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Abstract: The task in the critical assessment of small molecule identification (CASMI)
contest category 2 was to determine the identification of (initially) unknown compounds
for which high-resolution tandem mass spectra were published. We focused on computer-
assisted methods that tried to correctly identify the compound automatically and entered
the contest with MetFrag and MetFusion to score candidate structures retrieved from the
PubChem structure database. MetFrag was combined with the metabolite-likeness score,
which helped to improve the performance for the natural product challenges. We present
the results, discuss the performance, and give details of how to interpret the MetFrag and
MetFusion output.

Keywords: mass spectrometry; metabolite identification; MetFrag; MetFusion; metabolite
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1. Introduction

The critical assessment of small molecule identification contest (CASMI) was organised in 2012 by
Emma Schymanski and Steffen Neumann, to call upon the computational mass spectrometry community
and demonstrate the performance of compound identification from mass spectrometry data.

At the Leibniz Institute of Plant Biochemistry (IPB), we are developing several tools for metabolite
identification. The MetFrag system [1] is able to perform in silico fragmentation of candidate structures,

which can be retrieved from compound databases or obtained through structure generation [2]. The
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IPB is also part of the MassBank consortium [4], which collects a large number of reference spectra,
particularly of soft electrospray ionisation (ESI) spectra. Our MetFusion system [5] integrates these two
strategies to obtain a more reliable identification compared to each individual approach taken alone.

In the CASMI contest, our tools did not officially take part because one author was in the organisation
team and some of the challenge spectra were obtained at the IPB. Nevertheless, we tried to approach
the challenges in as unbiased a manner as possible, and did not use our inside knowledge to tune any
parameters in order to obtain better results. We also restricted the participation to category 2 (“best
structure identification for high resolution liquid chromatography/mass spectrometry (LC/MS) data”)
and did not submit the molecular formulas to category 1 (“best molecular formula for high resolution
LC/MS data”).

2. Methods

The spectra preprocessing steps and the elimination of redundant candidate structures are the same
for both MetFrag and MetFusion.

2.1. Spectra Processing and Neutral Mass Heuristics

All of the challenges were measured in a single ionization mode, but with multiple ionization energies.
If a challenge provided two or more spectra, the spectra were merged to create a corresponding composite
spectrum. This processing step was recommended by the MassBank consortium [4] for a more reliable
identification. Challenges 2, 10 and 12 each consisted of only one spectrum, so the spectra merging
was not applied to them. We used the mzClust grouping algorithm in xcms (version 1.37.0) [6,7].
The composite spectrum contains the unique peaks where m/z values are averaged and the maximum
intensity across all spectra is used. The R-code for the merging is shown in Appendix B.

To determine the neutral mass of a compound, we used a simple heuristic which located the lowest m/z
in the isotope pattern as a monoisotopic peak and then removed the adduct, taking the polarity of the
measurement into account to automatically deduce the neutral exact mass of the compounds for the
candidate search.

2.2. Eliminating Redundant Candidates

Both MetFrag and MetFusion obtain candidate structures from chemical databases. They often
contain redundant structures which increase the candidate lists without adding chemical diversity. In
addition, mass spectrometry can, in general, not distinguish between the stereoisomers of a compound
and the identification methods we use assign identical scores to isomers. Therefore, we eliminate
redundant candidate structures with an InChIKey-based filtering.

The InChIKey is a string that is characteristic of the molecular structure, where the first block of
14 characters is determined by the molecular skeleton (or connectivity). More information regarding
both InChl and InChIKey can be found elsewhere [8]. We calculate the InChIKey for each candidate
and keep only candidates with a unique first InChIKey block.
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2.3. In silico Fragmentation with MetFrag

We used MetFrag as described in  Wolf er al. [1], with the composite spectra as explained in
Section 2.1 to submit candidates for all challenges in CASMI category 2. We queried a local
PubChem [3] mirror (created September 2010) for the candidate retrieval and filtered as explained in
Section 2.2. For the candidate selection we used the putative neutral exact mass and a mass window of
5 ppm and 0.001 Da mass deviation for the fragment matching. For later resubmissions for Challenge 5,
we adapted the mass window to 10 ppm and 0.002 Da for, due to the higher mass error. For this paper,
we additionally used a molecular formula candidate search using the correct formulas which were not
known during the contest but given in the solutions. This allows estimation of the MetFrag performance
the correct molecular formulas are used as input.

