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Abstract: The study of the omics cascade, which involves comprehensive investigations 

based on genomics, transcriptomics, proteomics, metabolomics, etc., has developed rapidly 

and now plays an important role in life science research. Among such analyses, 

metabolome analysis, in which the concentrations of low molecular weight metabolites are 

comprehensively analyzed, has rapidly developed along with improvements in analytical 

technology, and hence, has been applied to a variety of research fields including the 

clinical, cell biology, and plant/food science fields. The metabolome represents the 

endpoint of the omics cascade and is also the closest point in the cascade to the phenotype. 

Moreover, it is affected by variations in not only the expression but also the enzymatic 

activity of several proteins. Therefore, metabolome analysis can be a useful approach for 

finding effective diagnostic markers and examining unknown pathological conditions.  

The number of studies involving metabolome analysis has recently been increasing  

year-on-year. Here, we describe the findings of studies that used metabolome analysis to 

attempt to discover biomarker candidates for gastroenterological cancer and discuss 

metabolome analysis-based disease diagnosis. 
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1. Introduction to Metabolomics 

1.1. Omics 

The study of the omics cascade, which involves comprehensive investigations based on genomics, 

transcriptomics, proteomics, metabolomics, etc., has developed rapidly and now plays an important 

role in life science research. Genomics makes it possible to find gene mutations and gene polymorphisms, 

and there is an abundance of reports about genomics-based studies. Transcriptomics is an approach in 

which biological samples are analyzed to obtain information about the concentrations of a large 

number of mRNA transcripts in a simultaneous manner. The latter information includes gene 

expression data related to functional genomics. Recently, the comprehensive analysis of microRNA 

molecules has attracted increasing attention in the life science field, especially the medical research 

field. In proteomics, information about protein expression levels and functions, such as about abnormal 

protein expression, protein phosphorylation, and protein interactions, is evaluated, and a great number 

of academic papers about such research have been published. Recently, metabolomics or metabolome 

analysis, which involves the comprehensive analysis of low molecular weight metabolites, has rapidly 

developed along with improvements in analytical technology leading to its use in a variety of research 

fields including clinical, cell biology, and plant/food science studies [1–4]. 

1.2. Characteristics of Metabolomics 

Metabolome analysis is used to evaluate the characteristics and interactions of low molecular 

weight metabolites under a specific set of conditions, for example, at a particular developmental stage, 

in certain environmental conditions, or after specific genetic modifications. The metabolome mainly 

represents the endpoint of the omics cascade and is also the closest point in the cascade to the 

phenotype. Changes in metabolite levels can also be induced by exogenous factors, such as 

environmental and dietary factors, while genomic information is not basically affected by such factors. 

Moreover, in addition to expression variations, the metabolome is also affected by the enzymatic 

activities of various proteins. Therefore, metabolite profiles are considered to be a summary of the 

other upstream omics profiles, and metabolome analysis might be able to detect subtle changes in 

metabolic pathways and deviations from homeostasis before phenotypic changes occur [5,6]. Taken 

together, the metabolite profile of a cell is more likely to represent the cell’s status than its DNA, 

RNA, or protein profile. On the basis of these facts, metabolomics has started to be used in medical 

research. In such studies, metabolomics has mainly been utilized to discover biomarker candidates for 

cancer. For example, a search of the papers included in the PubMed database [7] using the keywords 

“metabolomics”, “cancer”, and “biomarker” found a total of 377 papers, and the number has been 

increasing year-on-year. In addition, metabolomics can also be used to examine unknown pathological 

conditions. Here, we describe the findings of studies that have used metabolome analysis to attempt to 
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discover biomarker candidates for gastroenterological cancer and discuss metabolome analysis-based 

disease diagnosis. 

2. Metabolism in Cancer 

D. Hanahan and R.A. Weinberg suggested that the following characteristics are hallmarks of 

cancer: sustained proliferation, evasion from growth suppressors, active invasion and metastasis, the 

enabling of replicative immortality, the induction of angiogenesis, resistance to cell death, the 

deregulation of cellular energetics, avoidance of immune destruction, tumor-promoting inflammation, and 

genome instability and mutation [8,9]. Among these characteristics, the deregulation of cellular energetics 

seems to be particularly related to metabolomics research. Actually, in the study by Hirayama et al., 

metabolome analysis using capillary electrophoresis-mass spectrometry (CE-MS) demonstrated that 

colon and gastric tumors produce energy by glycolysis rather than oxidative phosphorylation via the 

tricarboxylic acid cycle, even in the presence of an adequate oxygen supply, which is known as “the 

Warburg effect” [10]. The accumulation of significantly higher levels of most amino acids, which are 

indirectly used as energy sources, in tumor tissue compared with non-tumor tissue has also been 

reported [10]. In addition, cancer cells obtain energy via glutaminolysis as well as glycolysis [11].  

The relationship between “active and metastasis” and metabolites has started to be elucidated. 

Sarcosine, which is an N-methyl derivative of the amino acid glycine, was identified as a potentially 

important metabolic intermediary for prostate cancer cell invasion and aggressivity [12]. It was also 

proposed that glycine metabolism may represent a metabolic vulnerability in rapidly proliferating cancer 

cells [13]. Thus, metabolites themselves seem to affect cancer cells somehow, and these findings suggest 

that the pathogenesis of cancer leads to alterations in metabolite levels in the body. If such metabolite 

alterations influence the metabolite levels in biological fluids such as serum/plasma, urine, and saliva,  

it may be possible to use the metabolite concentrations of such fluids as biomarkers of cancer. 

