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Abstract: The coccolithophorid unicellular alga Emiliania huxleyi is known to form large
blooms, which have a strong effect on the marine carbon cycle. As a photosynthetic
organism, it is subjected to a circadian rhythm due to the changing light conditions
throughout the day. For a better understanding of the metabolic processes under these
periodically-changing environmental conditions, a genome-scale model based on a genome
reconstruction of the E. huxleyi strain CCMP 1516 was created. It comprises 410 reactions
and 363 metabolites. Biomass composition is variable based on the differentiation into
functional biomass components and storage metabolites. The model is analyzed with a flux
balance analysis approach called diurnal flux balance analysis (diuFBA) that was designed
for organisms with a circadian rhythm. It allows storage metabolites to accumulate or be
consumed over the diurnal cycle, while keeping the structure of a classical FBA problem.
A feature of this approach is that the production and consumption of storage metabolites
is not defined externally via the biomass composition, but the result of optimal resource
management adapted to the diurnally-changing environmental conditions. The model in
combination with this approach is able to simulate the variable biomass composition during
the diurnal cycle in proximity to literature data.
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1. Introduction

Emiliania huxleyi is a species of unicellular coccolithophorid algae. As a coccolithophore, it forms
highly-structured calcium carbonate plates (coccoliths). E. huxleyi blooms can be seen as a major
carbon sink in the global carbon cycle [1]. They have an influence on regional and global climate
by consuming greenhouse gases and the produced coccoliths changing the albedo of the ocean [2].
This biomineralization process also makes them interesting targets for biotechnology, resulting in the
need for detailed metabolic modeling. A first step in this direction was taken by the genome analysis
performed by Read et al. [3]. This study showed a high genetic variability of different strains of E. huxleyi
sampled all over the world. The genome of strain CCMP 1516 was annotated as a reference genome. To
make this data usable for metabolic engineering techniques in the form of constraint-based analysis, the
genome-scale metabolic network needs to be reconstructed.

Genome-scale reconstructions of many organisms are available today and are still being updated.
For example, models of Escherichia coli [4,5], Saccharomyces cerevisiae [6], Arabidopsis thaliana [7]
and Chlamydomonas reinhardtii [8] are available, but no reconstruction for E. huxleyi is available, yet.

Constraint-based analysis of metabolic networks with methods, like flux balance analysis (FBA),
phenotypic phase plane (PhPP) analysis and dynamic FBA, is widely used in systems biology [9–13].
These methods use stoichiometric information of reactions, thermodynamic restrictions on reaction
directions and additional constraints. Assuming a quasi-steady state of internal metabolites, convex
optimization techniques can be applied to compute optimal flux distributions for the metabolic network
with regard to the environmental conditions. In the biological system, the flux distribution is controlled
by a complex network of regulators and transcription factors, allowing the cell to reroute its resources to
adjust to the current environmental conditions.

An important task while setting up FBA problems is to define an appropriate objective function that
results in realistic flux distributions. Typically, objectives, such as “maximize biomass production”,
“maximize ATP production” or “minimize substrate uptake”, are chosen [9]. These approaches
have been successfully applied to organisms that are confronted with non-periodically change and
substrate-limited environmental conditions [6,14]. Since E. huxleyi is adapted to diurnally-changing
environmental conditions with alternating resource availability, an approach considering the diurnal
change is required. Therefore, using the organism’s currently-available resources as efficiently as
possible towards biomass production might not be sufficient. A more complex optimization goal has
to be stated for these organisms, namely “Maximize biomass production and produce enough storage
metabolites to survive a well-defined starvation period”.

In contrast, previous publications applying the classical FBA to plants and algae fix the proportion of
storage metabolites in the biomass function for the light metabolism [7,8]. As a result, the amount
of storage metabolites produced cannot be determined via optimization, but is rather defined by
measurement data used when formulating the biomass function. This also means that the production
of storage metabolites is coupled to growth, which are two processes that are competing for the cell’s
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resources. Another flaw of classical FBA approaches on photosynthetic organisms is that for these, a
steady state or a constant biomass composition cannot be assumed if all metabolites, including storage
metabolites, are considered.

