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Abstract: Glioma grading and classification, today based on histological features, is not 
always easy to interpret and diagnosis partly relies on the personal experience of the 
neuropathologists. The most important feature of the classification is the aimed correlation 
between tumor grade and prognosis. However, in the clinical reality, large variations exist 
in the survival of patients concerning both glioblastomas and low-grade gliomas. Thus, 
there is a need for biomarkers for a more reliable classification of glioma tumors as well as 
for prognosis. We analyzed relative metabolite concentrations in serum samples from  
96 fasting glioma patients and 81 corresponding tumor samples with different diagnosis 
(glioblastoma, oligodendroglioma) and grade (World Health Organization (WHO) grade II, 
III and IV) using gas chromatography-time of flight mass spectrometry (GC-TOFMS). The 
acquired data was analyzed and evaluated by pattern recognition based on chemometric 
bioinformatics tools. We detected feature patterns in the metabolomics data in both tumor 
and serum that distinguished glioblastomas from oligodendrogliomas (ptumor = 2.46 × 10−8, 
pserum = 1.3 × 10−5) and oligodendroglioma grade II from oligodendroglioma grade III  
(ptumor = 0.01, pserum = 0.0008). Interestingly, we also found patterns in both tumor and 
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serum with individual metabolite features that were both elevated and decreased in patients 
that lived long after being diagnosed with glioblastoma compared to those who died shortly 
after diagnosis (ptumor = 0.006, pserum = 0.004; AUROCCtumor = 0.846 (0.647–1.000), 
AUROCCserum = 0.958 (0.870–1.000)). Metabolic patterns could also distinguish long and 
short survival in patients diagnosed with oligodendroglioma (ptumor = 0.01, pserum = 0.001; 
AUROCCtumor = 1 (1.000–1.000), AUROCCserum = 1 (1.000–1.000)). In summary, we 
found different metabolic feature patterns in tumor tissue and serum for glioma diagnosis, 
grade and survival, which indicates that, following further verification, metabolomic 
profiling of glioma tissue as well as serum may be a valuable tool in the search for latent 
biomarkers for future characterization of malignant glioma. 

Keywords: glioma; diagnosis; prognosis; blood; tumor; metabolomics; chemometrics; 
latent biomarkers 

 

1. Introduction 

The World Health Organization (WHO) classification of brain tumors of neuroepithelial origin is 
based on histological features [1,2]. Although the classification system has been developed and 
improved over the years, it is still linked to some problems with possible clinical implications [3]. 
There is a large variation in the survival of patients with both glioblastomas (GBM) and low-grade 
gliomas [4,5]. The prognosis for GBM and low-grade gliomas still depends heavily on clinical factors 
such as age and performance status [5–9]. There is a great need to further improve the sub 
classification of malignant brain tumors and molecular pathology holds great promise. Genetic changes 
such as EGFR and p53 mutations have been of diagnostic importance but failed to give reliable 
prognostic or predictive information [10]. In anaplastic oligodendroglioma, 1p/19q deletions are 
associated with better response to chemotherapy [9,11] while loss of heterozygosity (LOH) 10q is shown 
to be a negative factor [9].  
In GBM methylation of the methyl-guanin-methyl transferase (MGMT) promotor has been shown to 
be a positive predictive factor for temozolomide treatment in GBM [12]. More recently isocitrate 
dehydrogenase 1 and 2 (IDH1, IDH2) mutations have been associated with a favorable outcome for 
low grade gliomas in particular but also in GBM [10,13]. Therefore, discussions are ongoing for the 
possibility of including these markers in the WHO classification system [14]. Profiling of mutations, 
gene and protein expressions have recently contributed significantly to the understanding of glioma 
biology [15]. Downstream of the genome and proteome a plethora of low molecular weight 
metabolites constitute the metabolome. The metabolites and their reactions may be considered to be 
the functional fingerprint of protein function, genetic variation and environmental effects. So far, there 
are a few metabolomic studies indicating that specific metabolites detected by magnetic resonance 
spectroscopy (MRS) may be of prognostic value in GBM [16]. In cerebrospinal fluid (CSF), 
metabolomic analyses have demonstrated differences in various metabolites in different glial tumors 
[17]. However, reports on mass spectrometry based metabolomics studies of brain tumor tissue are 
sparse [18] and only a few demonstrate the diagnostic potential of metabolomics [19]. Furthermore, 
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combined metabolomic profiling of tumor tissue and serum in the same patients are up to now 
unexplored. In this paper, we applied a predictive metabolomics strategy [20] to a series of consecutive 
primary neuroepithelial brain tumors and corresponding serum samples. Gas chromatography coupled to 
time of flight mass spectrometry (GC-TOFMS) and pattern recognition by means of multivariate data 
analysis was applied for the identification of potentially discriminative or prognostic metabolic 
patterns. Based on this, we show that the metabolic profiles in tumor and serum discriminate different 
glioma subgroups and may harbor prognostic information that may potentially play a future role as latent 
biomarkers in a clinical setting. 

