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Abstract: Metabolomics has emerged as an essential tool for studying metabolic processes,
stratification of patients, as well as illuminating the fundamental metabolic alterations in disease
onset, progression, or response to therapeutic intervention. Metabolomics materialized within the
pharmaceutical industry as a standalone assay in toxicology and disease pathology and eventually
evolved towards aiding in drug discovery and pre-clinical studies via supporting pharmacokinetic
and pharmacodynamic characterization of a drug or a candidate. Recent progress in the field
is illustrated by coining of the new term—Pharmacometabolomics. Integration of data from
metabolomics with large-scale omics along with clinical, molecular, environmental and behavioral
analysis has demonstrated the enhanced utility of deconstructing the complexity of health, disease,
and pharmaceutical intervention(s), which further highlight it as an essential component of systems
medicine. This review presents the current state and trend of metabolomics applications in
pharmaceutical development, and highlights the importance and potential of clinical metabolomics
as an essential part of multi-omics protocols that are directed towards shaping precision medicine
and population health.
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1. Introduction

The pharmaceutical industry is one of the most research-intensive organizations in the United
States. This industry is heavily invested in applying innovative solutions to enhance pipeline
development to support improvements in patient care. Industry requires solutions to overcome
the lack of knowledge surrounding a disease target and to determine clinical phenotypes that would
facilitate implementation of a patient-centered drug development model by actively engaging patients
throughout the clinical trial process. One of the useful tools that can be used to approach these
challenges is metabolomics. There are several key factors that influence health and well-being of
patients and the role of altered metabolism in diverse disease indications is emerging as a driving force
for therapeutic intervention, as well as stratification of patient populations. Tailored metabolomics
platforms provide a turn-key solution due to their high sensitivity to environmental variations,
including pharmacological treatment. Currently, significant advances in mass spectrometry based
technologies have led to the emergence of various Omics platforms that are capable of translating
biological output into therapeutic candidates [1-5]. On this basis, metabolomics has demonstrated
tremendous promise in delivering robust quantitative information regarding differences in metabolism
associated with disease onset/progression and pharmaceutical intervention, and thus shedding light
into potential biomarkers and highlighting affected pathophysiological pathways [6-9].

The present review illustrates developments and applications of mass spectrometry based
metabolomics in the pharmaceutical industry (Figure 1).
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Figure 1. Metabolomics areas of implications as a standalone and/or as a part of systemic omics
approach. Metabolomics publication metrics from 1999 through 2015. The line graph (orange line)
shows annual number of publications that list key words ((metabolomics OR metabonomics) AND
pharmaceutical) from all key words ((metabolomics) OR metabonomics)) containing publications (blue
line) derived from the search in PubMed database.

It is notable that there has been a general exponential growth in the number of metabolomics
publications and a continuing growth in number of industrial reports. Interestingly, the publications
ratio does not significantly change across the years, which illustrates very similar growth in interest in
metabolomics applications between different fields (Figure 1). The top 30 pharmaceutical companies
using metabolomics in research illustrate the growing number of publications in industry (Figure 2).
The lower number of metabolomics publications by a few of the top 30 pharmaceutical companies
over the observed period of time can be due to researchers using caution prior to investing into
relatively new analytical protocols. It is also known that a publication per se is not an industry
product but rather an extended line of evidence. For example, its serves its purposes for patent
applications or to provide results of clinical trials, etc. Interestingly, a simple search with the key
word—metabolomics in the clinical trials domain [10] returned 347 studies, which included those
that were completed, recruiting and active (not recruiting). These studies use metabolomics as a
tool in areas of diagnostics, clinical evaluation of potential biomarkers, and therapeutic response
evaluation, to name a few, and are cross-sectional and longitudinal in design. Recruitment can
reach thousands of participants. For instance, 1190 participants were enrolled in the completed
study NCT01754012—European Project on Nutrition in Elderly People (NU-AGE) recruited and
2350 participants are currently being recruited for NCT02059538—Metagenomics and Integrative
Systems Medicine of Cardiometabolic Diseases (METACARDIS).
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Figure 2. Metabolomics publication metrics from 1999 through 2015. The bar graph shows a number of
publications that list key words ((metabolomics) OR metabonomics)) AND company name (Affiliation))
derived from the search in PubMed database.