Many extensions of the FBA approach were developed, for example the dynamic FBA, which
allows the dynamic simulation of biological processes by balancing the external metabolites via uptake
and excretion kinetics [13]. The dynamic FBA dynamic optimization approach (dFBA DOA) allows the
implementation of more complex optimality criteria, but can result in a non-convex optimization
problem [13], which is harder to solve than a convex one.

The approach presented in this work, a diurnal flux balance analysis (diuFBA), is similar to the
integrated FBA proposed by Cheung et al., who duplicated the fluxes for a stoichiometric model of
Arabidopsis thaliana to simulate day and night metabolism in a single optimization problem [15].

This is related to the dFBA DOA, but contains some simplifying assumptions. The approach is based
on dividing the diurnal cycle into periods of quasi-steady-state environmental conditions, namely a light
and a dark period, and to solve an optimization problem over a complete diurnal cycle. The time steps
are merged into a single stoichiometric matrix and linked by explicit Euler integration steps, making it
possible to formulate a convex optimization problem that is similar to a classical FBA problem.

In this study, we introduce a genome-scale reconstruction of E. huxleyi and apply the diuFBA
formalism. We demonstrate the diuFBA approach on an example model. The diuFBA is then applied to
the genome-scale reconstruction to simulate a diurnal cycle, with the focus on the biomass composition
at the transition from day to night.

2. Experimental Section

2.1. Software

Modeling was performed using the COBRA Toolbox 2.0 [16] with MATLAB 2013a 64 bit (The
MathWorks, Inc., Natick, MA, USA) and rBioNet [17] optimization using the COBRA Toolbox 2.0 and
Gurobi 5.6.0 [18]. A custom MATLAB script (see Supplementary Material S2) was used to generate the
extended stoichiometric matrix from a COBRA Toolbox model structure.

2.2. Genome-Scale Model of E. huxleyi

Recently, the E. huxleyi CCMP 1516 genome was reconstructed and annotated [3]. Based on this
reconstruction, the stoichiometric model of the metabolic network of E. huxleyi presented in this work
was built according to the protocol by Thiele and Palsson [19]. In order to use the modeling approach
described later in this section, the biomass function was split up into functional biomass and storage
metabolites. The term functional biomass comprises elements of the biomass that are directly necessary
for the viability of the cell, such as nucleic acids, proteins, structural lipids and polysaccharides, but
excludes components with a long-term benefit, such as polysaccharides and lipids used as storage
metabolites. We named the model iEH410 for the 410 reactions it contains.
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2.3. diuFBA

The general idea of the approach is to have storage metabolites that can be transferred between
daytime and nighttime, while each time step is considered as a flux balance problem with varying
environmental exchange fluxes. Resources can be exchanged between the two time steps via storage
metabolites. This is illustrated in Figure 1.
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storage metabolite
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Figure 1. Schematic of the extended flux balance analysis (FBA) approach: the same
metabolic network is simulated for both day and nighttime, while storage metabolites are
used to transfer resources between the two states.

To depict the behavior of a photosynthetic organism over the course of one day with the diuFBA,
we assume that all time steps can be considered to be in a quasi-steady state within themselves.
This assumption is valid if we consider the environmental conditions constant and the substrate is
abundant within each time step. This is a realistic assumption for cultivation experiments in bioreactors
or other monitored environments, but also for beginning blooms, in which no nutrient limitation
is present.

We consider a metabolic network with r reactions, s species, which contain p storage metabolites.
To describe the connection between day and night metabolism, an extended stoichiometric matrix S̃ is
formulated. It consists of the original stoichiometric matrix S ∈ Rs×r and a transition matrix T ∈ R2s×p

that allows the transfer of storage metabolites between the two time steps. The transition matrix T is
constructed as a set of reactions that links the storage metabolites cstorage between the two time steps:

cstorage,light ↔ cstorage,dark (1)

The transfer reactions are modeled as reversible reactions, since the transfer of storage metabolites is
possible from day to night, as well as from night to day.

