zone), despite
competing at intensities reaching maximal oxygen consumption (VO2max) [20]. The speed–power
training used by sprinters is qualitatively different. The relative anaerobic energy system contribution is
estimated at around 70–80% [21]. Speed–power training promotes the maximization of speed–strength
abilities relative to body mass, in addition to modest increases in both capillary supply and oxidative
capacity [18]. Specific muscle adaptations to sprint training are associated with the high metabolic
demands of high-intensity muscle contractions. A mixed training regime, e.g., in futsal players,
involves multiple high-intensity intermittent exercise bouts during training sessions and matches,
which induce significant muscle fatigue [22]. Such a specific training program is aimed at developing
intermittent endurance capacity, repeated maximal sprint ability, and power maximization [23]. In the
above-mentioned training profiles, most of the total body muscle mass is activated, but the stress
placed on the central circulation to suddenly provide blood flow seems to be much more marked in
resistance than endurance training. Futsal training requires, in turn, multiple moments of high blood
flow delivery during prolonged exercise. A recent study showed the impact of sport specialization
on exercise-induced plasma ([ATP]) in highly trained athletes, and indicated that total-body skeletal
muscle mass is an important factor [12]. We believe there is a need for further research addressing
the effect of long-term whole-body training on vascular function, and in particular, its influence on
ATP and its derivatives. We presume that these results will improve the understanding of metabolic
adaptation to long-term structured training programs. Possible future applications of this knowledge
include applications in the fields of exercise medicine, sport, and public health.

To the best of our knowledge, no previous studies have encompassed the changes in plasma
nucleotide concentration during an annual training cycle, taking into account the amount and type
of training load. Thus, the plasma ATP exercise-induced response within consecutive phases of
periodized endurance, speed–power, or mixed training is still unknown.

2. Results

2.1. Training Characteristics

The exercise loads between training subphases in competitive athletes were precisely monitored.
Every exercise was assigned to the one of “energy zones”, simplified for the needs of this article,
that corresponded with estimates of energy sources for ATP resynthesis [24]. In control subjects,
the levels of training loads remained unchanged during the whole study period. They recreationally
practiced running at moderate intensity 3–5 times per week. During a 1 month transition phase,
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competitive athletes focused on physical and psychological regeneration and recovery from injuries.
The low-intensity training loads mainly consisted of activity forms other than those typical of athletes’
primary sports disciplines. The aim of the general subphase (12 weeks) was to develop general
endurance based on low-intensity training and to increase general fitness. The specific subphase lasted
12 weeks and was focused on the development of specific endurance and physical fitness, and was
mostly based on high-intensity interval exercise and speed runs. The competition phase (10 weeks)
was characterized by increased intensity and decreased volume of training. Athletes competed in
their specialized distances, reaching peak performance. More detailed training characteristics of the
consecutive examinations are presented in Table 1.

Table 1. Typical structure of training loads in tested futsal players, endurance athletes, and sprinters in
successive examinations in a 1 year cycle.

2nd Examination * 3rd Examination ** 4th Examination **

General Preparation Specific Preparation † Competition Phase #

FU EN SP FU EN SP FU EN SP

Training sessions (no.) 71 181/122 80 62 132/96 61 63 179/120 87
Competitions (no.) 10 −/− − 11 4/5 6 13 6/9 8

Net exercise time (hours)
total 84.3 225.5/151.3 92.6 70.1 201/142.4 67.3 70.4 212.2/140.3 100.1

per one training session 1.19 1.25/1.24 1.16 1.13 1.52/1.48 1.10 1.12 1.18/1.17 1.15
Total training distance (km)

running − 1975/− − − 501/− − − 589/− −

swimming − 251/− − − 162/− − − 204/− −

cycling − 865/− − − 2655/− − − 2875/− −

Exercise zones (% of total time)
low-intensity 74.3 83.9/83.6 70.6 67.4 81.3/80.9 82.5 67.5 78.0/75.6 73.3

moderate-intensity 18.3 14.4/14.5 19.7 19.2 13.8/14.1 7.1 19.6 11.8/13.9 23.0
high-intensity 7.4 1.7/1.9 9.7 13.4 4.9/5.0 10.4 12.9 10.2/10.5 3.7

Abbreviations: FU, futsal players; EN, endurance athletes (triathletes/long distance runners); SP, sprinters. * Data
encompass the period between the beginning of the training cycle and the 2nd examination. ** Data encompass
the period between the preceding and the present examination. † Spring round of the competitive season in futsal
players. # Autumn round of the competitive season in futsal players.