3. Biomarker Discovery in Gastroenterological Cancer Using Metabolomics 

3.1. Biomarker Discovery and Gastroenterological Cancer 

Gastroenterological cancer is a group of cancers including esophageal, gastric, colorectal, hepatic, and 

pancreatic cancer. Oral cancer may be also included in gastroenterological cancer. Gastroenterological 

cancer remains relatively asymptomatic until it reaches the progressive state, at which point it exhibits 

poor prognosis. Therefore, methods that facilitate the detection of gastroenterological cancer at an 

earlier stage are desired, because early stage cancer patients are highly likely to make a complete 

recovery from such conditions. Regarding gastroenterological cancer, biomarkers that make it possible 

to accurately predict prognosis, therapeutic efficacy, and adverse effects are also required. Recently, 

studies on metabolomics-based biomarker discoveries have been widely reported (Table 1). In 

addition, there are some articles in which the metabolite alterations in tumor tissues were evaluated 

using tissue metabolome analysis and the results leading to elucidation of pathogenesis of 

gastroenterological cancer were shown (Table 1). The pathogenesis of gastroenterological cancer is 

considered to be closely associated with lifestyle factors as well as genome mutations associated with 
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oncogenes and tumor suppressor genes. Therefore, metabolomics is likely to be a suitable method for 

biomarker discovery [14], as described in the “Introduction to Metabolomics”. 

3.2. Metabolomics-Based Biomarker Discovery 

Metabolomics-based biomarker discovery studies for gastroenterological cancer have been  

widely performed by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass 

spectrometry (GC-MS), CE-MS, nuclear magnetic resonance (NMR) spectroscopy or Fourier 

transform-infrared (FT-IR) spectroscopy (Table 1). MS-based techniques exhibit relatively high 

selectivity and sensitivity during such analyses, and therefore, they have often been used for metabolite 

profiling. In metabolite profiling, analyses have been performed focusing on the metabolites related  

to the specific pathways, e.g., amino acids, organic acids, carbohydrates, and lipids [15], and then  

precise identification of the metabolites and correction for analytical inaccuracies are needed [16].  

On the contrary, metabolic fingerprinting is the method for sample classification, and the target 

samples’ spectral patterns based on their biological state and/or origin are available [17]. NMR and FT-IR 

spectroscopy display relatively low selectivity so they are often used in metabolite fingerprinting aimed at 

evaluating the differences among biological samples, although there have been some studies in which 

metabolite profiling was performed using NMR and FT-IR. Therefore, metabolite profiling and metabolite 

fingerprinting are applied to metabolomics-based biomarker discovery. 

3.3. Biomarker Discovery in Gastroenterological Cancer by Metabolomics 

Previous studies about metabolome analysis in patients with gastroenterological cancer have 

analyzed the metabolites present in serum/plasma, saliva, urine, feces, and/or tissue samples, and there 

is a particular abundance of reports about the metabolites found in serum/plasma samples. Recent 

reports about metabolome analysis in patients with gastroenterological cancer are listed in Table 1. 

Metabolome analysis-based attempts to elucidate biomarker candidates for gastroenterological cancer 

have been carried out using a variety of techniques including GC-MS, LC-MS, CE-MS, NMR, and 

Fourier transform ion cyclotron resonance (FTICR)-MS. Each approach has different characteristics, 

and it is impossible to measure all metabolites including hydrophobic and hydrophilic molecules using 

a single technique. Therefore, in some biomarker discovery studies, a variety of instruments were used, 

which allowed the researchers to evaluate the potential of a wide range of metabolites as novel 

biomarkers. However, there were some inconsistencies between the results obtained by different 

research groups. For example, in the report by Chen et al. the urine level of isoleucine was higher in 

colorectal cancer patients compared with healthy controls [18]. On the contrary, Qiu et al. demonstrated 

that colorectal cancer patients had lower urinary levels of isoleucine [19]. In addition, differences 

between the presence and absence of significant alterations in metabolite concentrations have also been 

observed. These discrepancies might have been due to the differences in the methods used to collect 

the biological samples, and these issues are discussed in Section 4. Thus, although there is an 

abundance of reports about the use of metabolome analysis to discover biomarker candidates for 

gastroenterological cancer, no firm conclusions have yet been reached. 

 



Metabolites 2014, 4 551 

 

 

Table 1. A list of recent reports in which patients with gastroenterological cancer were subjected to metabolome analysis. 

Disease Specimen Upregulated Metabolites Downregulated Metabolites Analytical Method Ref. 

Oral cancer Saliva Lactate; n-Eicosanoate Valine; GABA; Phenylalanine UPLC-Q-TOF/MS 
[20] 

Research aim: To discover salivary metabolite biomarkers and to explore salivary metabolomics as a disease diagnostic tool 

Oral cancer Saliva 

Cadaverine; 2-Aminobutyrate; Alanine;  

Piperidine; Taurine; Piperideine;  

Pipecolate; Pyrroline hydroxycarboxylate;  

Betaine; Leucine + Isoleucine; Phenylalanine; Tyrosine; 

Histidine; Valine; Tryptophan;  

β-Alanine; Glutamate; Threonine; Serine; Glutamine; 

Choline; Carnitine 

None CE-TOF-MS 
[21] 

Research aim: To predict oral cancer susceptibility via saliva-based diagnostics based on metabolomics technology 

Oral cancer Urine Alanine; Valine; Serine; Tyrosine; Cystine 6-Hydroxynicotinate; Hippurate GC-QMS 

[22] Research aim: To establish a diagnostic tool for early stage oral squamous cell carcinoma and its differentiation from other oral conditions by the urinary 

metabolite profiling approach 

Oral cancer Serum 
Glycerate; Serine; Laurate; N-Acetyl-L-aspartate; 

Asparagine; Ornithine; Heptadecanate 
None GC-QMS 

[23] 
Research aim: To find metabolite biomarker candidates for detection of early stage oral squamous cell carcinoma 

Esophageal cancer 
Mucosal 

tissue 

L-Valine; Naphthalene; 1-Butanamine;  

Pyrimidine; Aminoquinoline; L-Tyrosine; Isoleucine; 

Purine; Serine; Phosphate;  

myo-Inositol; Arabinofuranoside; L-Asparagine; 

Tetradecanoate; L-Alanine; Hexadecanoate 

L-Altrose; D-Galactofuranoside; 

Arabinose; Bisethane 
GC-QMS 

[24] 

Research aim: To find tissue metabolomic biomarkers that are identifiable and diagnostically useful for esophageal cancer 
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Table 1. Cont. 

Disease Specimen Upregulated Metabolites Downregulated Metabolites Analytical Method Ref. 