For each time step, one instance of the original matrix S is added to the extended stoichiometric matrix
S̃. The two matrices are connected via the transition matrix. This results in the following structure for S̃:

S̃ =

[
S

T
S T̂

]
(2)

This definition also includes the shortened transition matrix T̂ ∈ Rr×p, which adds an export reaction
for storage metabolites. These reactions are used to simulate storage metabolite aggregation beyond the
diurnal cycle, such as long-term storage, or biomass growth. This extension results in a stoichiometric
matrix S̃ ∈ R(2 · s)×2 · (r+p).
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As a result, the reaction vector v is extended accordingly to have the dimension ṽ ∈ R2 · (r+p):

ṽ =


∆clight

∆cp

∆cdark

∆cp,ex

 (3)

In this equation, ∆cp stands for concentration changes between two time steps. These are associated
with the transition matrix T, while ∆cp,ex represents the molar transport out of the system, associated
with the shortened transition matrix T̂. This concentration change can be used to describe overall
biomass growth, or long-term storage effects.

Concentration changes are used due to the time discretization, which results in the reaction vector
now containing the integrated stationary fluxes. The integration of a flux v (mmol /gDCW /h) (gDCW:
grams of dry cell weight) over a time step, e.g., the light phase, results in a change of concentration ∆c

(mmol /gDCW): ∫ tlight,end

tlight,start

v (τ) dτ = v ·∆tlight = ∆clight (4)

where ∆tlight and ∆tdark are the durations of the light and the dark phase, respectively. Therefore, the
resulting reaction vector ∆clight no longer consists of the change rates of molar amounts, but of the
changes of the molar amount in the corresponding time step. This difference is important, as reaction
vector components from time steps of differing lengths can no longer be compared directly in the sense
of reaction speed. The comparison is still valuable, though, since it shows if a slower built-up reaction in
a longer time step is able to satisfy the needs of a faster consumption reaction in a shorter time step. This
also reflects that in the new approach, the mass balance for internal storage metabolites does not need
to be satisfied in each time step, but in the overall diurnal cycle: even if internal storage metabolites are
built up in one time step, the mass balance can still be satisfied if all of the accumulated metabolites are
consumed in the other time step. The fluxes for the time steps, which can be compared to classical FBA
results, can easily be obtained using the length of day and night phase:

vlight =
∆clight

∆tlight
; vdark =

∆cdark

∆tdark
(5)

With the extended stoichiometric matrix S̃ and flux vector ṽ, the optimization problem can be
formulated. It is similar to the classical FBA optimization problem:

maxw>ṽ

s.t. S̃ṽ = 0

ṽlb ≤ ṽ ≤ ṽub

(6)

where w is an objective vector, which is used to weight the fluxes in the flux vector ṽ. The vectors ṽlb and
ṽub stand for the upper and lower bounds of the flux vector, which describes metabolic rate limitations
and reversibility.
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2.4. Phenotypic Phase Plane Plots

A common tool for the analysis of the metabolic capabilities of a stoichiometric model and its distinct
patterns of pathway utilization is phenotypic phase plane (PhPP) analysis [12,20]. For two reactions ṽr1
and ṽr2, a grid of m× n values on the intervals ṽr1,1, ..., ṽr1,m and ṽr2,1, ..., ṽr2,n is created. A diuFBA is
performed for each combination of flux values to generate a grid of objective function values:

maxw>ṽ (ṽr1,i, ṽr2,j)

s.t. S̃ṽ = 0

ṽlb ≤ ṽ ≤ ṽub

ṽr1 = ṽr1,i

ṽr2 = ṽr2,j

for i = 1...m; j = 1...n

(7)

As a result, the value of the objective function can be plotted over the reactions of interest.
In this paper, we used a modified version of the function phenotypePhasePlane, which is supplied by
the COBRA Toolbox [16]. It takes into account that the reactions of interest are not necessarily uptake
reactions, but may also be production reactions of key metabolites or transfer reactions from one time
step to another. The modified function is available in the Supplement.