2.2. Pre-Exercise Nucleotide Concentration

Resting venous plasma [ATP], [ADP] and [AMP] significantly differed between training phases
in sprinters (specific preparation and competition phase differed from both transition and general
preparation phase) (Figures 1–3). Pre-exercise [AMP] after the transition phase differed from other
phases in futsal players (Figure 3).

2.3. Nucleotide Concentration during Exercise

Our data showed significant increases in plasma [ATP], [ADP], and [AMP] during exercise
(Figures 1–3) in each athletic group throughout the whole 1 y training cycle, but not in controls.
All athletes reached their peak plasma [ATP] at the end of the test, except sprinters. None of the
athletic groups reached peak plasma [ADP] and [AMP] at maximum intensity at the end of the exercise.
The level of ATP, ADP, and AMP during exercise was considerably higher in all competitive athletes in
each consecutive examination. In sprinters, the exercise-induced [ATP] net increase above the baseline
after the transition and competition phase was 60% and 114%, respectively. In futsal players, exercise
[ATP] values changed significantly (p < 0.001), causing a net increase of 63% after the transition period
and 101% after the competition period. A similar pattern of change was noted in endurance athletes;
however, the change was smaller in this group. In endurance athletes, ATP concentration increased by
64% after the transition period, and 95% after the competition period.
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Figure 1. Venous plasma [ATP] before exercise, during incremental treadmill test until exhaustion, 
and post-exercise recovery in futsal players (FU; n = 11), endurance athletes (EN; n = 11), sprinters 
(SP; n = 11), and control group (CO; n = 11) in four consecutive training phases. Arrows indicate the 
first significant differences from samples taken at rest and maximal exercise within examinations. 
Significant differences between blood sampling points: *** p < 0.001, ** p < 0.01, * p < 0.05. Significant. 
differences between examinations at the same sampling point: § p < 0.001, ‡ p < 0.01, † p < 0.05. Data 
are presented as means ± SD. 

Figure 1. Venous plasma [ATP] before exercise, during incremental treadmill test until exhaustion,
and post-exercise recovery in futsal players (FU; n = 11), endurance athletes (EN; n = 11), sprinters
(SP; n = 11), and control group (CO; n = 11) in four consecutive training phases. Arrows indicate
the first significant differences from samples taken at rest and maximal exercise within examinations.
Significant differences between blood sampling points: *** p < 0.001, ** p < 0.01, * p < 0.05. Significant.
differences between examinations at the same sampling point: § p < 0.001, ‡ p < 0.01, † p < 0.05. Data
are presented as means ± SD.
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Figure 2. Venous plasma [ADP] before exercise, during incremental treadmill test until exhaustion, 
and post-exercise recovery in futsal players (FU; n = 11), endurance athletes (EN; n = 11), sprinters 
(SP; n = 11), and control group (CO; n = 11) in four consecutive training phases. Arrows indicate the 
first significant differences from samples taken at rest and maximal exercise within examinations. 
Significant differences between blood sampling points: *** p < 0.001, ** p < 0.01, * p < 0.05. Significant 
differences between examinations at the same sampling point: § p < 0.001, ‡ p < 0.01, † p < 0.05. Data 
are presented as means ± SD. 

Figure 2. Venous plasma [ADP] before exercise, during incremental treadmill test until exhaustion,
and post-exercise recovery in futsal players (FU; n = 11), endurance athletes (EN; n = 11), sprinters
(SP; n = 11), and control group (CO; n = 11) in four consecutive training phases. Arrows indicate
the first significant differences from samples taken at rest and maximal exercise within examinations.
Significant differences between blood sampling points: *** p < 0.001, ** p < 0.01, * p < 0.05. Significant
differences between examinations at the same sampling point: § p < 0.001, ‡ p < 0.01, † p < 0.05. Data
are presented as means ± SD.
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Figure 3. Venous plasma [AMP] before exercise, during incremental treadmill test until exhaustion, 
and post-exercise recovery in futsal players (FU; n = 11), endurance athletes (EN; n = 11), sprinters 
(SP; n = 11), and control group (CO; n = 11) in four consecutive training phases. Arrows indicate the 
first significant differences from samples taken at rest and maximal exercise within examinations. 
Significant differences between blood sampling points: *** p < 0.001, ** p < 0.01, * p < 0.05. Significant 
differences between examinations at the same sampling point: § p < 0.001, ‡ p < 0.01, † p < 0.05. Data 
are presented as means ± SD. 