Metabolomics, also known as metabonomics, can deliver impact to industry research as a standalone
platform and/or as a part of broader omics analyses. Metabolomics is characterized as the qualitative and
quantitative study of small molecular weight molecules (metabolites) present in a biological system.
Lipids are a single biological class of metabolites having great chemical similarity and thus have
evolved into a subcategory named lipidomics [11,12]. However, the specifics of lipidomics will not
be covered in this review. Metabolites are also recognized as multifunctional molecules which can provide
regulatory feedback to upstream processes. This particular scheme does not provide information on
compartmentalization of entities, rather it gives an overview. It is also worth noting that drugs and
pathology have an impact on all the levels of systems biology. The Systems Biology hierarchy shows
the assigned place of metabolomics, which is a discipline studying metabolites, as by far the most area
influenced by the environment compared to other Omics fields (Figure 3).
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Figure 3. Systems Biology hierarchy depicts systems environmental impact and connections with

upstream processes.
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2. Analytical Considerations

Analytical industrial protocols require rigorous quality control procedures throughout every
step of the analysis, which must be followed through extensively using a set of standard operation
procedures that will ensure accuracy of measurements and reproducibility of results. It is important to
apply this approach to emerging metabolomics platforms, high throughput analytical practices and
non-targeted procedures in order to keep accuracy and reproducibility at the highest level. Therefore,
it is preferable to disperse the analytical targets (i.e., metabolites), when identified among available
targeted platforms to ensure reproducibility among instruments for the particular analytical target.
Unlike transcripts and proteins, the metabolite identity cannot be extrapolated from the genome. Thus,
the identification and quantification of metabolites in a biological system must rely on highly sensitive
instrumentation that is capable of gathering multiple dimensions of structural identification. There are
two complementary techniques that satisfy these requirements today, namely mass spectrometry and
NMR spectroscopy. NMR spectroscopy is highly selective and is essential in metabolite structural
elucidation. Unfortunately, use of NMR spectroscopy for metabolomics in the pharmaceutical industry
is limited by relatively low sensitivity and constrained metabolome reporting place, unless monitoring
of a limited list of targets using proton NMR spectroscopy is required [13].

Modern mass spectrometry provides highly specific structural information related to metabolite
identity such as an ions accurate mass, isotope distribution patterns, and characteristic fragment
ions used for structural elucidation and/or identification via spectral matching to authenticate
compound spectral data collected [14]. In addition, the information is stored not only in private
but also in public databases. Notably, the high sensitivity of mass spectrometry allows detection and
measurement of metabolites present at orders of magnitude within a dynamic range [15-17]. These
unique advantages make mass spectrometry an indispensable tool for metabolomics applications
in the pharmaceutical industry. Coupling chromatography to mass spectrometry offers a unique
solution for metabolomics to manage an orthogonal parameter for characterizing metabolites such as
retention time. Furthermore, chromatography separates isomers, such as citrate and iso-citrate; leucine
and iso-leucine; GABA, 3-aminobutyrate and BAIBA; maleate and fumarate; citraconic, itaconic and
glutaconic acids; fructose-6-phosphate and glucose-6-phosphate; ATP and dGTP; glucose, fructose,
mannose and galactose; etc. [18-21].

Metabolite isomers have exactly the same elemental composition and may have a very
similar or the same fragmentation patterns when low energy fragmentation is applied. It makes
them indistinguishable in a majority of mass spectrometers without chromatography separations,
where molecular structural features are responsible for an appropriate retention time [22]. However,
these metabolite isomers may have different biological values and purpose. Therefore, monitoring,
quantitation and biological significance of these targets are compromised without sufficient separation
when delivered with liquid and/or gas chromatography validated protocols. It is essential that
the metabolomics study design be supported with enough statistical power that would require an
appropriate sample size reflecting the nature of the project: pre-clinical cell based study, pre-clinical
animal study, clinical cross-sectional study, and clinical longitudinal study [23,24].