Esophageal cancer 
Mucosal 

tissue 

N-acetylaspartate; Glutamate;  

Valine; Leucine + Isoleucine; Tyrosine;  

Methionine; Phenylalanine; GABA; 

Phenylacetylglutamine; Glutamic acid γ-H; Unsaturated 

lipids; Short-chain fatty acids; Phosphocholine; 

Glycoproteins; Acetone; Malonate; Acetoacetate; Acetate;  

Trimethylamine; Formate; Uracil;  

Adenine in ATP/ADP and NAD/NADH;  

Acetyl hydrazine; Hippurate 

Creatine; Glycine; Glutamine;  

4-Hydroxyphenylpyruvate; Creatinine; 

Taurine; Aspartate; myo-Inositol; 

Cholesterol; Choline; Glucose; Ethanol;  

α-Ketoglutarate oxime; AMP; NAD 

NMR 

[25] 

Research aim: To find the potential tissue metabolite biomarkers for clinical  

diagnosis for different stages of human esophageal cancer and new insights for the mechanism research 

Esophageal cancer Tissue Choline; Alanine; Glutamate Creatinine; myo-Inositol; Taurine NMR 

[26] Research aim: To establish the biochemical profiles of adjacent non-involved tissue and malignant esophageal tumor and to determine the metabolomic changes of 

tumors with different tumor differentiation for finding metabolomic indicators sensitive to tumor differentiation 

Esophageal cancer Urine 

Urea; Acetate; Pantothenate; 3-Hydroxyisovaleate; 

Acetone; Formate; 2-Hydroxyisobutyrate; Creatinine; 

Ethanolamine; 2-Aminobutyrate; Leucine; Succinate; 

Glutamine; Glucose;  

Glycine; Tryptophan; Trimethylamine-N-oxide; Valine; 

Lactate; Tyrosine 

Dimethylamine; Alanine; Citrate NMR 
[27] 

Research aim: To find urinary metabolite signatures that can clearly distinguish both Barrett’s esophagus and esophageal cancer from controls 

Esophageal cancer Serum Uridine 

1-Methyladenosine;  

N2,N2-Dimethylguaosine;  

N2-Methylguanosine; Cytidine 

LC-QqQ/MS 
[28] 

Research aim: To investigate whether nucleosides can potentially serve as useful biomarkers to identify esophageal adenocarcinoma 

Esophageal cancer Serum 
Lactate; β-Hydroxybutyrate;  

Lysine; Glutamine; Citrate 

Valine; Leucine + Isoleucine; 

Methionine; Tyrosine;  

Tryptophan; Myristate; Linoleate 

LC-Q-TOF/MS 

NMR 
[29] 
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Table 1. Cont. 

Disease Specimen Upregulated Metabolites Downregulated Metabolites Analytical Method Ref. 

Research aim: To identify the metabolite based biomarkers associated with the early stages  

of esophageal adenocarcinoma with the goal of improving prognostication 
 

Esophageal cancer Serum 
β-Hydroxybutyrate; Acetoacetate; Creatine; Creatinine; 

Lactate; Glutamate; Glutamine; Histine 

LDL/VLDL; Unsaturated lipids; Acetate; 

α-Glucose; β-Glucose; Tyrosine 
NMR 

[30] 
Research aim: To characterize the systemic metabolic disturbances underlying esophageal cancer and to  

identify possible early biomarkers for clinical prognosis 

Esophageal cancer Serum 
Lactate; Glycolate; Malonate; Fumarate; L-Serine;  

L-Aspartate; L-Glutamine 
Pyruvate GC-QMS 

[31] 
Research aim: To investigate the differences in serum metabolite profiles using a metabolomic approach and  

to search for sensitive and specific metabolomic biomarker candidates 

Esophageal cancer Plasma 

Phosphatidylinositol; Lithocholyltaurine; Phosphatidiate; 

L-Urobilinogen;  

9'-Carboxy-γ-tocotrienol; PC; PE;  

Sphinganine 1-phosphate; Phosphatidylserine(16:0/14:0); 

LPC(22:2); Ganglioside GM2(d18:1/24:1(15Z)); 

Lithocholate 3-O-glucuronide;  

12-Oxo-20-dihydroxy-leukotriene B4 

Desmosine; Isodesmosine;  

5-β-Cyprinol sulfate 
UPLC-TOF/MS 

[32] 

Research aim: To search for valuable markers including circulating endogenous metabolites associated with the risk of esophageal cancer 

Gastric cancer Tissue 

2-Aminobutyrate; 3-Aminoisobutanoate; Valine;  

2-Hydroxy-4-methyl-pentanoate;  

Isoleucine; Proline; Uracil; Threonine;  

Thymine; Dihydrouracil; Aspartate;  

Pyroglutamate; GABA; Cysteine; Glutamate; 

Dodecanoate; Asparagine; Putrescine; Cadaverine; 

Ascorbate; Gluconate; Xanthine; N-Acetyl glucosamine; 

Kynurenine; Inosine 

Hydroxyacetate;  

3,4-Dihydroxy-2(3H)-furanone; 

Nicotinamide; Glycerol phosphate; 

Tetradecanoate; Palmitelaidate;  

Palmitate; Linoleate; Stearate; 

Arachidonate; L-Palmitoyl-glycerol; 

Sucrose; Cholesterol 

GC-TOF/MS [33] 
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Table 1. Cont. 

Disease Specimen Upregulated Metabolites Downregulated Metabolites Analytical Method Ref. 