2.5. Example Model

An abstract example model was created that had the minimal features that are necessary to
demonstrate the diuFBA. The model is depicted in Figure 2. The model consists of a substrate supply,
which can be considered as photons in a photosynthetic scenario, a storage metabolite and functional
biomass, as well as a maintenance reaction. All three components can be used to satisfy maintenance,
but with different efficiencies. The use of biomass for maintenance depicts starvation if maintenance
cannot be satisfied by either substrate or storage metabolites. For the sake of simplicity, biomass is
given in the molar amount of its precursor. In stoichiometric models, these amounts of precursors are
multiplied with the molar mass of the precursors to get biomass concentrations in grams of dry cell
weight. The model is used to simulate a phase of substrate supply, followed by a phase of substrate
limitations. In the photosynthetic context of this paper, the substrate supply phase corresponds to the day
phase and the substrate limited phase to the night phase.
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Figure 2. Four instances of the SBGN (Systems Biology Graphical Notation) graph [21] of
the example model that demonstrates the principle of the diurnal FBA (diuFBA). The model
contains a substrate supply, a storage and a biomass metabolite and a maintenance reaction.
Growth and maintenance can be supplied by the substrate, the storage metabolite or biomass,
where the storage metabolite is less and the biomass is least efficient. The number next to the
Sun indicates the concentration change during substrate availability, while the number next
to the Moon indicates concentration change during the starvation phase. The first column
shows the optimization results for 1 h of substrate availability and 1 h of starvation. The
second column shows the results for 1 h of substrate availability and 2 h of starvation. The
first row depicts the results for the dFBA SOA, while the second row depicts the results for
the diuFBA.

3. Results and Discussion

3.1. Genome-Scale Model

The model iEH410 resulting from the analysis of the annotated genome and gap filling comprises
410 reactions and 363 metabolites. The model created consists of five compartments: cytoplasm,
mitochondria, chloroplasts and coccolith vesicles and the Golgi apparatus. Most reactions are located
in the cytoplasm, mitochondrion and chloroplast, while the coccolith vesicle and the Golgi apparatus
only contain reactions related to calcification. The sources for the reactions are depicted in Table 1.
Of the 410 reactions, 221 reactions are directly verified from the genome. Gap filling contributed 72
reactions; 18 reactions describe the build-up of biomass components, and six reactions are derived
from other literature sources. There are five chemical equilibrium reactions, which are not enzyme
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catalyzed and can therefore not be found in the genome. Gap-filling reactions were taken from other
genome-scale models, namely the Escherichia coli reconstruction iAF1260 [4], the Arabidopsis thaliana
reconstruction AraGEM [7] and the Chlamydomonas reinhardtii reconstruction AlgaGEM [8]. The
calcification reaction was modeled according to the calcification hypothesis suggested by MacKinder
et al. [22], and the rate is fixed to literature values [23].

Table 1. Categories of reactions included in the metabolic network. Note that reactions can
fall into several categories.

Category No. of Reactions

Derived from annotated genome 221
Derived from literature 9

Gap filling 72
Transport reactions 86

Chemical equilibrium reactions 5
Build-up of biomass precursors 18

Overlap with other reconstructions
iAF1260 [4] 103
AraGEM [7] 60
AlgaGEM [8] 93

The biomass composition was divided into the precursor metabolite proteins, long chain molecules,
lipids and low molecular weight molecules [24]. The protein composition is based on their composition
in Chlamydomonas reinhardtii [8]. Long chain molecules comprise DNA, RNA and polysaccharides.
The DNA composition of E. huxleyi was taken from the literature [25], and the stoichiometric coefficients
of the DNA synthesis in the AlgaGEM model were adopted accordingly. The polysaccharide composition
was taken from the AlgaGEM model. The low molecular weight molecules comprise saccharides
and co-factors, and the composition of the biomass precursor molecule was taken from AlgaGEM.
The composition of fatty acids was taken from the literature [26]. Since the exact pathways of fatty
acid and polysaccharide production are not clearly elucidated, yet, gap-filling reactions, which fulfil
stoichiometric requirements, were selected. Since recent studies showed that E. huxleyi uses mannitol as
a storage metabolite [27,28], we included the mannitol pathway described by Obata et al. in the model.