Figure 3. Venous plasma [AMP] before exercise, during incremental treadmill test until exhaustion,
and post-exercise recovery in futsal players (FU; n = 11), endurance athletes (EN; n = 11), sprinters
(SP; n = 11), and control group (CO; n = 11) in four consecutive training phases. Arrows indicate
the first significant differences from samples taken at rest and maximal exercise within examinations.
Significant differences between blood sampling points: *** p < 0.001, ** p < 0.01, * p < 0.05. Significant
differences between examinations at the same sampling point: § p < 0.001, ‡ p < 0.01, † p < 0.05. Data
are presented as means ± SD.
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2.4. Nucleotide Concentration at Maximal Intensity

[ATP], [ADP], and [AMP] at maximal exercise differed between groups in consecutive training
phases (p < 0.001). Between all groups, except for futsal players and endurance athletes, maximal [ATP]
differed after transition and general preparation phase (p < 0.001). After the specific preparation and
competition phases, [ATP] differed between all athletic groups (p < 0.001). Sprinters presented higher
[ATP] at maximal intensity than futsal players and endurance athletes throughout the whole training
cycle. After the transition phase, maximal [ADP] and [AMP] in the control group were lower than
in other groups (p < 0.001). Additionally, higher peak [ADP] and [AMP] were observed in sprinters
than in endurance athletes (p < 0.001). In consecutive training phases, [ADP] and [AMP] at maximal
exercise controls and sprinters varied compared to other groups (p < 0.001). Sprinters presented the
highest maximal [ADP] and [AMP], starting from the general preparation phase.

2.5. Nucleotide Concentration during Recovery

During recovery, there was a significant decrease in venous plasma nucleotide concentration in
competitive athletes in each training period. In controls, no significant changes in recovery plasma
[ATP], [ADP], and [AMP] during the 1 y training cycle were observed. The first significant plasma
[ATP], [ADP], and [AMP] decrease compared to the peak value and differences between examinations
at the same sampling point are presented in Figures 1–3. Additionally, [ATP], [ADP], and [AMP]
values reported after 30 min of recovery were significantly different from those obtained pre-exercise
in competitive athletes, but not in controls, except for [AMP].

2.6. Respiratory Compensation Point

Respiratory compensation point (RCP) expressed as a percentage of VO2max occurred within the
range of 85% to 94% in all groups. As regards the running speed, the RCP occurred between 16 and
18 km·h−1 in endurance athletes and between 14 and 16 km·h−1 in sprinters in all training phases. Futsal
players reached RCP at between 12 and 14 km·h−1 after the transition phase and general subphase
of the preparatory phase. After the specific subphase of the preparatory phase and the competition
phase, RCP was reached at between 14 and 16 km·h−1 in futsal players. In the control group, the RCP
occurred between 14 and 16 km·h−1 during all examinations, except for the 2nd examination where
RCP was reached after 16 km·h−1.

3. Discussion

This was the first study to investigate the changes in plasma nucleotide concentration in response
to an annual training cycle in highly trained athletes from distinct sports disciplines. The primary novel
findings were as follows: (1) exercise-induced plasma [ATP] significantly changed over the annual
training cycle in highly trained athletes (increases from transition to competition phase), (2) sprint
training brought about higher absolute exercise-induced plasma [ATP] than endurance and mixed
training or recreational non-periodized activity, and (3) in spite of differences in magnitude, each kind
of structured training program (sprint, endurance, or mixed) incorporating a sufficient amount of
high-intensity exercise led to the same adaptation pattern.