Research aim: To reveal the major metabolic alterations essential for the development of gastric cardia cancer and to  

discover a biomarker signature of gastric cardia cancer 
 

Gastric cancer Urine Arginine; Leucine; Valine; Isoleucine; Lactate 
Methionine; Serine; Aspartate; Histidine; 

Succinate; Citrate; Malate 
CE-MS 

[34] 
Research aim: To search for potential tumor markers of gastric cancer in patients’ urine samples 

Gastric cancer Serum 3-Hydroxypropionate; 3-Hydroxyisobutyrate Pyruvate; Octanoate; Phosphate GC-QMS 

[31] Research aim: To investigate the differences in serum metabolite profiles using a metabolomic approach and to  

search for sensitive and specific metabolomic biomarker candidates 

Gastric cancer Serum L-Valine; Sarcosine; Hexadecanenitrile 

L-Glutamine; Hexanedioate;  

9,12-Octadecadienoate; 9-Octadecenoate; 

trans-13-Octadecenoate; 

Nonahexacontanoate; Cholesta-3,5-diene; 

Cholesterol/Pentafluoropropionate; 

Cholesterol; Cholest-5-en-3-ol;  

Fumarate; 2-O-Mesyl arabinose; 

Benzeneacetonitrile; 2-Amino-4-hydroxy-

pteridinone; 1,2,4-Benzenetricarboxylate 

GC-QMS 
[35] 

Research aim: To explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity 

Colorectal cancer 
Mucosal 

tissue 

Lactate; Phosphate; L-Glycine; 2-Hydroxy-3-

methylvalerate; L-Proline; L-Phenylalanine;  

Palmitate; Margarate; Oleate; Stearate; Uridine;  

11,14-Eicosadienoate; 11-Eicosenoate;  

1-O-Heptadecylglycerol; 1-Monooleoylglycerol;  

Propyl octadecanoate; Cholesterol 

Fumarate; Malate; D-Mannose;  

D-Galactose; D-Glucose;  

1-Hexadecanol; Arachidonate 

NMR 

GC-QMS 
[36] 

Research aim: To reveal that global metabolic profiling of colon mucosae can define metabolic signatures for not only discriminating malignant from normal 

mucosae but also distinguishing the anatomical and clinicopathological characteristics of colorectal cancer 
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Table 1. Cont. 

Disease Specimen Upregulated Metabolites Downregulated Metabolites Analytical Method Ref. 

Colorectal cancer Tissue 

Glycine; L-Proline; L-Phenylalanine; L-Alanine;  

L-Leucine; L-Valine; L-Serine; L-Threonine;  

L-Isoleucine; Picolinate; L-Methionine; L-Aspartate;  

β-Alanine; Aminomalonate; 1-Methylhydantoin; Palmitate; 

Margarate; Oleate; Stearate; 11-Eicosenoate; Myristate; 

Pentadecanoate; Linolenate; Lignocerate; Phosphate;  

L-Arabinose; Lactate; Maleate; Pantothenate; Glycerol;  

1-Monooleoylglycerol; Uracil; Uridine; Cholesterol 

Arachidonate; D-Mannose; D-Galactose; 

D-Glucose; Fumarate; Malate; Oxalate; 

Succinate; Ribitol; Squalene 

GC×GC-TOF/MS 

[37] 

Research aim: To investigate whether the metabotype associated with colorectal cancer is distinct from that of normal tissue and whether various biochemical 

processes are altered by pathogenesis of colorectal cancer 

Colorectal cancer Urine Lactate; Arginine; Leucine; Isoleucine; Valine 
Histidine; Methionine; Aspartate; Serine; 

Succinate; Citrate; Malate 
CE-IT/MS 

[18] 
Research aim: To investigate the metabolic profile of urine metabolites and to elucidate their clinical significance in patients with  

colorectal cancer including possibility as the biomarker candidates for early detection. 

Colorectal cancer Urine 

5-Hydroxytryptophan; 5-Hydroxyindoleacetate; Tryptophan; 

Glutamate; Pyroglutamate; N-Acetyl-aspartate; p-Cresol;  

2-Hydroxyhippurate; Phenylacetate; 

Phenylacetylglutamine; p-Hydroxyphenylacetate 

Succinate; Isocitrate; Citrate;  

3-Methylhistidine; Histidine 
GC-QMS 

[19] 

Research aim: To demonstrate the potentials of this noninvasive urinary metabolomic strategy as a complementary diagnostic tool for colorectal cancer 

Colorectal cancer Serum None 
FAs (C28H46O4,  

C28H48O4, C28H50O4) 

FTICR-MS 

LC-Q-TOF/MS 

NMR 

QqQ-MS 

[38] 

Research aim: To discover putative metabolomic markers associated with colorectal cancer 
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Table 1. Cont. 

Disease Specimen Upregulated Metabolites Downregulated Metabolites Analytical Method Ref. 

Colorectal cancer Serum 

Pyruvate; α-Hydroxybutyrate; Phosphate; Isoleucine;  

β-Alanine; meso-Erythritol; Aspartate; Pyroglutamate; 

Glutamate; p-Hydroxybenzoate; Arabinose; Asparagine; 

Xylitol; Ornithine; Citrulline; Glucuronate; Glucosamine; 

Palmitoleate; Inositol; Kynurenine; Cystamine;  

Cystine; Lactitol 

Nonanoate; Creatinine; Ribulose;  

O-Phosphoethanolamine 
GC-QMS 

[39] 

Research aim: To establish new screening methods for early diagnosis of colorectal cancer via metabolomics 

Colorectal cancer Serum 

Lactate; Glycolate; L-Alanine; 3-Hydroxypropionate;  

L-Proline; L-Methionine; Thioglycolate; L-Glutamate;  

L-Asparagine; L-Glutamine; Glucuronic lactone 

None GC-QMS 

[31] 
Research aim: To investigate the differences in serum metabolite profiles using a metabolomic approach and to  

search for sensitive and specific metabolomic biomarker candidates 

Colorectal cancer Serum 

LPC(16:0); LPC(18:2); LPC(18:1); LPC(18:0); 

LPC(20:4); LPC(22:6); PC(34:1); LPA(16:0); LPA(18:0); 

LPC(16:0) 

Palmitic amide; Oleamide; 

Hexadecanedioate; Octadecanoate; 

Eicosatrienoate; Myristate 

DI-FTICR-MS 

[40] 
Research aim: To discriminate colorectal cancer patients from controls by metabolomic biomarkers and to  

reveal the stage-related biomarkers for colorectal cancer and the changing trends of four lipid species in the colorectal cancer progression 

Hepatic cancer Tissue Arachidyl carnitine; Tetradecanal; Oleamide 

β-Sitosterol; L-Phenylalanine; LPC(18:2); 

Glycerophosphocholine; LPE(18:3); 

Chenodeoxycholate glycine conjugate; 

LPC(22:6); Quinaldate; LPE(18:0); 

LPC(18:0); LPC(20:4) 

LC-LTQ-Orbitrap-

MS 
[41] 

Research aim: To select characteristic endogenous metabolites in hepatitis B virus-related hepatocellular carcinoma patients and to  

identify their molecular mechanism and potential clinical value 
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Table 1. Cont. 