2. Results 

2.1. Data Processing and Curation 

From the GC-TOFMS acquired data from tumor tissue sample extracts 197 features were detected 
and resolved using hierarchical multivariate curve resolution (HMCR). Of those, 63 were assigned 
with a putative molecular identity by standard library comparisons. From the GC-TOFMS acquired 
data from serum sample extracts 230 features were detected and resolved. Of those, 87 could be 
assigned with a putative molecular identity by standard library comparisons. Unidentified features 
were kept in the analysis. Two features from each sample type data were found to be artifacts and thus 
excluded from the data. One tissue sample displayed a distinctly deviating profile compared to the 
others, due to an analytical error, and was excluded from further analysis resulting in a total of 80 
tissue samples. Six serum samples were not properly derivatized causing erroneous data and were thus 
excluded from further analysis, resulting in a total of 90 serum samples included in the final analysis. 

2.2. GBM and Oligodendroglioma Show Different Metabolic Patterns 

Comparing metabolic profiles from tissue between GBM and oligodendrogliomas revealed 12 
significantly differentiating features (w*average ± 2 standard deviations (SD)). In serum, 13 metabolic 
features were significantly differentially expressed. Investigation of the significance of the detected 
metabolic patterns by means of orthogonal partial least squares-discriminant analysis (OPLS-DA) 
showed that it was possible to distinguish between glioblastomas and oligodendrogliomas in both 
tumor and serum (A = 1 + 0 + 0, R2X = 0.39, R2Y = 0.379, Q2 = 0.341, p = 2.46 × 10−8 and A = 1 + 0 
+ 0, R2X = 0.25 R2Y = 0.251 Q2 = 0.223, p = 1.3 × 10−5) (Figure 1). Detected features with a 
suggested identity from spectral library comparison (fragmentation pattern and retention index) 
responsible for discriminating between the diagnoses in tumor and serum are listed in Table 1. In 
summary, higher levels of mannitol and phenylalanine where found in GBMs compared to 
oligodendrogliomas in tissue while 2-hydroxyglutaric acid, 4-Aminobutyric acid (GABA), creatinine, 
glycerol-2-phosphate,  
glycerol-3-phosphate, ribitol and myo-inositol showed higher levels in oligodendrogliomas as 
compared to GBM. In serum, cysteine was found at higher levels in GBMs, while lysine and 2-
oxoisocaproic acid showed higher levels in oligodendrogliomas. 
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Table 1. Metabolic features altered in multivariate comparisons. 

 Tissue Serum 

Metabolite Id RI 
Corr. Diagnosis 

GBM vs. Oligo 

Corr. Grade 

Oligo 

Corr. Survival 

GBM 

Corr. Survival 

Oligo 
RI 

Corr. Diagnosis 

GBM vs. Oligo 

Corr. Grade 

Oligo 

Corr. Survival 

GBM 

Corr. Survival 

Oligo 

1-Monohexadecanoylglycerol      2679  ↓ *   

2-Hydroxyglutaric acid 1570.5 ↓ * 
        

2-Oxoisocaproic acid 
     

- ↓ 
   

4-Aminobutyric acid (GABA) 1525.3 ↓ * 
        

Alanine 
     

1472.4 
 

↑ 
  

Aminomalonic acid 1465.0 
   

↓ * 
     

Creatinine 1548.3 ↓ * 
        

Cystine 
     

2385.4 ↑ * 
   

Fructose 1858.8 ↓ * 
 

↑ * 
      

Glycerol-2-phosphate 1714.6 ↓ * 
        

Glycerol-3-phosphate - ↓ * 
 

↑ * 
 

- 
    

Glycine 1305.5 
   

↓ * 
     

Hexadecenoic acid 
     

2123.6 
   

↑ 

Lauric acid 
     

1749.9 ↓ 
   

Lysine 
     

2020.7 
 

↓ 
  

Maltose 
     

2824.1 
 

↑ 
 

↓ 

Mannitol 1917.5 ↑ * ↑* 
  

2029.0 
 

↑* 
  

Myo-Inositol - ↓ * 
 

↑ * ↑ - 
   

↑ * 

Oxalic acid 1118.3 
 

↓* 
       

Phenylalanine 1621.0 ↑ * 
   

1722.0 
    

Ribitol 1708.2 ↓ * 
 

↑ * ↑ * 
     

Serine 1358.4 
 

↑ 
       

Spermidine 2244.7 
   

↑ * 
     

Sterol 2864.5 
   

↓ 
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Table 1. Cont. 