The key factor seems to have been the proportion of high-intensity training loads that were
related to increased plasma [ATP] in the competition period. The reduction or lack of high-intensity
exercise in other training phases was associated with a decrease in plasma [ATP]. In competitive
athletes, the sudden increase in plasma [ATP] during exercise was concurrent with the occurrence of the
respiratory compensation point. In controls, RCP preceded a statistically significant increase in plasma
[ATP]. Therefore, it seems that the mechanism responsible for the moment of plasma ATP outflow
is a variable that is independent of training type, and irrelevant to the training status (competitive
athletes vs. controls). However, it affected the magnitude of the exercise response. Programmed
training resulted in a much higher plasma [ATP] during exercise including maximum effort, contrary
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to the effects of recreational activity where the exercise-induced [ATP] increase was poorly visible.
Furthermore, the annual changes in plasma [ADP] and [AMP] reflected the changes in [ATP] as its
degradation products.

Exercise training has been shown to lower blood flow to the exercising leg at a given submaximal
power output. Training adaptations lead to increased capillarization, optimized blood flow distribution,
and higher O2 extraction within skeletal muscle [25,26]. Additionally, previous studies have shown
an enhanced vasodilatory capacity in endurance-trained athletes during maximal effort [27,28].
We presumed that increased [ATP] has to occur to provide a comparable vasodilation effect and O2

delivery allowing for enhanced energy production from oxidative metabolism. Increased [ATP] in
speed–power compared to endurance athletes during the exercise test was likely caused by a more
rapid increase in anaerobic–aerobic metabolism ratio. We concluded that the relationship between
[ATP] and the percentage ratio of low-to-high exercise intensity is altered in highly trained athletes.
Vasodilation during exercise may require higher [ATP] to cover muscle demands during more intense
efforts. However, during maximal and supramaximal whole-body exercise, cardiac function limitation
and muscle vasoconstriction contribute to the incapability of the circulatory system to meet the
increasing skeletal muscle metabolic demands [29]. Collectively, these observations suggest an inability
to meet the increased metabolic demands during intense whole-body exercise. Nonetheless, it would
be reasonable to suggest that well-trained subjects, due to specific training stimuli, can more effectively
and precisely match blood flow and O2 delivery with demand, and as a result, delay the inability to
cover the metabolic requirements of the skeletal muscle. As mentioned above, this specific feature may
depend on the predominant metabolism type in different sport disciplines. Another reason might be
that the structure of training loads brings about specific adaptations [30]. We assume that short sprint
bouts (predominance of anaerobic metabolism), dominant in sprinters, accounted for a pronounced
increase in plasma [ATP] during exercise. In futsal players, [ATP] also increased in consecutive phases
of the annual training cycle around the exercise test. However, this was most likely attributed to the
demands of high-intensity intermittent efforts and a large number of matches and training sessions
during the spring and autumn round in the competition period. In endurance athletes, a much higher
volume of training (number of sessions and total net time) in the low-intensity and moderate-intensity
energetic zone could result in lower needed plasma [ATP].

In trained individuals, there might be a greater increase in the arterial–venous O2 difference [15],
which suggests enhanced O2 extraction in the active muscle capillary beds. Although ATP is released
from the erythrocytes together with the O2 off-loading [5], training adaptations may to some extent
explain enhanced [ATP] among highly trained athletes compared to controls. This emphasizes the
training status as a significant variable. The differences between [ATP] curves around exercise over the
annual training cycle also indicated that endurance, speed–power, and mixed training had a comparable
effect on vascular response during exercise. However, the absolute maximal [ATP] was different
between competitive athletes depending on sports discipline. Selection for a particular sport and
predispositions to specific efforts may be relevant. Specific requirements of a training type result in the
magnitude of response to an exhaustive treadmill test. The reasons for such discrepancies are unknown,
but could be related to differences in exercise type (endurance vs. resistance training). Physical activities
such as futsal and sprinting encompass both endurance and speed–power components, whereas
triathlon/endurance athletes predominantly rely on aerobic energy sources. Further studies will be
needed to better understand training-induced vascular function adaptations in highly trained athletes.