Disease Specimen Upregulated Metabolites Downregulated Metabolites Analytical Method Ref. 

Hepatic cancer Urine Octanedioate; Glycine; Tyrosine; Threonine; Butanedioate 

Heptanedioate; Ethanedioate; Xylitol; 

Urea; Phosphate; Propanoate; Pyrimidine; 

Butanoate; Trihydroxypentanoate; 

Hypoxanthine; Arabinofuranose; 

Hydroxyproline dipeptide; Xylonate 

GC-QMS 

[42] 

Research aim: To investigate the urinary metabolic difference between hepatocellular carcinoma patients and normal subjects and to  

find biomarkers for hepatocellular carcinoma 

Hepatic cancer Serum 
Cortisol; GCA; GCDCA; C16:1-CN; FAs (C16:1, C16:0, 

C18:2, C18:1, C18:0, C20:5, C20:4, C20:2, C22:6, C22:5) 

Tryptophan; LPC(14:0); LPC(20:3); 

LPC(20:5); C10-CN; C10:1-CN;  

C8-CN; C6-CN 

LC-Q-TOF/MS 

[43] 
Research aim: To study the related metabolic deregulations in hepatocellular carcinoma and chronic liver diseases and to  

discover the differential metabolites for distinguishing the different liver diseases 

Hepatic cancer Plasma LPC(24:0); Glycodeoxycholate; Deoxycholate 3-sulfate 

LPC(14:0); LPC(16:0); LPC(18:0); 

LPC(18:1); LPC(18:2); LPC(18:3); 

LPC(20:4); FA(24:0); FA(24:1); 

LPC(20:2); LPC(20:3); LPC(20:5) 

UPLC-QqQ/MS 

GC-QMS 
[44] 

Research aim: To evaluate the molecular changes in the plasma of hepatocellular carcinoma patients and to  

provide new insights into the pathobiology of the diseases 

Hepatic cancer Feces LPC(18:0); LPC(16:0) 
Chenodeoxycholate dimeride; Urobilin; 

Urobilinogen; 7-Ketolithocholate 
UPLC-Q-TOF/MS 

[45] 
Research aim: To find fecal metabolite biomarkers for distinguishing liver cirrhosis and hepatocellular carcinoma patients from healthy controls 

Pancreatic cancer Saliva 

Cadaverine; 2-Aminobutyrate; Alanine; Putrescine; 

Methylimidazole acetate; Trimethylamine; Piperidine; 

Leucine + Isoleucine; Phenylalanine; Tyrosine;  

Histidine; Proline; Lysine; Glycine; Ornithine; 

Burimamide; Ethanolamine; GABA; Aspartate;  

Valine; Tryptophan; β-Alanine; Glutamate; Threonine; 

Serine; Glutamine; Hypoxanthine; Choline; Carnitine 

Taurine; Glycerophosphocholine CE-TOF-MS [21] 
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Table 1. Cont. 

Disease Specimen Upregulated Metabolites Downregulated Metabolites Analytical Method Ref. 

Research aim: To reveal the comprehensive salivary metabolic profiles of pancreatic cancer patients and healthy controls and to  

identify cancer-specific biomarkers with high discriminative ability 
 

Pancreatic cancer Tissue Taurine 

Succinate; Malate; Uridine; Glutathione; 

UDP-N-Acetyl-D-glucosamine;  

NAD; UMP; AMP 

UPLC-TOF/MS 
[46] 

Research aim: To investigate the differences in the metabolite profiles of normal and pancreas tumor tissue with a goal of developing prognostic biomarkers 

Pancreatic cancer Serum 

Lactate; Thiodiglycolate; 7-Hydroxyoctanoate; 

Asparagine; Aconitate; Homogentisate;  

N-Acetyl-tyrosine 

Glycine; Urea, Octanoate; Glycerate; 

Decanoate; Laurate; Myristate;  

Palmitate; Urate; Margarate; Stearate 

GC-QMS 

[47] 
Research aim: To evaluate the differences in the metabolomes between pancreatic cancer patients and healthy volunteers and to  

aid the discovery of novel biomarkers 

Pancreatic cancer Serum Arabinose; Ribulose 

Valine; 2-Aminoethanol; n-Caprylate; 

Threonine; Nonanoate; Methionine; 

Creatinine; Asparagine; Glutamine;  

O-Phosphoethanolamine; Glycyl-Glycine; 

1,5-Anhydro-D-glucitol; Lysine; 

Histidine; Tyrosine; Urate 

GC-QMS 
[48] 

Research aim: To construct a diagnostic model for pancreatic cancer using serum metabolomics and to confirm its diagnostic performance 

Pancreatic cancer Plasma 

Arachidonate; Erythritol; Cholesterol; N-Methylalanine; 

Lysine; Deoxycholylglycine; Cholylglycine; LPC(16:0); 

Tauroursodeoxycholate; Taurocholate; LPC(18:2); 

PE(26:0); PC(34:2) 

Glutamine; Hydrocinnamate; 

Phenylalanine; Tryptamine; Inosine 

GC-TOF/MS 

LC-IT/MS 

LC-LTQ-Orbitrap-MS 
[49] 

Research aim: To seek novel metabolic biomarkers of pancreatic cancer 

In this review, we searched for the articles, in which the evaluations of differences between cancer and control were performed by metabolomics using gas 

chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), Fourier 

transform ion cyclotron resonance (FTICR-MS) and nuclear magnetic resonance (NMR), via PubMed database and so on, and their articles were shown in Table 1. In 

Table 1, the instruments used for metabolomics were described to specify the analytical method, and the aim of each article was also stated. In Table 1, upregulated or 

downregulated metabolites in serum/plasma, saliva, feces or urine of the cancer patients compared with healthy controls were listed. Regarding tissues, upregulated or 
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downregulated metabolites in tumor tissues compared with non-tumor (normal) tissues in cancer patients were shown. Table 1 shows the list of metabolites that were 

demonstrated to be significantly changed between cancer and control in each article. In some articles, many metabolites with the significant alterations between cancer and 

control were exerted. Regarding these articles, only metabolites that were determined as biomarker candidates based on each criterion was listed in Table 1.  