 Tissue Serum 

Metabolite Id RI 
Corr. Diagnosis 

GBM vs. Oligo 

Corr. Grade 

Oligo 

Corr. Survival 

GBM 

Corr. Survival 

Oligo 
RI 

Corr. Diagnosis 

GBM vs. Oligo 

Corr. Grade 

Oligo 

Corr. Survival 

GBM 

Corr. Survival 

Oligo 

Threonic acid 1551.6 
 

↑ 
       

Threonic acid-1,4-lactone 
     

1472.2 
 

↑ 
  

The Metabolite id column show putative identities of all resolved features altered in the multivariate models based on spectral library comparison (fragmentation pattern 
and retention index). RI denotes retention index. The Corr. Diagnosis column shows the features affected by diagnosis (GBM vs. oligodendroglioma) where the arrows 
denote if the metabolic feature is elevated (↑) or lowered (↓) in GBM compared to oligodendrogliomas. The Corr. Grade column shows the feature affected by different 
grades (II and III) in oligodendrogliomas, the arrows illustrate if the metabolic feature is elevated (↑) or lowered (↓) in grade III compared to grade II. The column Corr. 
Survival GBM, show the features that differ between long and short survival in glioblastoma and the Corr. Survival Oligo column show the metabolic features that differ 
in relation to survival time in oligodendrogliomas. The arrows illustrate if the metabolic feature is elevated (↑) or lowered (↓) in long survival patients as compared to short 
survival patients. * denote a significant p-value (<0.05) calculated using Mann–Whitney U test. 
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Figure 1. Receiver operating characteristic (ROC) curves and scatter plots of orthogonal 
partial least squares-discriminant analysis (OPLS-DA) scores following a seven-fold  
cross-validation procedure showing differences associated with diagnosis and tumor grade. 
(Upper panel) ROC curves based on the cross-validated score values from the final  
OPLS-DA model for the discrimination of glioblastoma and oligodendroglioma in tissue 
(blue line) and serum (red line) with area under the ROC curve (AUROCC) values of 
0.881 (0.791–0.970) and 0.826 (0.722–0.929), respectively (left). The scatter plots show 
the class differences between glioblastoma and oligodendroglioma based on cross-
validated predictive OPLS-DA scores (tcv[1]p) for tissue (center) and serum (right). 
(Lower panel) ROC curves based on the cross-validated score values from the final 
OPLS-DA model discriminating between World Health Organization (WHO) grade II and 
III in oligodendroglioma in tissue (blue line) and serum (red line) with AUROCC values of 
0.833 (0.557–1.000) and 0.946 (0.858–1.000), respectively (left). The scatter plots show 
the class differences between grade II and grade III based on cross-validated predictive 
OPLS-DA scores (tcv[1]p) for tissue (center) and serum (right). 

2.3. Metabolic Differences between Oligodendroglioma WHO Grade II and III 

For the comparison between oligodendroglioma grade II and grade III, 10 resolved features fulfilled 
the significance criteria in tissue and provided a separation between the two sample classes in an  
OPLS-DA model (A = 1 + 0 + 0, R2X = 0.579, R2Y = 0.505, Q2 = 0.434, p = 0.01) (Figure 1). Serine, 
threonic acid and mannitol were all elevated in in oligodendroglioma grade III, while oxalic acid was 
elevated in oligodendroglioma grade II. In serum, 12 resolved features as a pattern in an OPLS-DA 
model provided a significant difference between oligodendroglioma grade II and grade III  
(A = 1 + 0 + 0, R2X = 0.405, R2Y = 0.589, Q2 = 0.589, p = 0.0008) (Figure 1). Mannitol, maltose, 
threonic acid-1,4-lactone and alanine were all higher in relative concentration in grade III 
oligodendrogliomas, while lysine and 1-monohexadecanoylglycerol were found in lower relative 
concentrations in grade III as compared to grade II oligodendrogliomas (Table 1). 
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2.4. Metabolic Profiles Associated with Survival 

In GBM, the metabolic profiles of tumor samples from patients surviving long after diagnosis  
(≥3 years) were compared to patients that died shortly after diagnosis (≤4 months). Based on seven 
resolved features passing the significance criteria, OPLS-DA provided a significant separation 
associated with time of survival (A = 1 + 0 + 0, R2X = 0.669, R2Y = 0.474, Q2 = 0.427, p = 0.006) 
(Figure 2). Interpretation of the model revealed that glycerol-3-phoshate, myo-inositol, ribitol and 
fructose increased in level with long survival. Furthermore, we detected a significant association with 
survival time in serum samples from the same patients in an OPLS-DA model based on five resolved 
features (A = 1 + 0 + 0, R2X = 0.536, R2Y = 0.572, Q2 = 0.478, p = 0.004; Figure 2). Unfortunately, it 
was not possible to obtain a suggested identity for any of the affected features found in serum. The 
same comparison was carried out in patients with oligodendroglioma. In tumor tissue, eight resolved 
features passed the significance criteria and provided a significant metabolic pattern (OPLS-DA 
model) in relation to time of survival (A = 1 + 0 + 0, R2X = 0.56, R2Y = 0.796, Q2 = 0.767, p = 0.01; 
Figure 2). High levels of ribitol, myo-inositol and spermidine were associated with long survival, while 
high levels of glycine, aminomalonic acid and highly likely an unidentified sterol were associated with 
short survival time. A complete separation with respect to survival time could also be seen in serum 
(Figure 2). The final OPLS-DA model was based on 13 resolved features, which together formed a 
significant metabolic pattern (A = 1 + 0 + 0, R2X = 0.521, R2Y = 0.909, Q2 = 0.855, p = 0.001). In 
this model, myo-inositol and hexadecenoic acid were associated with long survival time. All features 
with a putative identity significant in oligodendroglioma survival can be viewed in Table 1. 
AUCROCC analyses of the extracted metabolic patterns visualized as the OPLS-DA score values 
following a seven-fold cross-validation procedure for GBM in tumor and serum gave ROC values of 
0.846 (0.647–1.000) and 0.958 (0.870–1.000), respectively (Figure 2). In oligodendroglioma, the 
corresponding ROC values reached the value 1 (1.000–1.000) in both tumor and serum. 