It has been proposed that inadequate cardiac output and peripheral vasoconstriction substantially
limit skeletal muscle blood flow during severe whole-body exercise, despite increased peripheral blood
flow and O2 demand [29]. The sympathetic nervous system is strongly involved in local vasoconstriction.
It limits blood flow once a certain point is reached, which indicates that metabolic vasodilatation
does not override sympathetic vasoconstriction activity in intense whole-body exercise [29]. In our
study, exercise [ATP] sharply increased when metabolic demand started to be increasingly covered by
anaerobic sources (85–95% VO2max). Attenuated vasodilatory activity due to increased contribution of
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anaerobic metabolism during incremental whole-body exercise may explain the diverse ATP response.
Shepherd et al. [9] observed significant additional vasodilatation during exercise with simultaneous
exogenous ATP infusion. This suggests that other substances are responsible for dilatation and/or
additional endogenous ATP is released during exercise, causing further vasodilatation. This is in
line with our results that showed that sports disciplines containing greater high-intensity training
loads (sprinters and futsal players) required enhanced plasma [ATP] during exercise. Furthermore,
a year-long cycle resulted in increased exercise and post-exercise [ATP] in all competitive athletes.
An increase in [ATP] during exercise may result in additional vasodilatation to meet the increased
blood flow and O2 demand. Previous research has shown that [ATP] increased in proportion to
workload at higher intensities [2,31]. Considering all the above, we presume that the magnitude of
[ATP] increase during exercise can be modulated by structured training, especially when high-intensity
load predominates.

It has been suggested that high-intensity training leads to a reduction in the α-adrenergic
responsiveness and improves functional sympatholysis at rest [32,33]. Kruse et al. [34] concluded
that faster compared to slower volume-matched muscle contractions led to improved functional
sympatholysis muscle contractions in humans. The question is whether increased [ATP] during
exercise in consecutive phases of a one-year training cycle affects the ability to override sympathetic
vasoconstriction, or simply that larger [ATP] is required for an adequate response to exercise. It has
been demonstrated that intravascular [ATP] draining active skeletal muscle increases progressively
with exercise intensity in young healthy adults [2,31], and has an intensity-dependent ability to
limit α1-mediated vasoconstriction [8]. Importantly, training-induced lowering of the α-adrenergic
responsiveness in humans [32] facilitates the increases in muscle blood flow in trained leg muscles
during exercise. However, exercise training reduces the vasodilatory response to arterially infused ATP,
suggesting that physical activity may alter purinergic P2 receptor sensitivity and/or ATP degradation
in plasma [32,35]. Based on our results showing increased exercise and post-exercise [ATP] during an
annual training cycle, we assume that the type of training may influence the physiological mechanisms
of ATP release and/or degradation and its influence on muscle vessel dilatation during incremental
exercise. However, the effect of programmed specific exercise training on intravascular ATP signaling,
and thus on sympatholytic capacity, especially in highly trained individuals, needs to be investigated.

4. Materials and Methods

4.1. Subjects

Thirty-three highly trained male athletes from different sporting disciplines were studied in the
Human Movement Laboratory at the Poznan University of Physical Education. Eleven male sprinters
aged 24.1 ± 3.3 y, body height 186.2 ± 4.6 cm, having practiced competitive sport for 8.6 ± 2.3 y, and
with a maximum heart rate (HRmax) of 189 ± 9 beat/min, participated in the study. Eleven male
endurance athletes (long-distance runners and triathletes) and 11 male futsal players aged 23.3 ± 4.1 y
and 25.8 ± 4.0 y, body height 182.0 ± 5.6 cm and 181.3 ± 6.1 cm, having practiced competitive sport for
8.5 ± 1.9 y and 10.1 ± 3.9 y, and with a HRmax of 192 ± 7 and 187 ± 11 beat/min, respectively, participated
in the study. All athletes competed at the international and Olympic level. The control group consisted
of 11 healthy male recreationally active runners aged 27.5 ± 3.8 y, body height 180.0 ± 5.6 cm, without
previous and current competitive sports experience, HRmax 189 ± 8 beat/min. All participants were
healthy during the whole study period, having all hematological variables in the normal range. More
detailed descriptive and exercise characteristics are presented in Table 2.
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Table 2. Descriptive and exercise characteristics in four consecutive training phases in futsal players
(n = 11), endurance athletes (n = 11), sprinters (n = 11), and control group (n = 11).