Abbreviations: GABA, γ-Aminobutyrate; LPC, Lysophosphatidylcholine; PC, Phosphatidylcholine; LPA, Lysophosphatidate; LPE, Lysophosphatidylethanolamine; PE, 

Phosphatidylethanolamine; FA, Fatty acids; GCDCA, Glycochenodeoxycholate; GCA, Glycocholate; UDP, Uridine diphosphate; NAD, Nicotinamide adenine dinucleotide; 

UMP, Uridine monophosphate; AMP, Adenosine monophosphate; ATP, Adenosine triphosphate; CE-IT/MS, Capillary electrophoresis-ion-trap/mass spectrometry;  

CE-MS, Capillary electrophoresis-mass spectrometry; CE-TOF-MS, Capillary electrophoresis-time-of-flight mass spectrometry; DI-FTICR-MS, Direct infusion-Fourier 

transform ion cyclotron resonance-mass spectrometry; FTICR-MS, Fourier transform ion cyclotron resonance-mass spectrometry; GC×GC-TOF/MS, Two-dimensional 

gas chromatography-time-of-flight mass spectrometry; GC-QMS, Gas chromatography-quadrupole mass spectrometry; GC-TOF/MS, Gas chromatography-time-of-flight 

mass spectrometry; LC-IT/MS, Liquid chromatography-ion-trap/mass spectrometry; LC-LTQ-Orbitrap-MS, Liquid chromatography-linear ion trap quadrupole-Orbitrap-mass 

spectrometry; LC-QqQ/MS, Liquid chromatography-triple quadrupole/mass spectrometry; LC-Q-TOF/MS, Liquid chromatography-quadrupole-time-of-flight/mass spectrometry; 

NMR, nuclear magnetic resonance; QqQ-MS, Triple quadrupole-mass spectrometry; UPLC-QqQ/MS, Ultra performance liquid chromatography-triple quadrupole/mass 

spectrometry; UPLC-Q-TOF/MS, Ultra performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry; UPLC-TOF/MS, Ultra performance liquid 

chromatography-time-of-flight/mass spectrometry. 
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3.4. Early Stage Cancer and Metabolomics 

Early detection of cancer is very important for a complete recovery. Therefore, many researchers 

have searched for possible biomarkers of early cancer detection. In biomarker discovery research using 

metabolomics, evaluations of early cancer detection have been carried out. In the study by Kobayashi et al. 

a diagnostic model for pancreatic cancer was established using GC-MS-based serum metabolomics 

and multiple logistic regression analysis accompanied by the stepwise method [48]. This established 

model had a high sensitivity of 77.8% in resectable pancreatic cancer, namely relatively early stage 

pancreatic cancer, while sensitivities of CA19-9 and CEA were 55.6% and 44.4%, respectively. In 

serum lipid analysis for colorectal cancer, the metabolite profile data based on palmitic amide, 

oleamide, hexadecanedioate, octadecanoate acid, eicosatrienoate, LPC(18:2), LPC(20:4), LPC(22:6), 

myristate and LPC(16:0) exerted a sensitivity of 0.981 in early stage colorectal cancer patients 

compared to healthy volunteers [40]. In the analysis of plasma amino acids, alterations in levels of 

amino acids were observed in early stage lung, gastric, colorectal, breast, and prostate cancer [50]. 

Thus, the metabolites in biological fluids seem to be changed at the early stage of cancers, and 

metabolomics may be a powerful strategy for biomarker discovery, although detailed validation is still 

lacking at this point in time. 

3.5. The Relationship between Metabolite Alterations and Cancer 

Recently, studies aimed at biomarker candidate discovery based on amino acid-specific metabolite 

profiling have also been performed [50]. Moreover, it was demonstrated that high-mobility group  

box 1 protein (HMGB1) is released during the development and progression of colorectal cancer and 

subsequently induces muscle tissues to supply glutamine to cancer cells [51]. These findings suggest 

that increased HMGB1 levels lead to alterations in the blood amino acid profile and increased glutamine 

levels in colorectal tumors. In the paper by Miyagi et al. [50], the plasma level of tryptophan was 

significantly decreased in five types of cancer, i.e. lung, gastric, colorectal, breast and prostate cancer 

compared with healthy controls. Tryptophan is converted to kynurenine by indoleamine-2,3-dioxygenase, 

and it has been demonstrated that indoleamine-2,3-dioxygenase is over-expressed in cancer cells [52]. 

The possibility that indoleamine-2,3-dioxygenase may cause immune escape of various different 

tumors [52–55] has also been suggested, and that over-expression of indoleamine-2,3-dioxygenase in 

tumors may increase tryptophan metabolism, leading to a decreased of tryptophan in cancer patients. In 

addition, as shown in Table 1, the level of lactate seems to be upregulated in various gastroenterological 

cancers. Lactate is synthesized from pyruvate in the anaerobic condition, and it is known that this 

lactate synthesis is upregulated in cancer cells. This phenomenon is called “the Warburg effect” [56], 

so this reaction possibly promotes lactate synthesis, leading to an increased level of lactate. Thus, it 

seems that there are not only specific metabolite alterations in certain cancers but also common 

metabolite alterations in various cancers. These metabolite alterations are more likely to be reflected 

by the results of the metabolite biomarker candidates. Therefore, to draw firm conclusions about 

metabolite biomarker candidates for gastroenterological cancer it is important to understand the 

relationship between metabolite alterations and cancer, and moreover to elucidate the reasons for the 

observed alterations in the metabolite profile. 
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4. Future of Metabolomics-Based Disease Diagnosis 

4.1. Procedures for Long-Term and Large-Scale Metabolomics Research 

In the future, metabolomics is expected to be used in the clinical setting to screen for a variety of 

diseases including gastroenterological cancers. If metabolomics technology in screening programs 

enables early diagnosis, it can result in marked improvements in patients’ quality of life. Recently, the 

Human Serum Metabolome (HUSERMET) Consortium recommended the procedures for long-term 

and large-scale metabolomic studies involving thousands of human serum/plasma samples [57]. 