2.5. Pathway Analysis 

By processing the features of interest using their putative metabolite identity (Table 1) utilizing the 
IPA® platform (Ingenuity Systems, Inc), a number of canonical pathways in serum and tissue were 
identified, with amino and fatty acid metabolism ending up among the top ranked pathways. 
Metabolites involved in theses pathways as well as other metabolites of interest described in Table 1 
with regards to tumor biology were selected for further discussion. 
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Figure 2. Receiver operating characteristic (ROC) curves and scatter plots of orthogonal 
partial least squares-discriminant analysis (OPLS-DA) scores following a seven-fold  
cross-validation procedure showing differences between long and short survival time. 
(Upper panel) ROC curves based on the cross-validated score values from the final  
OPLS-DA model for the discrimination of short survival time compared to long survival 
time in patients with glioblastomas in tissue (blue line) and serum (red line) with ROC 
values of 0.846 (0.647–1.000) and 0.958 (0.870–1.000), respectively (left). The scatter 
plots show class differences between short survival time and long survival time based on  
cross-validated predictive OPLS-DA scores (tcv[1]p) for tissue (center) and serum (right). 
(Lower panel) ROC curves based on the cross-validated score values from the final  
OPLS-DA model for the discrimination of short survival time compared to long survival 
time in patients with oligodendrogliomas in tissue (blue line) and serum (red line). 
AUROCC values for survival in oligodendroglioma were calculated to 1 (1.000–1.000) for 
both tissue and serum (left). The scatter plots show class differences between short 
survival time and long survival time based on cross-validated predictive OPLS-DA scores 
(tcv[1]p) for tissue (center) and serum (right). 

3. Discussion 

3.1. Metabolomic Differences Associated with Diagnoses and Grading 

The present study is one of the first to demonstrate metabolomic pattern differences in tumor tissue 
between different neuroepithelial tumors as well as the potential prognostic information obtained 
utilizing mass spectrometric methods. In addition, it is the first study to demonstrate the metabolomic 
pattern differences in corresponding serum samples from the very same patients. Previously, Cueller-Baena 
demonstrated differences between different pediatric brain tumors by High-Resolution Proton 
Magnetic Angle Spinning Spectroscopy (HR-MAS) [19]. Using H-MRS, Law et al. demonstrated that 
MR spectroscopy could be of value to predict the grading of glial tumors [21]. Also using HR-MAS 
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NMR, Erb et al. could distinguish different grades of oligodendrogliomas [18]. By mass spectrometric 
methods Chinnaiyan et al. have shown that the metabolomic profile in tissue differs between different 
grades of glioma [22], a finding supported by the paper from Nakamizo et al. reporting differences in 
CSF related to the grade of astrocytoma/GBM [17]. 

From a biological point of view, it could appear quite obvious that there should be a difference in 
the metabolism of different primary brain tumors [23]. In our study, there is a significant difference 
between GBM and oligodendrogliomas, especially in tissue but interestingly also in serum. In tissue, a 
pattern based on 12 resolved features and in serum 13 resolved features were included in the 
multivariate model. Whether this difference is related to the tumor grade itself or to the histological 
type cannot be concluded from our analyses. However, when analyzing oligodendrogliomas a distinct 
metabolic pattern was detected related to grade, i.e., grade II and III. This finding could indicate that 
changes in the metabolome are correlated to not only the histology type but also to the grade of the 
tumors. 