It is also important to understand and implement appropriate data normalization protocols,
which are obviously different between cell based studies and clinical longitudinal studies, where data
normalization in the former can be accomplished in relation to final biomass produced volume, i.e.,
cell count, amount of protein produced, etc. and the latter may last from months to years [25-28].
Studies utilizing cell culture can be cross-sectional and/or have multiple time points with different
treatment protocols. Different approaches for sampling normalization are required for pre-clinical
and clinical studies with a cross-sectional design, which accesses data at a single specific point of
time, compared to longitudinal studies, which assesses a sample population overtime. For example,
bio-fluids will require recorded volumes and tissue would require homogenization and recorded
weights. Pooled samples per batch and external references, preferably matrix related pooled samples,
per batch are necessary in order to successfully normalize acquired metabolomics data across the
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batches [25-28]. Regarding matrix compatibility there should not be any compromises in industry.
It should be clearly understood that the differences between plasma and serum are significant not
only in regards to metabolites contents [15,29,30], but also in regards to contents and characteristics of
the other molecules, for instance circulating DNA [31]. Moreover, it is known that different plasma
coagulation protocols and blood harvest protocols may result in differentiation of the metabolite levels
in samples [32]. As such, this has led to the concept of monitoring housekeeping metabolites, which
has even led to the availability of commercial services [33].

Metabolomics data analysis requires heavy computational and programming involvement [34,35].
This sort of infrastructure of well-equipped statistical tools and programming abilities does exist
within the pharmaceutical industry. While basic and advanced statistics should be exploited in order to
sort and visualize metabolomics data, it is important to apply appropriate tools for exploratory
and validation studies where different approaches and algorithms can be applied [24-28,34,35].
When metabolomics data is intended to be integrated with other omics data, either derived from
the same sample sets or exported from available databases [36-39], a focus on computational and
programming efforts are shifted towards network analysis, machine learning and artificial intelligence.
In this case metabolomics data is expected to contribute to the interconnection of the information
gathered from genomics, transcriptomics and proteomics analyses, as it reports the end points of the
systems analyzed at the time of sample harvest, when metabolism is stopped by an applied means.
This provides a unique picture of the overall state of a cell, organ or organism at a designated time
point. An overview of the dynamics of the biological processes can be supported by monitoring
several time points. This approach provides unique opportunities to connect dynamic metabolite
variations with a physiological status which may change during disease onset/progression and/or
therapeutic intervention. The end user should be well positioned to interpret the metabolomics
results in the context of the study endpoints. Flux analysis, employing stable isotope labeling, is
another important application of metabolomics [40] and has been used for mechanistic studies [41,42],
integrated metabolomics for gene discovery and personalized medicine [43]. The majority of cases with
flux analysis are limited to a few pathways employing steady state and dynamic labeling. For instance,
when applied to cancer metabolism studies it has traditionally focused on the flux through the
TCA cycle, glycolysis and pentose phosphate pathway, with occasional monitoring fatty acids and
purine/pyrimidine biosynthesis as well [40-43]. Flux analysis, utilizing isotope tracing (13C-tracers,
15N-tracers and others), can demonstrate shifts in metabolic pathways, which allow for insight into
changes in cellular metabolism in altered cells, cells having gene mutations and cells that have received
different treatments [41-47], which may result in drug resistance induction [48]. Moreover, recent
developments in mass spectrometry stable isotope labeling has already allowed use for monitoring
the fate of metabolites utilizing non-targeted metabolomics protocols; therefore, extending the list of
detected and monitored metabolic pathways [49]. Recent progress in isotopic ratio outlier analysis
(IROA), a novel method for stable isotope labeling, may find its place in the drug discovery process,
since it deals with sample to sample variance, discriminates against noise and artifacts, and improves
components identification [50]. It has become clear that advances in emerging Omics technologies are
offering a systemic approach to complex disease diagnosis, monitoring and therapeutic intervention.
Therefore, transforming the current state of medicine towards precision medicine [51,52].