Subsequently, a method for the global metabolite profiling of animal and human tissues has also been 

proposed [58]. The HUSERMET Consortium recommended the methods for sample collection, sample 

preparation, and data acquisition for LC-MS- and GC-MS-based studies and also pointed out that the 

most important stage in large-scale metabolomic studies is appropriate sample collection, because the 

systematic failure at the beginning of the investigation could invalidate the whole study. In addition, 

they proposed the protocols for large-scale GC-MS-based metabolomic studies, which describe the 

number of samples that should be prepared each week and the number of samples that should be 

measured in a day and recommend the usage of the retention index instead of retention time. The use 

of standard operating procedures based on validated protocols is important for studies attempting to 

find novel metabolite biomarker candidates. Quality control and assurance (QC/QA) is also important 

in the long-term and large-scale metabolomic studies [57,59–62]. Samples for QC are analyzed every 

batch throughout all measurement batches, and signal intensity, peak shape, retention time, separation 

resolution, mass accuracy, and the amount of detectable peaks are checked by using data obtained from 

QC samples. The pooled biological fluid samples and standard compound mixture samples may be used as 

QC samples. Before starting the batch measurement, it may be required to confirm the status of the 

injector, the mass spectrometer, and so on. Instrument tuning including mass calibration and sensitivity 

check is also required routinely as well as after the instrument maintenance. Recently, the analyzing 

workflow for the large-scale non-targeted serum metabolite profiling by LC-MS was visualized in a 

PubMed-indexed video journal [63]. 

4.2. Sampling for Biomarker Discovery Research by Metabolomics 

In the clinical setting, the analyses of biomarkers present in serum/plasma, saliva, urine, and tissue 

samples have been prevalent. However, collecting tissues is invasive, and therefore serum/plasma, 

saliva, and urine are well used. Especially serum/plasma biomarkers are preferable due to the ease of 

collection, and there are a variety of biomarker studies using serum/plasma. In the metabolomics 

research field, serum/plasma are also well used, and metabolomics-based studies evaluating the 

differences between plasma and serum metabolite levels have been carried out recently. In the report 

by Yu et al. [64], the serum levels of 104 of 122 metabolites were found to be about 10% higher than 

their plasma levels, and nine metabolites displayed serum levels that were more than 20% higher than 

their plasma levels. Yu et al. demonstrated that both plasma and serum metabolite data exhibited good 

reproducibility, but the plasma data displayed better reproducibility than the serum data. In another 

report by Yin et al. [65], it was stated that the exposure of blood to room temperature led to increased 

levels of hypoxanthine and sphingosine 1-phosphate, and hence, Yin et al. suggested that the following 
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procedures should be employed during sample collection: the use of ethylenediaminetetraacetic acid 

(EDTA)-plasma samples is recommended for situations involving the metabolomic analysis of clinical 

samples; hemolyzed samples should be excluded; blood should be placed in ice water immediately 

after collection and should not be stored for longer than 2 h; the use of non-refrozen plasma is 

recommended (repeated freezing should not be performed), and MS data should be carefully examined 

for unexpected signals (the selection of blood collection tubes is also important because chemical noise 

derived from blood collection tubes can interfere with data analysis). In addition, the intra- and/or 

inter-day variance of metabolite levels has to be taken into consideration. Intra- and/or inter-day 

variance data has been reported for some metabolites [39,66,67]; for example, a previous study found 

that the tryptophan levels observed in the afternoon and at night were significantly lower than those 

detected in the morning. During pre-treatment and the subsequent measurement process, some 

metabolites might be unstable, and thus, it is necessary to confirm their corresponding metabolites and 

to eliminate any unstable metabolites from the subsequent analyses. 

As for urine, the need to correct the obtained metabolite concentrations is an issue, although the 

correction using creatine and creatinine levels has been described in a great number of studies. 

However, collecting urine is non-invasive, and urine requires less sample pretreatment, because the 

protein level in urine is lower leading to a lack of complexity. Thus, urine has a number of advantages 

as an analytical material over other biological fluids [68–70], and in the future it may be recognized 

that urine is the most suitable biological fluids for the metabolomic approach to obtain meaningful 

diagnostic information. 

Recently, metabolomic studies using saliva have also been carried out in the medical research  

field [20,21]. In humans, there are the three paired major salivary glands—the parotid gland, the 

submandibular gland, and the sublingual gland—and saliva is secreted from these major salivary 

glands. Saliva contains various DNAs, mRNAs, proteins including enzymes and antibodies, 

metabolites, and other molecules. Some of these molecules pass into the saliva from the blood stream 

via transcellular or paracellular routes. Therefore, saliva may correspond to blood regarding the 

reflection the physiological state of the body, and may be useful as a material containing disease 

biomarkers. Saliva collection is easy and noninvasive, and moreover, no specialized equipment is 

needed to obtain saliva [71]. Now, salivary diagnostics is recognized as one of the main approaches in 

biomedical basic and clinical areas [72], and it has been demonstrated that molecules in saliva may be 

associated with disease conditions [73–75]. To date, the number of metabolomics studies using saliva 

is small, but the potential of saliva metabolomics as a biomarker discovery approach has been proven 

by the accumulated results from saliva metabolomics. 