3.2. The Metabolome as Prognostic Factor 

Grading of the tumors should according to the aims of the WHO classification be related to the 
prognosis [2]. However, for many histopathological entities there are large variations in survival.  
For example, in GBM the survival can vary between 0.4 to 142 months in larger series [4] and for  
low-grade gliomas from 0.2 to 16 years [5]. In a clinical setting, this is unsatisfactory. Quon et al. have 
by repeated MRS in glioma patients undergoing surgery and radiotherapy demonstrated that changes in 
choline could provide prognostic information [24]. In a microdialysis study, our group has previously 
investigated the metabolomic alterations in GBM during the early course of radiotherapy [25]. In that 
study, significant changes in metabolic patterns were disclosed. Majos et al. analyzed MRS spectra in 
patients with high-grade astrocytomas (grade III and GBM) and found prognostic information [26]. 
Although they did not identify any specific metabolites, their study points to the possibility of utilizing 
a metabolic signature or pattern for prognostication. Our analysis showed that were associations 
between the metabolome and time of survival in tumor and serum of both GBM and 
oligodendrogliomas and that there was a break-point for a high prognostic value based on changes in 
the metabolome for patients with GBM living shorter than four months, and longer than three years. A 
prognosis of less than four months survival might indicate that an aggressive treatment should be 
avoided, while a prognosis better than three years may support a more active approach. For 
oligodendrogliomas, the corresponding  
break-points were two and three years, respectively. If further verifications of these findings are 
successful in separate sample cohorts, this methodology might possess a potential means to extract 
latent variables holding prognostic information regarding glioma survival. 

3.3. Metabolic Pathways and Specific Metabolites of Interest 

In general, we have found it hard to corroborate our findings to the existing literature due to the lack 
of metabolomics data regarding gliomas. Although there are an increasing number of publications 
based on MRS and NMR reporting on single or a few metabolites, there are few studies on 
metabolomics utilizing mass spectrometric methods in brain tumors. By utilizing the IPA® pathway 
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analysis platform, we could identify a number of potential pathways, including amino and fatty acid 
metabolism, or metabolic entities that the detected metabolites of interest are involved in. Since the 
high grade of complexity in tumor metabolism possesses a major challenge when it comes to 
mechanistic interpretations, we found it difficult to draw any major mechanistic conclusions based on 
the pathway analysis in this limited material Nevertheless, some of the putatively identified metabolites 
found in our study can be interpreted in a biological context and are discussed below. 

Mannitol was found at higher levels in GBM compared to oligodendroglioma and in oligodendroglioma 
grade III compared to oligodendroglioma grade II. In clinical practice mannitol is used temporarily 
during surgery to reduce brain edema. Almost all patients, except for a few with low-grade tumors, 
received 200–300 mL mannitol approximately 1–2 h before resection of the tumor. Mannitol is a large 
molecule that normally does not pass the blood–brain barrier, therefore, it is not surprising that we 
found higher levels of mannitol in the high-grade tumors where a more or less defect blood–brain 
barrier is to be expected. Peeling et al. have previously demonstrated that mannitol was found in 
glioma tissue only when the tumors analyzed showed a contrast enhancement on MR indicating a 
disruption of the  
blood-brain barrier [27]. 

Creatinine was also found as significantly altered between GBM and oligodendroglioma. It is a 
breakdown product of creatine phosphate, which can be used as a reserve of high-energy phosphates 
for the brain, anaerobically phosphorylating ADP to ATP [28]. Creatine phosphate is likely to be 
consumed to a higher extent by the more aggressive tumors leading to lower levels of the creatine 
phosphate breakdown product, creatinine. This could explain why we see lower levels of creatinine in 
tissue from GBM tumors as compared to oligodendroglioma. 

We also found that levels of GABA in tumor were lower in GBM compared to oligodendroglioma. 
GABA is an important inhibitory neurotransmitter. The number of publications reporting on GABA in 
glioma is sparse and provides conflicting information. One study by Faria et al. showed that GABA 
was detectable in low-grade astrocytomas and normal brain, however they failed to detect GABA in 
high grade tumors [29], while another study by Biachi et al. found increased levels of GABA in GBM 
as compared to normal brain using microdialysis [30]. Another neurotransmitter, glutamate, is a 
substrate for GABA and an intermediate in the glutamine conversion to oxaloacetate in the amino acid, 
nucleotide and lipid synthesis [31]. Glutamate takes part in the energy supply, and has an important 
role as an excitotoxic substance promoting glioma invasiveness [32,33]. Several studies have 
demonstrated, by NMS in tissue or in the extracellular space by microdialysis, that the glutamate 
concentration is higher in more malignant gliomas, or in gliomas compared to normal brain [34–36]. In 
this study, we did not find any significant differences in glutamate levels, however, we had no possibility 
to compare low-grade astrocytomas with GBM. 

Glycerol-3-phosphate is the backbone of triglycerides and glycerophospholipids and is also 
involved in the fatty acid oxidation cycle generating NADH. Accordingly, we found that the glycerol-
3-phosphate level was lower in GBM compared to oligodendrogliomas as well as lower in short 
surviving patients, which would be expected in highly proliferating tumors. 

Myo-inositol is an interesting metabolite. Previous studies have reported that low levels of myo-inositol 
are associated with higher aggressiveness of the glioma phenotype [37,38]. Kinoshita et al. and Faria  
et al. also found that inositol was lower in GBM as compared to astrocytoma grade II and III, while 
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Wright and fellows found that the myo-inositol level in GBM where similar to the level in astrocytoma 
grade III but lower than in grade II [29,36,39]. We can confirm those findings in our study where we 
found that the level of myo-inositol was significantly lower in GBM as compared to 
oligodendrogliomas and that long survival patients from both tumor types have higher levels of myo-
inositol than patients that die shortly after diagnosis. Myo-inositol is an activator of protein C kinase 
[37]. The activation of PKC contribute to tumor cell survival and proliferation and has shown to be 
involved in the progression of malignant gliomas [40]. 