3. Drug Discovery Applications

Modern drug discovery involves quite an array of scientific disciplines, including biology,
chemistry and pharmacology. Ultimately, it is a process that results in the identification of new
medicines. Traditionally this route comprises screening of molecular libraries and optimization of hits
and requires established targets and libraries of molecules to select hits for intracellular, as well as
for extracellular, targets. In addition, optimization of this process involves improvement of qualities,
such as affinity, selectivity, efficacy / potency, metabolic stability, and oral bioavailability of the potential
drug candidate. When these requirements are met drug development starts to guide a candidate
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towards clinical trials. Metabolomics as a standalone or as a part of systems biology discovery protocols
can offer exciting opportunities to discover not only diagnostic, but prognostic and also mechanistic
markers for a number of major human diseases [9,37,48,53,54]. It is expected that the ability to identify
markers of drug toxicity/efficacy will significantly accelerate drug discovery and assist to delineate
the appropriate clinical plan [9,50,55-57].

The vast majority of modern pharmaceuticals are typically selected to act at a specific molecular
target. Discovery and validation of a reliable biomarker of target engagement can build confidence
and facilitate further clinical development plans. Rational target engagement biomarkers, such as
substrates or products in the target pathways will definitely be the most valuable. However, modern
mass spectrometry based metabolomics offers the ability to measure these substrates and products
as well as hundreds of endogenous metabolites which are not directly upstream or downstream
to the related target location within a pathway, routinely reporting on broadly observed metabolic
perturbations in vitro and in vivo [19,38,56—62]. Therefore, metabolomics is capable of reporting on
drug efficacy and safety while simultaneously utilizing well-established study designs/biomedical
procedures in delivering a significant amount of information previously unavailable. This ability
has allowed the use of metabolomics protocols in pre-clinical studies that are focused on safety of
preclinical and translational target engagement biomarkers [55-57,59,60].

Metabolomics also offers another attractive option, namely when a change in one common
metabolite may not be diagnostic, changes in a panel of several metabolites might provide a signature
for a specific pathway perturbation [6-9,56-61]. However, it has frequently been observed that
highly variable results could be obtained, especially in pre-clinical safety studies in animals [53-61].
It is important to recognize that non-specific metabolic biomarkers, i.e., those that associated with
oxidative stress, can change in response to many physiologic perturbations since these changes are
reflecting rearrangement of the biological system to the developed conditions induced by disease
development and/or the course of therapeutic intervention [6-9,56-62]. Moreover, heterogeneity and
complexity of human disorders suggests that a single biomarker (e.g., DNA, RNA, protein, lipid or
metabolite) will be insufficient in identification of a subpopulation as well as in explaining predictive
efficacy of a drug. Therefore, developments in composite omics-based biomarkers have become of
recent interest [63-70]. These efforts are applied towards the collecting and merging of data analyses
from genomics, transcriptomics, proteomics, lipidomics and metabolomics through utilization of
computational tools for building networks and/or observing connectivity between representatives
from different chemical classes, which therefore links the recorded profiles to disease onset, progression
and pharmacological intervention [36-39]. One recent trend is the usage of genome-wide association
studies (GWAS) to relate genetic variation among human blood, serum and urine metabolite profiles
from large scale reporting of single nucleotide polymorphism (SNP) linkage to metabolite levels [71,72].
The other objective of drug discovery is the identification and validation of new targets for therapeutic
intervention. In general, metabolomics as a standalone assay is not widely utilized for new target
discovery. However, due to its capability in identifying disease-disturbed metabolic pathways and
downstream off-target effects of pharmacological interventions it may serve a valuable role for both
important goals of target discovery and drug side effects. Metabolomics protocols have been broadly
applied; for example, to in vitro inhibitors studies [19,38], preclinical and clinical studies, which
use 13C-tracers to reveal potential pharmacological control points for macrophage polarization [42],
discovering of the critical role of pyruvate kinase for non-small-cell lung cancer proliferation in
patients [73], development of potentially new therapeutic targets in breast cancer subtypes that exhibit
glutamine dependency [74], and proposals for novel combination therapies against drug resistant
variants produced during PI3K therapy based metabolic reprogramming [75]. These recent examples
demonstrate a valuable contribution from metabolomics to modern pharmaceutical research and
drug discovery.
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4. Clinical Applications