The carbon pool inside a cell is often divided into particulate inorganic carbon (PIC) and particulate
organic carbon (POC) [29,30]. We consider biomass to be only organic species. This results in the
biomass comprising the POC domain, while coccoliths are considered to be in the PIC domain.
Furthermore, coccolith production is dependent on the carbon system of the ocean, so it is not a fixed
part of the biomass [31].

The model considers biomass compositions for three metabolic scenarios and two environmental
conditions: biomass compositions for a 16-h light phase, for an 8-h dark phase and a combined 24-h
resulting biomass. Irradiation is given in Einstein (E), which corresponds to the molar amount of
photons. The two experimental conditions comprise high (200µE m−2s−1) and low (50µE m−2s−1)
light irradiation conditions.
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The model considers 86 transport reactions between compartments or compartments and the
environment. The transport reactions are visualized in Figure 3. Sixty seven of these transport reactions
were taken from AlgaGEM; seven describe diffusion across compartment borders; and 12 were described
in the annotated genome or literature [22,32,33]. The figure also shows the localization of major
metabolic pathways in the compartments of the model.

Figure 3. Transport reactions an the localization of major pathways in the iEH410
metabolic reconstruction of Emiliania huxleyi. AKG: α-ketoglutarate; FA: fatty acid
biomass precursor; OAA: oxaloacetic acid; PEP: phosphoenolpyruvate; PPi: pyrophosphate;
Pi: phosphate; Cl-HCO3: chloride-bicarbonate antiporter; Na+HCO3: sodium-bicarbonate
symporter; Ca-H+: calcium-proton antiporter; Cx:y: fatty acid with x carbon atoms and y
unsaturated bounds; THF: tetrahydrofolate.

3.2. Analysis of the Example Model

The example model was used to illustrate the flexibility of the diuFBA regarding the biomass
composition at the end of the day phase. In a photosynthetic scenario, we can consider the substrate



Metabolites 2015, 5 668

to be photons. Their energy can be used for maintenance processes, or carbon fixation, resulting in the
build-up of storage metabolites and biomass.

For the example model, the following two scenarios were chosen: 1 h of 1 M of substrate supply,
followed by 1 h without substrate supply. The second scenario comprised 1 h of 1 M of substrate supply,
followed by 2 h without substrate supply. The maintenance was set to 0.1 M/h for both scenarios.
These scenarios correspond to different day/night length ratios in a photosynthetic scenario.

The results for the dFBA and the diuFBA for the first scenario are shown in the first column of
Figure 2. Calculating the optimal flux distribution with two distinct optimization steps similar to the
static optimization algorithm of the dFBA [13], all substrates in the first time step are used to create
biomass and to satisfy maintenance, resulting in 0.9 M of functional biomass at the end of the first time
step (Figure 2A,C). Since no storage metabolites were formed, starvation in the second time step leads
to a final biomass concentration of 0.7 M or 0.5 M, respectively.

For the diuFBA in the 1 h:1 h scenario, the optimization resulted in a smaller amount of functional
biomass in the first time step (0.775 M), but 0.125 M of storage metabolites were produced. This is just
enough to satisfy maintenance demands in the second time step, resulting in a final biomass concentration
of 0.775 M. The biomass composition after the first time step is 86.1% functional biomass and 13.9%
storage metabolites (Figure 2B).

In the second column, the optimization is repeated for the second scenario with a longer night period.
For the diuFBA, this results in an increased production of storage metabolites, altering the biomass
composition at the transition from the first to the second phase in favor of more storage metabolite,
namely 72.2% functional biomass and 27.8% storage metabolites.