Transition General Specific Competition ANOVA *

Body Mass (kg)
Futsal Players 75.8 ± 6.9 76.9 ± 7.0 77.6 ± 7.8 a 77.9 ± 7.4 a 0.006

Endurance 74.6 ± 8.1 73.1 ± 7.6 † 73.7 ± 6.7 † 73.2 ± 7.3 † 0.078
Sprinters 81.6 ± 5.5 82.8 ± 5.4 82.7 ± 5.6 83.3 ± 6.1 a 0.009

Control group 77.2 ± 7.9 77.8 ± 8.0 76.9 ± 7.6 76.8 ± 7.0 0.295
ANOVA ** 0.125 0.022 0.039 0.014

Total-body SMM (kg)
Futsal Players 33.0 ± 3.0 † 33.9 ± 3.6 †,a 34.1 ± 3.3 †,a 34.2 ± 3.2 †,a 0.001

Endurance 32.9 ± 3.6 † 32.8 ± 3.3 † 33.1 ± 3.3 † 33.0 ± 3.2 † 0.672
Sprinters 39.1 ± 3.7 40.5 ± 3.6 40.4 ± 3.8 41.4 ± 4.6 a 0.002

Control group 33.3 ± 3.1 † 33.5 ± 3.2 † 33.0 ± 3.6 † 33.5 ± 3.6 † 0.335
ANOVA ** 0.000 0.000 0.000 0.000

Total-body fat (%)
Futsal Players 17.4 ± 3.0 † 16.4 ± 2.1 † 16.7 ± 2.7 † 17.1 ± 2.3 † 0.391

Endurance 16.1 ± 2.6 14.0 ± 2.7 a 14.5 ± 2.3 †,a 14.2 ± 2.1 †,a 0.002
Sprinters 12.6 ± 2.2 11.0 ± 2.0 a 10.8 ± 1.9 a 10.6 ± 1.8 a 0.000

Control group 18.4 ± 3.9 † 18.5 ± 4.2 ‡,† 18.2 ± 3.7 ‡,† 17.2 ± 4.2 † 0.315
ANOVA ** 0.000 0.000 0.000 0.000

LArest (mmol·L−1)
Futsal Players 1.4 ± 0.4 1.2 ± 0.2 1.0 ± 0.2 a 0.8 ± 0.2 a,b 0.000

Endurance 1.2 ± 0.3 1.0 ± 0.2 1.0 ± 0.2 0.9 ± 0.1 a 0.006
Sprinters 1.4 ± 0.6 1.4 ± 0.5 1.2 ± 0.4 0.9 ± 0.2 0.023

Control group 1.3 ± 0.3 1.4 ± 0.3 1.2 ± 0.3 1.1 ± 0.2 §,‡,b 0.015
ANOVA ** 0.652 0.033 0.057 0.002

LAmax (mmol·L−1)
Futsal Players 11.6 ± 2.2 11.2 ± 2.9 10.8 ± 2.4 9.9 ± 1.5 0.065

Endurance 11.2 ± 1.8 9.9 ± 2.1 10.2 ± 1.9 10.1 ± 1.5 0.135
Sprinters 10.7 ± 1.9 10.8 ± 2.2 9.6 ± 1.9 10.0 ± 1.4 0.026

Control group 10.7 ± 1.4 b 11.6 ± 1.8 10.2 ± 1.9 b 10.6 ± 2.1 b 0.001
ANOVA ** 0.543 0.319 0.575 0.784

VO2max (ml·kg−1·min−1)
Futsal Players 55.81 ± 3.94 ‡ 55.57 ± 2.81 ‡ 57.04 ± 2.18 58.47 ± 2.06 ‡,† 0.063

Endurance 64.58 ± 3.52 65.26 ± 7.81 67.72 ± 3.15 66.81 ± 4.66 0.392
Sprinters 52.53 ± 4.32 ‡ 53.01 ± 4.19 ‡ 52.88 ± 3.92 ‡ 52.91 ± 3.92 ‡ 0.932

Control group 57.92 ± 3.42 ‡,† 57.38 ± 4.25 ‡ 56.66 ± 3.08 ‡ 55.96 ± 3.47 ‡ 0.128
ANOVA ** 0.000 0.000 0.007 0.000

Abbreviations: SMM, skeletal muscle mass; LArest, resting lactate concentration; LAmax, maximal lactate
concentration; VO2max, maximal oxygen uptake. Values are means ± SD. * one-way ANOVA between examinations
within group; ** one-way ANOVA between groups at the same examination period. § Significantly different from
FU. ‡ Significantly different from EN. † Significantly different from SP. a Significantly different from transition phase.
b Significantly different from general preparation phase. c Significantly different from specific preparation phase.