Clinical studies must comply with FDA'’s regulations for good clinical practice and clinical trials.
It is imperative to follow standard operation procedures and GLP/CLIA protocols during these
operations. However, it is also critical to follow proper specimen collection/storage at hospitals and
medical facilities that are involved in a clinical study as well as at specimen bio-banks. For instance,
it has been shown that the quality of the clinical plasma samples is affected by blood withdrawal, blood
and plasma processing and storage procedures [32,76]. Following standardized procedures in this case
minimizes the risk of pre-analytical errors that in turn may endanger drug target and /or biomarker
identification and validation. Therefore, sample quality control is important to ensure validity of
clinical results. Metanomics Health GmbH is capable of formulating and offering a commercially
available assay to validate plasma samples, namely MxP® Quality Control Plasma [32]. This novel
assay is based on the metabolomics profiling and provides a holistic control of EDTA human plasma
sample quality. Increasing availability of assays of this type in industry would be beneficial, as it
would facilitate reporting on the quality of the variety of clinical specimens that could be affected with
the acquired variabilities during sample harvest, processing and storage.

Clinical trials start from patient enrollment and involves patient status evaluation and
stratification. Ideally, patient status evaluation should have an initial point based on omics data
collected from a wide range of the population including healthy volunteers. There are studies involved
in gathering this kind of information on genetic variations and metabolite profiles from bio-fluids
from large human cohorts [71,72] and healthy volunteers [77] with the purpose of connecting the dots
between genes and metabolites to enhance knowledge of functional genomics [78]. Metabolites found
in circulation, i.e., amino acids, fatty acids, neurotransmitters, acyl carnitines, vitamin D and others,
are used for clinical risk assessment, diagnosis, prognosis and evaluation of treatment efficacy when
accepted by the FDA. GWAS studies have discovered numerous genomic regions associated with
clinically relevant metabolites [71,72,78]. However, taking into account that these links characterize a
host genome influence on levels of metabolites in circulation is critical. In practice, some metabolite
levels are connected to microbiome [79] and mycobiome [80,81] and in the case of host disease
progression and weakening of the immune system these microbial communities may have certain
influence on the metabolome in circulation in addition to other environmental cues. This symbiosis
obviously creates analytical and biological challenges and complications. For example, this complexity
is currently being recognized in oncology due to tumor heterogeneity [82], which may be the major
reason for inconclusiveness of tumor biopsy results.

Heterogeneity and complexity of human disorders have strong influence on development of
clinical diagnostics when standalone metabolomics discovery protocols are used. For instance, it has
been reported in Nature, that sarcosine, an N-methyl derivate of the amino acid glycine could serve
as a biomarker for early prostate cancer diagnosis and prediction of aggressiveness since changes
in sarcosine levels might be associated with an increase in amino acids metabolism and nitrogen
breakdown [83]. However, it could not be confirmed by other laboratories when clinical bioanalytical
methods of analysis were applied [84,85]. Recently, due to use of an omics analytical approach that
combined mRNA expression analysis, immunochemistry and metabolomics, increased sarcosine
levels were found to be associated with an accompanying elevation of the intermediate betaine and a
decrease in glycine levels in prostate cancer [86]. These results reflect a dysregulation of the sarcosine
pathway by MYC. MYC overexpression is associated with dysregulated lipid metabolism, which
in turn results in elevated sarcosine levels, while AKT1 activation is associated with accumulation
of aerobic glycolysis metabolites and has no association with changes in sarcosine levels. It has
been suggested that prostate tumors undergo a metabolic reprogramming that reflect their molecular
phenotypes, with corresponding implications for the development of metabolic diagnostics and
targeted therapeutics [86]. These insights may shed some light on the mystery of sarcosine levels
in prostate cancers and is another example of when clinical metabolomics can be an essential part
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of an omics analytical approach that provides valuable input in understanding complex biology of
human diseases.