4.3. Validation for Biomarker Discovery Research by Metabolomics 

After discovering novel metabolite biomarker candidates whilst paying careful attention to the 

above issues, validation testing should be performed. In the disease biomarker discovery research, the 

use of samples obtained from other facilities is also important. The proposal by Yin et al. as shown 

above [65], lists considerable issues when the validation research is carried out in other facilities. In 

addition, during validation, it might be better to use different instruments from those utilized to detect 

novel metabolite biomarker candidates. Furthermore, techniques other than MS should be employed. 
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When MS is used, it is necessary to prepare stable isotopes corresponding to the metabolite biomarker 

candidates if possible. The quantitative performance of mass spectrometers is affected by various 

factors such as ion suppression [76]. Therefore, stable isotopes are required to obtain detailed 

quantitative information about alterations in the levels of the target molecules [77]. Stable isotopes will 

also be essential for quantitative evaluations if the metabolomics-based research using MS is to result 

in practical clinical applications. During the validation process and in clinical practice, the use of 

multiple reaction monitoring (MRM) coupled with stable isotopes and triple quadrupole (QqQ) MS is 

a powerful method for measuring the levels of targeted metabolites, because MRM based on QqQ-MS 

leads to molecule detection with high sensitivity, selectivity, reproducibility as well as a broad 

dynamic analysis range. MRM coupled with stable isotope dilution using QqQ-MS is a longtime and 

principal method to quantify small molecules and also a powerful method for quantitative 

measurement of targeted proteins [78–80] Recently, an analysis of mouse blood metabolites using 

GC/QqQ-MS was validated, although the study did not use stable isotopes [81]. An metabolomic 

article describes the quantification of metabolites in serum/plasma carried out by LC-MS coupled with 

stable isotopes as internal standards, which are contained in the AbsoluteIDQTM p180 kit (BIOCRATES 

Life Sciences AG, Innsbruck, Austria) [82]. Through a strict validation process, the candidates can be 

narrowed down to several metabolites, and some biomarker candidates that exhibit high repeatability 

can be utilized for clinical application after assay optimization. 

4.4. Assay Optimization of Mass Spectrometry-Based Metabolomics 

Regarding the assay optimization of MS-based analysis systems, some problems remain to be 

resolved, for example, it would be useful if the following processes could be automated: (1) metabolite 

extraction; (2) the pre-treatment process; (3) data analysis including peak alignment, annotation, and 

identification; and (4) the output of the obtained results. Regarding the automation of metabolite 

extraction and the pre-treatment process, dried blood spot sampling, in which blood is blotted and 

dried on filter paper, and supercritical fluid extraction (SFE), which is an extraction technique 

involving the use of supercritical carbon dioxide, have been studied. When SFE is performed, it is not 

necessary to perform sample pre-treatment, and SFE is also suitable for extracting hydrophobic 

compounds. Recently, SFE was combined with MS, and the analysis of blood metabolites using this 

system accompanied by dried plasma spotting is currently being investigated [83]. Then, in biomarker 

research, the analysis of volatile organic compounds (VOCs), which include molecules such as 

alcohols, aldehydes, ketones, and other heterocyclic compounds, has been performed with combination 

of headspace-solid phase microextraction (HS-SPME) and GC-MS [84–86]. In this combination 

approach, the solvent extraction step for volatile analysis is not needed. Moreover, the analyzing 

system for VOCs in blood was constracted usng in-tube extraction (ITEX), which is superior to  

HS-SPME [87]. The systems using HS-SPME and ITEX do not need manual metabolite extraction 

from biological fluids, and so this may be useful for assay optimization. In addition, some studies have 

used an automated system for sample preparation before MS measurement [88,89]. Although the study 

regarding the automation of each process is ongoing, at present the metabolites are manually extracted 

via liquid-liquid and solid-phase extraction, and other processes are also largely performed manually. 
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4.5. Mass Spectrometry Data Preprocessing, Peak Alignment and Peak Identification 

For automatic MS data preprocessing, peak alignment, and molecule identification, software for 

metabolome analysis are freely available or can be purchased. Examples of the software include 

MetAlign, XCMS, MZmine, AIoutput, and MRMPROBS [90–94]. For metabolite identification in 

metabolome analysis, the metabolite database including mass spectrum and retention time/retention 

time index may be used. Construction of an in-house database is needed, but METLIN and MassBank 

are also available for metabolite peak identification based on the fragment ion data [95]. To obtain the 

metabolite information such as the biological/biochemical characteristics and the related pathway, the 

Human Metabolome Database (HMDB), Kyoto Encyclopedia of Genes and Genomes (KEGG), Recon 

X and so on are convenient [96–98]. Especially, HMDB includes spectral data for human metabolites. 

Thus, the technology for metabolome analysis is being innovated, the information is accumulated, 

resulting in development of the metabolomics-based biomarker discovery research. However, easier 

extraction, pretreatment, and data analysis methods are required to make metabolome analysis more 

practical. Therefore, it is hoped that an automated analysis system that performs all of the required 

processes from metabolite extraction to data output will be developed. 

5. Conclusions 

The Japanese population has the highest life expectancy in the world. Due to its aging society, the 

working population in Japan has been rapidly decreasing, and now the most populous age group is the 

60-69-year-olds. As a result, the medical costs of elderly people in Japan have increased every year, 

and these increases are regarded as a financial problem for the national government. Therefore, the 

development of a low-cost and easy diagnostic approach for detecting diseases at an early stage is 

needed to reduce medical expenses. Similar problems have arisen in various developed countries. 

Recently, various types of clinical samples have been subjected to metabolome analysis using GC-MS, 

LC-MS, CE-MS, matrix-assisted laser desorption ionization (MALDI)-MS, NMR spectrometry, or  

FT-IR spectrometry in order to discover novel biomarkers and elucidate the onset mechanisms of 

diseases. It is important to obtain disease-specific metabolome profiles in order to increase our 

understandings of diseases. Novel findings based on these disease-specific metabolome profiles are 

useful not only for discovering new biomarkers and elucidating the onset mechanisms of diseases, but 

also for developing novel therapeutic strategies, although accomplishing these aims will probably 

require the integration of omics data obtained from genomics-, transcriptomics-, and proteomics-based 

approaches as well as data acquired using metabolomics. The metabolomics-based research will 

hopefully increase our understanding of various diseases and lead to the elucidation of novel metabolite 

biomarkers. In addition, the development of metabolomics-based screening processes that only require a 

single drop of blood and allow diseases to be diagnosed at an early stage is greatly desired. 
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