When comparing metabolic profiles in patients that lived long after diagnosis compared to patients 
that died shortly after diagnosis we found glycine to be of interest. Glycine has been detected by MRS 
at higher concentrations in high grade gliomas and therefore been suggested as a possible diagnostic 
marker [41]. In our study, glycine were higher in patients that died shortly after diagnosed with 
oligodendroglioma supporting that higher concentrations of glycine is associated with a worse 
prognosis. Unfortunately, no correlation of glycine with survival in GBM could be found in our material. 

3.4. Multivariate Metabolic Patterns and Latent Biomarkers 

Analyzing the metabolome is a complex and difficult task. We believe that one should keep the 
discussion of metabolic differences between different histopathological types of tumors apart and 
separate from the discussion of metabolism within a specific type of tumor. Merging all gliomas into 
one group only taking the grade into account may result in confusing conclusions. It is also important 
that the differences disclosed are based on a multivariate analysis, which does not necessarily mean 
that specific metabolites in the statistical model are of prime importance by themselves, but rather the 
combined pattern together with other defined metabolites. We consider the main findings of the study 
to be that there is evidence suggesting that metabolic patterns in both tumor and serum contain 
information that potentially can be used as diagnostic or even as prognostic latent biomarkers in 
gliomas. Although very interesting, we also realize the need to verify these findings in separate 
materials with higher sample numbers in order to get a correct measure of the predictive ability as well 
as a clearer picture of the clinical value of the extracted latent biomarkers. 

4. Method 

4.1. Samples 

Snap-frozen tumor tissue from 81 gliomas was included in the study. The series was consecutively 
collected from patients that underwent open resection and day-time surgery during 2004 to 2008.  
Fifty-seven patients were diagnosed according to the WHO classification with GBM, 4 patients were 
diagnosed with grade II and III astrocytomas and 20 patients with oligodendroglioma of WHO grade II 
and III. All samples were retrospectively reviewed and classified according to WHO 2007 [1]. Tissue 
for diagnostic analyses was always collected first and only if the amount of tissue was enough, samples 
for research were collected. The collected tissue was snap-frozen in 2 mL polypropylene vials 
(Sarstedt AG & Co, Nümbrecht, Germany) in liquid nitrogen at the surgical theatre immediately 
following resection from the patient. Serum samples from the same patients were collected in 10 mL 
plain glass blood-tubes (BD Vacutainer®) spun down, fractionated and frozen in 2 mL polypropylene 
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vials (Sarstedt AG & Co.) at −20 °C within 45 min. Serum was collected from ten additional patients 
diagnosed with GBM and from five more patients with oligodendrogliomas. The four patients 
diagnosed with astrocytoma grade II and III were excluded from further analyses due to the low 
number making statistical analyses unreliable. All collected samples were transferred to −80 °C within 
one week. 

All patients included gave their informed consent to participate and the study was approved by the 
Ethics committee of Umeå University. 

4.2. Sample Preparation and GC-TOFMS Analysis 

One milliliter extraction solution consisting of chloroform (20%), methanol (60%) and water (20%) 
with 11 IS (7 ng/μL) was added to 15 mg of tissue. Tissue samples were kept frozen on dry ice until 
the extraction solutions were added. Two tungsten beads were placed in each sample tube and the 
tissue samples were milled for 2 min, 30 Hz using a MM301 vibration Mill (Retsch GmbH & Co. KG, 
Haan, Germany) before centrifuged for 15 min, 4 °C, 14 000 rpm. 200 μL of the collected supernatant 
was transferred to GC vials and evaporated to dryness. The serum samples were thawed in room 
temperature for 30 min before addition of 900 μL extraction solution consisting of methanol (90%) and 
water (10%) with 11 IS (7 ng/μL) to 100 μL serum. The serum samples were extracted using the same 
approach as for the tissue samples, except for the tungsten beads. The samples were then 
methoxymated with 30 μL of methoxyamine solution in pyridine (15 μg/μL) and left standing at room 
temperature for 16 h before trimethylsilylation with 30 μL of MSTFA. After 1 h, 30 μL of heptane 
(containing 0.5 μg of methyl stearate) was added. One microliter of derivatized sample was injected 
splitless by an Agilent 7683 Series autosampler (Agilent, Atlanta, GA, USA) in randomized order into 
an Agilent 6980 GC equipped with a 10 m × 0.18 mm i.d. fused-silica capillary column chemically 
bonded with 0.18 μm DB5-MS stationary phase (J&W Scientific, Folsom, CA, USA). The injector 
temperature was set to 270 °C. Helium was used as carrier gas at a constant flow rate of 1 mL/min 
through the column. The purge time was set to 60 s at a purge flow rate of 20 mL/min and an 
equilibration time of 1 min for every analysis. Initially, the column temperature was kept to 70 °C for 2 
min and then increased to 320 °C at 30 °C/min, where it was kept for 2 min. The column effluent was 
introduced into the ion source of a Pegasus III TOFMS (Leco Corp., St Joseph, MI, USA). The transfer 
line temperature was set to 250 °C and the ion source temperature to 200 °C. Ions were generated by a 
70 eV electron beam at a current of 2.0 mA. Masses were acquired from m/z 50 to 800 at a rate of 30 
spectra/s, and the acceleration voltage was turned on after a solvent delay of 165 s. The stable isotope-
labeled internal standard compounds (IS) [13C5]-proline, [2H4]-succinic acid, [13C5,15N]-glutamic acid, 
[1,2,3-13C3]-myristic acid, [2H7]-cholesterol and [13C4]-disodium α-ketoglutarate were purchased from 
Cambridge Isotope Laboratories (Andover, MA). [13C12]-sucrose, [13C4]-palmitic acid and 
[2H4]- butanediamine 2HCl were from Campro (Veenendaal, The Netherlands). [13C6]-glucose was 
from Aldrich (Steinheim, Germany) and [2H6]-salicylic acid was from Icon (Summit, NJ, USA). Stock 
solutions of the IS were prepared either in purified and deionized water (Milli-Q, Millipore, Billerica, 
MA, USA) or in methanol (J.T. Baker, Deventer, The Netherlands) at a concentration, 0.5 μg/μL. 
Methyl stearate was purchased from Sigma (St. Louis, USA). N-Methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) and pyridine 
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(silylation grade) were purchased from Pierce Chemical Co. Heptane was purchased from Fischer 
Scientific (Loughborough, UK). 
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4.3. Data Processing 