Patient stratification is an area where metabolomics is emerging as a standalone assay with
promising results. As such, the terms pharmacometabonomics and pharmacometabolomics, which
can be used interchangeably, have begun to appear in recent reviews in the literature [87,88]. The first
reported results of pharmacometabolomics were obtained from a study that demonstrated the
ability of pre-dosed standalone metabolome profiling of rat urine to predict the post-dose outcomes
after administration of acetaminophen [89]. Subsequently, this methodology has been successfully
implemented in human trials of toxicity induced by acetaminophen [56,90]. This approach has further
been utilized with different chemotherapy drugs, immunosuppressant agents, statins, and other
various pharmacological interventions with the purpose of predicting drug metabolism, efficacy and
adverse events in small and large cohorts in cross—sectional and longitudinal studies [56,64,65,87-90].
Modern patient stratification requires extraction of information at all available levels of systems biology.
At the metabolomics level it requires screening of hundreds of metabolites from clinical samples to find
metabolites with relevant changes as a result of treatment response in patients. For example, metabolite
monitoring was used in a 5 year longitudinal study that examined the effects of glucose lowering
drugs in type 2 diabetes from 346 patients. Interestingly, from this approach it was revealed that
1,5-anhydro-glucitol levels were associated with HbAlc decreases that were observed in all medication
groups treated with metformin and/or sulphonyl urea [91]. Moreover, a larger set of metabolites
was found to be associated with HbAlc changes in the metformin and the combination therapy with
sulphonyl urea groups. These metabolites included metabolites related to liver metabolism, such as
2-hydroxybutanoic acid, 3-hydroxybutanoic acid, 2-hydroxypiperidine and 4-oxoproline. If these
results are confirmed with additional studies, the predictive metabolites might provide a personalized
approach to the described treatment. Thus, patient stratification allows identification of a target
population based on disease and/or drug target to predict drug efficacy /response.

It is recognized that pharmacogenomics is an integral part of precision medicine. Labels accompanying
FDA-approved drugs may contain information on genomic biomarkers. However, pharmacogenomics
cannot take into account the environmental impact on drug pharmacokinetics and/or pharmacodynamics.
Information of a patient’s genome does not contain information on his/her microbiome and mycobiome
which notably are also individualized. The strategy of utilizing in synergy an Omics analytical approach
rather than a competition based one has been initiated in combination with GWAS studies [71,72,77,78].

A recent review has described how Pharmacometabolomics-aided Pharmacogenomics in
Autoimmune Disease [87]. Specifically, the emphasis was on the synergy from Omics analysis taking
into account that in spite of having a genetic component, disease occurrence was also associated
with several environmental factors, gut microbiota, infections as well as gender bias. Another recent
article described results of a research strategy to identify genes associated with metabolites that were
related to selective serotonin reuptake inhibitor (SSRI) therapy response. A cohort of 306 patients were
enrolled and treated with citalopram or escitalopram. Subsequent genome-wide SNP genotyping and
metabolomic analyses were performed. Integration of obtained data related to SSRI treatment response
allowed the identification of the TSPANS5 gene, which was not previously known to be involved in
either SSRI response or the regulation of serotonin-related pathways, and SNPs in ERICH3 that altered
the quantity of ERICH3 protein. The authors proposed that experiments involving depressed and
non-depressed populations can enhance molecular sub-classification of psychiatric disease and its
response to drug therapy [92]. We look forward to clinical utility of this important new development
in the future.

5. Future Developments

The recent progress in mass spectrometry based metabolomics and Omics integration protocols
have shown the potential for positive synergy in amalgamation of different bioanalytical platforms
towards the advancement of personalized medicine [93]. Published articles cited in the current review
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demonstrate the ability of metabolomics for use as a tool to predict drug PK/PD, toxicity and efficacy
prior to dosing. In some cases, it was found that pre-event metabolite profiles may be used to predict
post-event outcomes. It is becoming clear that use of different Omics platforms and mining merged data
will provide new opportunities to link metabolic profiles to disease onset, treatment and the prediction
of drug effects. More insights into the complex interplay between the human genome, proteome and
metabolome and symbiotic microbiome/mycobiome communities, as well as the influence of these
factors on disease and their response to drug treatment, could be revealed by application of an Omics
platform. Metabolomics as a standalone, and/or as part of an Omics platform shows strong indications
of success with further development, validating the focus for exploration for its implementation as an
actionable tool in the pharmaceutical industry.
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