3.3. Analysis of the E. huxleyi Model

The diuFBA was applied to the model of E. huxleyi. The biomass composition after a 24-h cycle was
considered to be the functional biomass, whereas lipid biomass precursors and mannitol [27,28] were
chosen as storage metabolites. The biomass composition at the transition between day and night was
calculated by summing up the functional biomass and storage metabolites. A comparison to literature
data is shown in Table 2. The method results in a biomass distribution that emphasizes the production
of biomass precursors in the daylight time step and the supply of storage metabolites that satisfy the
maintenance requirements during the night phase. Mannitol is preferred over lipids as the storage
metabolite. The experimentally-observed behavior of increased protein production during the night
phase [34] is not depicted. In silico, this leads to an increased protein production during the day and
a reduced transfer of mannitol, since the carbon for the protein production in the night phase does not
need to be transferred. This result can be explained by the phenotypic phase plane (PhPP) plot depicted
in Figure 4. In this plot, we consider the effect of a protein production during the night phase and a
transfer of this biomass precursor to the day phase, where it is assembled into biomass. We can see that
the production during night is possible with less than a 1% reduction of the growth rate (0.924 1/d vs.
0.923 1/d). At the same time, the production of mannitol during the day needs to be increased to provide
the resources for protein production during the night. This was further illustrated in another diuFBA
scenario, in which the protein production during the day was fixed to literature values. The result is also
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depicted in Table 2. In this scenario, the carbon needed for protein production is transferred to the night
phase via mannitol.

Table 2. Biomass carbon distribution in pg C /cell after a light phase of 16 h, calculated
from Fernandez et al. [34], compared to the optimal biomass composition at the same
time calculated via diuFBA. For the third column, the protein production was fixed to the
literature value.

Biomass Component Literature diuFBA diuFBA (Protein fixed)

Growth rate [1/d] 0.81 0.924 0.893
Proteins 1.52 3.96 1.52
Lipids 8.62 6.69 6.69
Long chain molecules 6.74 2.98 2.98
Low molecular weight molecules 7.77 9.17 12.28
Total carbon 24.65 22.80 25.91

Figure 4. Phenotypic phase plane plot of mannitol production and protein transfer from day
to night. Negative numbers mean a transfer from night to day.

This flexibility regarding the choice of storage metabolites was also analyzed using PhPP plots.
Figure 5 shows the overall growth rate in a diurnal cycle over the mannitol transfer rate from day to night
metabolism and the lipid production rate in the cytoplasm. The plot can be divided into six regions of
metabolic activity. Each region corresponds to a metabolic mode, and their carbon distribution patterns
are depicted in the images on the right. At the optimal point, all biomass components are produced
directly from Calvin cycle metabolites, and mannitol is used as the storage metabolite for the night.
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Figure 5. Top left: phenotypic phase plane plot of the stoichiometric model for mannitol
transfer from day to night metabolism and lipid production; bottom left: schematic of
metabolic pathways and metabolites to categorize the carbon flux distribution in different
metabolic modes; right: carbon distribution in the region marked in the phenotypic phase
plane (PhPP). Different arrow colors are used for visual distinction only.

In Mode I, where both mannitol and cytoplasmic lipids are limiting, chloroplastic lipids are produced
and exported to the cytoplasm. The chloroplastic lipids are stored for the night, where they are used for
energy production and the production of cytoplasmatic lipids. The cytoplasmatic lipids are used during
the day for biomass production. In Mode II, enough mannitol is produced during the day to satisfy
maintenance during the night. The additionally-transferred mannitol is used to produce cytoplasmatic
lipids during the night, which could not be produced during the daytime. Additionally, chloroplastic
lipids are still transferred, as the transferred mannitol is not sufficient to satisfy the carbon requirements
during the night. Mode III corresponds to a carbon distribution where enough mannitol is available
to satisfy the carbon requirements for the night. As not enough cytoplasmatic lipids are produced,
yet, mannitol is used to produce them during the night. At the optimal point, the cytoplasmatic
lipid production is just high enough to satisfy biomass requirements, and mannitol is used as the sole
storage metabolite. Mode IV describes a phase where mannitol production is higher than necessary to
fulfil cytoplasmatic lipid production, as well as storage metabolite production for night maintenance.
Excessive mannitol is consumed in futile cycles, leading to a decrease in the growth rate. Mode V
corresponds to an abundance of cytoplasmatic lipids. These lipids need to be consumed in futile cycles
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to achieve mass balance. Mode VI corresponds to an overproduction of both cytoplasmatic lipids and
mannitol. All excessive metabolites are consumed in futile cycles.