To be able to relatively quantify and provide a putative identity for all detected individual features, 
the acquired GC-TOFMS data were processed by applying HMCR [42,43]. HMCR uses a multivariate 
approach for generating pure chromatographic signatures together with corresponding mass spectra for 
all detected feature peaks. In this way multiple sample comparisons based on the whole metabolic 
profile will be greatly facilitated. For this, NetCDF files of the raw acquired GC-TOFMS data were 
exported to MATLAB 7.11.0 (R2010b) (Mathworks, Natick, MA, USA) where baseline correction, 
alignment,  
time-window settings were carried out before applying HMCR time-window wise to resolve the 
individual feature peaks. All data processing including HMCR was done using in-house developed 
scripts. For the tissue data, the chromatograms were divided into 64 time windows from which 197 
chromatographic peaks (features) were resolved resulting in a data matrix (X) were each row 
represents one patient and each column represents one feature, e.g. metabolite. Similarly, for the serum 
data, the chromatograms were divided into 67 time windows from which 230 chromatographic peaks 
were resolved. For each feature in each sample the area under the chromatographic peak, the relative 
concentration, was calculated. All peak areas were normalized using the peak areas from the 11 
internal standards. The detected features’ mass spectral profile and retention indices were compared to 
spectra in an in-house spectral library of metabolite standards and the NIST library 2.0 (as of 31 
January 2001) to provide a putative identity for each individual feature. This was followed by a manual 
inspection and curation of the data to further resolve co-eluting compounds and to correct for split 
peaks. 