4.2. Study Design

An incremental running treadmill test until voluntary exhaustion, as described below, was used
to assess the changes in exercise and post-exercise variables between training subphases. For all
subjects, the same criteria for achieving maximal values were established. Each testing session was
preceded by two days of reduced training volume and intensity. The study procedure was adapted to
the training phases of the annual cycle: the first measurement was performed after the transition phase,
second after the general subphase, third after the specific subphase of the preparatory phase, and the
fourth, final examination was performed before the tapering period during the competition phase.
Biochemical parameters were measured at rest, 4–5 times during the incremental exercise, and up to
30 min after exercise. During the incremental test, cardio-respiratory characteristics were monitored.
All procedures and potential risks were explained and informed consent was obtained from each
participant. The study was approved by the Local Bioethical Committee at the Karol Marcinkowski
Poznan University of Medical Sciences. During all examinations, the ambient temperature remained
unchanged at 20–21 ◦C.
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4.3. Somatic and Physiological Variables

Weight and height were measured using a digital stadiometer (SECA 285, SECA, Hamburg,
Germany). Body composition evaluation was performed using the dual X-ray absorptiometry method
(DXA; Lunar Prodigy device; GE Lunar Healthcare, Madison, WI, USA) and analyzed using enCORE
16 SP1 software. All DXA scans were performed and analyzed following the best practice protocol
proposed by Nana et al. [36]. Total-body skeletal muscle mass was calculated according to Kim et al. [37].
Heart rate was measured with Polar Bluetooth Smart H6 monitors (Polar Electro Oy, Kempele, Finland).
An incremental running test (H/P Cosmos Pulsar, Sports & Medical, Nussdorf-Traunstein, Germany)
was performed after 3 min of standing on the treadmill, the initial speed was 4 km·h−1 for the first 3 min,
then increased to 8 km·h−1 and increased by 2 km·h−1 every 3 min until volitional exhaustion. VO2max
was considered to be achieved if the test met at least three of the following criteria: (i) a plateau in VO2

despite an increase in workload; (ii) cutoff blood lactate concentration ≥9 mmol·L−1; (iii) RER ≥ 1.10;
and (iv) heart rate ≥95% of the age-predicted HRmax [38]. The respiratory compensation point was
determined based on the breaking point in the VE/VO2 and VE/VCO2 curve [39]. Athletes had their
VO2max and main cardiorespiratory variables determined using MetaMax 3BR2 ergospirometer and
analyzed by MetaSoft Studio 5.1.0 Software (Cortex Biophysik, Leipzig, Germany).

4.4. Hematological and Lactic Acid Measurements

Blood samples for hematological parameters were carried out as described elsewhere [40].
For lactic acid measurement, lithium heparin was used as an anticoagulant (S-monovette, 2.7 mL KE,
Sarstedt, Nümbrecht, Germany). Lactate in whole blood (20 µL) was immediately assayed using the
spectrophotometric enzymatic method (Biosen C-line, EKF Diagnostics, Barleben, Germany).