These metabolic modes include the biologically-meaningful Modes II and III, where a combination
of lipids and mannitol are used to satisfy both energy storage and functional biomass requirements.
Mode I corresponds to an underproduction of both lipids and mannitol that is compensated by an
alternative lipid production path. Modes IV, V and VI correspond to an overproduction of possible
storage metabolites, which might be used by E. huxleyi as a long-term storage, but are consumed due to
mass balance constraints.

In the case of the optimal carbon distribution, only mannitol is used as the storage metabolite, and
all biomass precursors are produced during day metabolism. We can see in the PhPP plot depicted in
Figure 5 that non-optimal (in the sense of maximized biomass production) mannitol-to-lipid ratios are
able to result in growth rates found in the literature [30]. As the literature points to a combination of
mannitol and lipids as storage metabolites [28], a combination of Modes II and III might describe the
actual metabolism.

Although it would have been interesting to compare the results of the diuFBA with the results of
the dFBA algorithm, as was done in the example model, this cannot be easily accomplished. In the
second phase, the optimization problem for the example model was only solvable due to the starvation
term that allowed the conversion of biomass into energy for maintenance. Such a reaction can be easily
postulated for a proof-of-principle model, but for real organisms, the response to substrate limitation is
much more complex.

4. Conclusions

We used the available data of the annotated genome of the E. huxleyi strain CCMP 1516, an organism
with a strong impact on the global carbon cycle, to create the genome-scale model iEH410. It can
be used to determine the energy balance of the organism in periodically-changing light conditions.
Understanding the energy distribution for the cellular processes, the build-up of storage metabolites
and substrate requirements also makes this organism more accessible for biotechnological purposes.
Direct applications of the model include the possibility to map transcriptomic data to the model.
Furthermore, the model in combination with the diuFBA approach allows the search for optimized
growth media by identifying bottlenecks in the metabolism of E. huxleyi.

Regarding the high genetic variability of E. huxleyi strains, Read et al. point out that no single strain
can be considered to be the “typical” E. huxleyi strain [3]. This might be relevant considering the many
gap filling reactions presented in this paper. While the proteins of some reactions might not be available
in CCMP 1516, they might be available in other strains.

A common problem in the analysis of stoichiometric models is the ambiguity of the solution.
Methods analyzing this flexibility usually require an optimization problem to be solved repeatedly.
In this case, the advantageous formulation of the presented optimization problem as a convex program
allows one to derive a quick solution even for large-scale models. Moreover, the resulting optimization
problem is in structure identical to the classical flux balance problem, making all methods developed for
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the classical FBA, such as the phenotypic phase plane analysis, flux variability analysis or elementary
modes, easily applicable.

The evolutionary optimality criterion for photosynthetic organisms differs from that of heterotrophic
organisms: while the latter have to react to unpredictable substrate availabilities, the former adapted
to a deterministic pattern of periodically-changing energy availability. Therefore, a strictly-stationary
approach, like the classical FBA algorithm, is unable to correctly depict the evolutionary conditions
of photosynthetic organisms. Workarounds, such as different biomass compositions for day and night
metabolism, are able to describe measurement data [8], but lack the ability to predict the biomass
composition based on the categorization into functional biomass (cell structure, genome, transcriptome
and proteome) and storage metabolites. The static optimization approach of the dynamical flux balance
analysis [13] can be used to describe time-varying environmental conditions but cannot depict the
build-up of storage metabolites as a result of the optimization problem, as the optimization problem
is only solved for each time step, not for an overall production goal. The dynamic optimization
approach presented in the same paper is able to depict these overall objectives, but results in a non-linear
programming problem. Therefore, a repeated solution of the problem, as is necessary, e.g., for the
generation of PhPP or a flux variability analysis, can be very time consuming.