4.4. Pattern Recognition and Statistical Analysis 

Pattern recognition utilizes multivariate projection methods to extract and verify co-varying patterns 
or signatures of variables that are significant for explaining systematic variation in experimental data. 
In metabolomics, pattern recognition works to compress the variable space, i.e., the detected and 
relatively quantified metabolic features, into a few latent variables, e.g., principal components, 
explaining the majority of the systematic variation in the data. In this way interpretation of changes in 
metabolic signatures as well as detection of robust and relevant sample patterns caused by those 
signature changes are largely facilitated. In this work, processed metabolomics data from tissue and 
serum samples were analyzed separately using different pattern recognition approaches. In a first step, 
principal component analysis (PCA) [44] was applied to get an unsupervised overview of the variation 
in the data and to detect deviating samples, so-called outliers. For further multivariate sample 
comparisons with the aim to look for differences between pre-defined sample classes, orthogonal 
partial least squares-discriminant analysis (OPLS-DA) [45] was used. OPLS is a supervised 
multivariate regression method allowing a separation of the variation into predictive variation (related 
to the response(s) of interest) and orthogonal variation (variation unrelated to the response(s) of 
interest). This has been shown to facilitate the interpretation of complex multivariate data and the 
interactions therein. The combined data processing and pattern recognition procedure can be 
overviewed in Figure 3. Initially, the diagnostic potential of the metabolic profiles in terms of 
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discriminating between GBMs and oligodendrogliomas was evaluated. The low grade astrocytomas 
(grade II and III) were excluded from further evaluation due to the low number of samples making 
statistical analysis unfeasible. Then differences in tumor grade were investigated comparing samples 
from oligodendroglioma patients with grade II and grade III tumors, respectively. Finally, metabolic 
patterns associated with survival time were investigated in glioblastomas and oligodendrogliomas 
separately. From the calculated OPLS-DA models, model weight values (w*), i.e., variable 
contribution values for the pre-defined sample class separations, were extracted and only variables 
related to the class separation were included in the final OPLS-DA models (w*average ± 2 SD). 
Furthermore, a Mann–Whitney U-test was used to calculate a probability value (p-value) for each 
included metabolite in relation to the class separations of interest. All models were validated using  
cross-validation and p-values for the cross-validated model were calculated using CV-ANOVA [46].  
A seven-fold cross-validation procedure was applied using 1/7 of the data as the test set, while the 
remaining 6/7 of the data were modeled and then repeating this seven times. Furthermore, for all  
OPLS-DA models the number of latent variables (OPLS components) (A), the variation described in 
the metabolite data (R2X), the between class variation described (R2Y) and the between class variation 
predicted based on cross-validation (Q2) were reported. When comparing time of survival in GBM, 
patients that died shortly after diagnosis (≤4 months) were compared to patients that lived long after 
diagnosis (≥3 years). For oligodendrogliomas, patients that died within 2 years after diagnosis (short 
survival) were compared to patients that lived for more than 3 years (long survival). Survival groups 
were selected based on retrospective data from our institution with an expected 4 months survival in 
GBM of 65% and 3 year survival of only 8%. In oligodendroglioma grade II, 2- and 3-year survival is 
expected to be 78% and 75%, respectively. For patients with oligodendroglioma grade III expected 
survival of 2 and 3 years is 50% and 50%, respectively. However, in our consecutively collected 
material, we did not have enough patients within any clinically relevant time limits. Instead, we had 
two almost equally sized groups of patients; one group that died within two years of diagnosis and the 
other group that lived longer than 3 years, which is why those limits were the most inherent to get 
reliable statistics. All pattern recognition analysis, including cross-validation and CV-ANOVA, was 
performed in SIMCA (version SIMCA-P + 13.0; Umetrics, Umeå, Sweden). Model plots were created 
using SIMCA or GraphPad Prism (5.04; GraphPad Software Inc., La Jolla, CA, USA) in combination 
with Adobe Illustrator CS5 (15.0.0; Adobe Systems Inc., San Jose, CA, USA). To summarize the 
results, Receiver Operating Characteristic (ROC) curves were calculated for the detected significant 
metabolic patterns associated with survival. This way of utilizing ROC curves for metabolic patterns as 
compared to the conventional way using single markers is novel and makes it possible to evaluate the 
diagnostic and prognostic potential of metabolic patterns or signatures in a way that is familiar to the 
clinical community. The ROC calculations were performed in ROCCET: ROC Curve Explorer & 
Tester (www.roccet.ca) [47]. 

4.5. Pathway Analysis 

Resolved features with a putative identity surviving the criteria for significance described 
previously were subjected to pathway analysis, using IPA® (Ingenuity Systems, Inc, Reawood City, 

http://www.roccet.ca/
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CA, USA). Top canonical pathways and biological functions were investigated. Detected metabolites 
in pathways relevant for tumor biology were selected for further evaluation and discussion. 

 

Figure 3. Overview of the metabolomic workflow. (Upper panel. Left) Raw gas 
chromatography-time of flight mass spectrometry (GC-TOFMS) data for the analyzed 
samples makes up a three dimensional matrix with the Time axis being retention time or 
index for each metabolite linked to the elution from the chromatographic system, the mass 
to charge (m/z) axis being the mass over charge ration for the molecular fragments detected 
by the mass spectrometer and the Samples axis being the analyzed samples. (Middle) To 
obtain pure chromatographic and spectral profiles for relative quantification and 
identification of metabolites the raw GC-TOFMS data was processed by hierarchical 
multivariate curve resolution (HMCR), which is a multivariate deconvolution technique 
especially developed to resolve complex GC-MS based metabolomics data from multiple 
samples to make it suitable for multiple sample comparisons by means of e.g. pattern 
recognition approaches. (Right) The area under each resolved metabolite peak makes up 
the variables of the resulting data matrix (X) used as input for further pattern recognition 
and statistical analysis. Each column of X represents one resolved metabolite peak over all 
samples (rows of X). Chemometric bioinformatics based pattern recognition is applied to, 
X.; e.g. for investigating the difference between two sample classes (turquoise and grey in 
X). (Lower panel. Left) The sample variation of X is projected in the model scores 
allowing interpretation of sample distribution patterns. Each symbol in the scores plot 
represents one sample described by all variables/metabolites (columns of X). As an 
example, the pink sample symbol relates to the pink row of X. (Right) The 
variable/metabolite variation is projected in the model loadings allowing interpretation of 
sample distribution patterns and explanation of variable contribution to patterns in seen in 
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scores. Each symbol in the loading plot represents on variable/metabolite. As an example, 
the blue symbol relates to the blue column of X as well as the blue resolved metabolite 
profile in the upper middle frame. 
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