4.5. Plasma Nucleotide Measurements

Plasma nucleotide concentration analyses were performed using high-performance liquid
chromatography (HPLC) with UV detection, according to the methodology of Smolenski et al. [41].
The catheter (1.3 × 32 mm, BD Venflon Pro, Becton Dickinson, Helsingborg, Sweden) was placed into
the antecubital vein. Blood samples (2 mL) were drawn at rest, during, and after exercise using syringes
containing ethylenediamine tetraacetic acid (EDTA) (S-monovette, 2.7 mL KE, Sarstedt, Nümbrecht,
Germany). Samples were immediately centrifuged (Universal 320R, Hettich Lab Technology, Tuttlingen,
Germany) for 30 s at 14.000 rpm in 4 ◦C. Subsequently, 200 µL of plasma was frozen down in liquid
nitrogen in duplicate and stored at −80 ◦C until analysis. Samples were extracted using perchloric acid
(2.4 mol·L−1) on ice at the ratio of 1:0.25 for 15 min and then centrifuged at 13.000 rpm for 3 min in 4 ◦C.
The collected supernatant was neutralized using 3 mol·L−1 K3PO4 and centrifuged at 13.000 rpm for
3 min in 4 ◦C. The samples were left on ice for 30 min to ensure complete precipitation of potassium
perchlorate. Then, supernatants were collected and stored at −80 ◦C before analysis. The analyses were
performed using a Specta HPLC system (Thermo Fisher Scientific, Waltham, MA, USA) equipped with
a 10 cm path flow cell to increase sensitivity. The separation was achieved with an analytical column
BDS Hypersil C18 (150 mm × 4.6 mm × 3 µm; Thermo, Waltham, MA, USA) placed in a thermostat
(18 ◦C) supported by a precolumn 20 mm × 4 mm (Phenomenex, type SecurityGuard, Torrance, CA,
USA). The mobile phase consisted of A: 122 mM KH2PO4, 150 mM KCL, and 28 mM K2HPO4 and B:
15% (v/v) acetonitrile in A. The percentage of B changed from 0% to 100% in several linear steps during
analysis and then returned to 0% B for equilibration. The whole separation time was 13.5 min and
was conducted at 0.9 mL·min−1 flow rate with a sample injection volume of 40 µL. The quantitative
analyses were performed based on the external calibration of the signal at 254 nm. Data acquisition and
processing were managed by the Xcalibur™ software (v. 2.1, Thermo Scientific™, Waltham, MA, USA).
The above-described method provided coefficients of variation <5% at different ATP concentrations.
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4.6. Statistical Analyses

A one-way repeated measures ANOVA was performed to assess the differences in measured
variables between consecutive examinations and between measurement points during exercise and
recovery within each group of participants. Furthermore, a one-way ANOVA was performed to
estimate the differences in nucleotide concentrations between groups at maximal exercise in the same
training phase. If a significant difference was found (p < 0.05), post hoc Scheffe tests were performed.
The effect size for ANOVA analyses was small to large for descriptive characteristics (η2 = 0.01–0.68),
and statistical power was 0.07–1.00. The effect sizes for ANOVA analyses for plasma [ATP], [ADP], and
[AMP] were large within groups between measurement points (η2 = 0.84–0.98). The statistical power
for ANOVA at α = 0.05 for plasma [ATP], [ADP], and [AMP] between measurement points was 1.00.
The effect sizes for ANOVA at the same measuring point between four consecutive examinations were
large for plasma [ATP] (η2 = 0.29–0.93), ADP (η2 = 0.24–0.94) and [AMP] (η2 = 0.24–0.92), except for
the control group where effect sizes for ANOVA were small to large for plasma [ATP] (η2 = 0.02–0.14),
[ADP] (η2 = 0.01–0.23), and [AMP] (η2 = 0.04–0.24). The statistical power for ANOVA at α = 0.05 for
plasma [ATP], [ADP], and [AMP] between four consecutive examinations within competitive athletes
were 0.66–1.00, except for controls (0.07–0.68). The effect size and statistical power for ANOVA between
groups at maximal exercise in each training phase were 0.77–0.92 and 1.00, respectively. All calculations
were performed using STATISTICA 13.1 software (StatSoft, Tulsa, OK). The significance level was set
at p < 0.05. All values are presented as means ± SD.

5. Conclusions

In this study, we demonstrated that ATP concentration significantly changed over consecutive
training phases in highly trained athletes in an annual training cycle. Sprint training brought about
adaptations resulting in higher maximal exercise-induced plasma ATP levels compared to endurance
and mixed training, and especially compared to recreational non-periodized activity. In spite of
differences in magnitude, each kind of structured training program (sprint, endurance, or mixed)
incorporating a sufficient amount of high-intensity exercise led to the same adaptation pattern. The key
factor seems to be the proportion of high-intensity training loads that are related to an increased
exercise-induced plasma [ATP] in the competition period, whereas the reduction or lack of high-intensity
exercise in other training phases is associated with a decrease in plasma [ATP].
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