The diuFBA approach generalizes the FBA formalism presented by Cheung et al. [15]. The reaction
vector is considered to consist of concentration changes instead of fluxes. These concentration changes
are calculated by integrating the fluxes over the length of the corresponding phase. This time integration
allows phases of unequal duration, since the integrated concentration change is no longer dependent
on the length of the phase. Furthermore, concentration changes allow the calculation of the biomass
composition at the transition between the day and night phase by adding the amount of accumulated
storage metabolites to the produced functional biomass components.

The script published in Supplementary S2 can be adapted for the automatic generation and analysis
of a diuFBA model in combination with the COBRA Toolbox, while the model by Cheung et al. was
assembled manually.

Another important extension of the formalism by Cheung et al. is the shortened transfer matrix T̃.
It allows the consideration of long-term storage by offering a way to export storage metabolites out of the
diurnal cycle. Although this feature was not utilized for the analysis of E. huxleyi, it might be important
for the analysis of higher plants, where metabolites produced in leafs are consumed and stored in other
parts of plants.

With the diuFBA, the conflicting goals of functional biomass and storage metabolite production can be
described as part of the optimization problem to produce as much biomass as possible while producing
just as much storage metabolites as necessary. As shown in the example model, the optimal biomass
composition is now the result of the optimization process and no longer a constraint imposed on the basis
of measurement data. Moreover, the biomass composition is variable depending on the environmental
conditions. As demonstrated with the example model, the ratio of functional and storage metabolites is
dependent on the duration of the light and the dark phase. If we applied classical FBA methods, where
storage metabolites are included into the biomass function, every new experimental condition would
require us to manually adjust the biomass function.
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The diuFBA predicts for E. huxleyi that proteins are produced during the light phase, but
measurements show that the production is distributed over the diurnal cycle, with more production during
the dark phase. This discrepancy can be elucidated using PhPP plots of the protein transfer from day
to night, representing the ratio of proteins produced in the according phases. This analysis shows that a
considerable amount of protein can be produced during the night phase with only minimal influence on
the growth rate. This shows the metabolic flexibility regarding protein production. Flexibility regarding
the choice of the storage metabolite can be analyzed using the PhPP plot of mannitol and lipids, depicted
in Figure 5. There, we can see that the set of storage metabolite production rates that result in less than a
10% reduction of the growth rate is still considerable. Some of the modes are considered unrealistic due
to futile cycles burning up storage metabolites to keep the mass balance. If these storage metabolites are
used for long-term storage instead of being burned up, even these modes could be considered realistic.
At the optimal point, mannitol is favored over lipids as carbon storage due to its energetic efficiency.
However, using more lipids as storage (Mode IV, Figure 5) results in only a small loss of growth rate.
Recent studies by Tsuji et al. suggest that E. huxleyi uses this flexibility by producing lipids as storage
metabolites instead of relying on mannitol [28]. This illustrates the importance of methods analyzing
the solution space around the optimal solution, such as PhPP plots. It allows one to explore non-optimal
solutions, which might be preferred due to the effects that cannot be easily depicted by a constraint-based
model, such as solubility or stress resistance.

The model and simulation approach can now describe the metabolic processes in wild-type E.
huxleyi CCMP 1516 under a circadian rhythm. These insights might prove useful for metabolic
engineering, where they can be used to divert resources to economically-interesting products, such
as highly-structured calcium carbonate in the form of coccoliths or lipids for nutritional/feedstock
supplements or petrochemical replacements [3].

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/2218-1989/5/4/659/s1.
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