The score calculated by MetFrag evaluates the match of in silico-generated fragments of the candidate
molecules to the given challenge tandem mass spectra The mass as well as the intensity of the peak
matched by a fragment are considered in the score.

Compounds for challenges 1 to 6 were known to be natural products, as explained on the CASMI
website. Because large compound databases, such as PubChem [9], contain many non-natural
compounds, several filtering strategies have been developed for metabolomics data. While Kind and
Fiehn [10] proposed filter criteria based on the molecular formula, Peironcely et al. [11] used machine
learning to train a random forest model [12] on metabolite structures from the Human Metabolome
Database (HMDB) [13] and structures from the ZINC database [14] to predict a metabolite-likeness
score (MLS) based on structural fingerprints.

We used the MLS to prefer biological compounds for challenges 1-6. For those challenges, we used
the adapted version of the final score:

Scorefina = Scorenretprag +w - MLS

to obtain the ranking, where w represents the weight of the MLS which we arbitrarily set to 0.5 to give
it a lower influence in the final score than the MetFrag score. In the future we plan to optimise w by
learning from given data. The influence of the metabolite-likeness score on the rankings of candidates
was investigated by comparing the rankings of results with w = 0 and w = 0.5.

2.4. MetFusion: Integration of MetFrag with Spectral Libraries

We also applied MetFusion [5] to generate submissions for all Category 2 challenges. We used the
MassBank spectral library and PubChem compound database, which in this case was queried online in
January and March 2013. For the candidate selection we used the putative neutral mass and a mass
window of 10 ppm. A mass window of 10 ppm is sufficient as all Category 2 challenges promise an
accuracy of <10 ppm. For the fragment matching, we applied a window of 0.002 Da and 10 ppm. As
explained above, we used composite query spectra and the InChIKey-based candidate filtering.

MassBank provides separate search forms for either a precursor mass search or peak list search.
The combination of both types of information is currently not available, although it would be possible
to search MassBank with both an MS/MS spectrum and explicitly apply the precursor neutral mass
as filter afterwards. This search strategy is used by, e.g., the Metlin database. Instead, MetFusion
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invokes the peak list search, so MassBank will also return compounds with similar MS/MS spectra in
order to possibly return also structurally similar compounds. MetFusion then implicitly combines the
fragmentation similarity from MassBank with the exact mass hit from PubChem.

All challenges were queried against all available ESI spectra in MassBank [4]. For the resubmissions,
we also included instruments with ion sources at atmospheric-pressure levels, namely chemical ion-
ization (APCI) and photoionization (APPI). This instrument selection covers triple quadrupole (QqQ),
quadrupole time-of-flight (QTOF) and Orbitrap devices i.e., both nominal and accurate mass spectra
were queried.

Besides the peak list and instrument selection, the number of result hits and the intensity cut-off
are the only parameters for the MassBank peak search. The result limit was set to 100 hits and the
intensity cut-off was set to 5. The intensity cut-off determines which peaks are ignored due to having
a lower intensity than the specified cut-off. MassBank internally applies a fixed 0.3 Da mass window
when matching peaks. MassBank also utilizes the intensity information for spectra comparison, i.e., low
intensity peaks have less weight in the resulting scores.

For the MassBank query results, we also performed an InChlKey-based filtering where among the
duplicates only the entry with the best MassBank score, i.e., the highest spectral similarity, was kept.
The MetFusion workflow and the scoring have been described earlier [5].

In the next section we also discuss the chemical similarity, e.g., between the correct solution and
the most similar MassBank record. We used the Tanimoto similarity based on the fingerprints of the
structures as implemented in the CDK [15]. A Tanimoto score of 0 indicates that no structural features
are shared in both structures. Conversely, a Tanimoto score of 1 indicates that all investigated structural
features (determined by the fingerprint) are present in both structures. A Tanimoto score >0.8 indicates
reasonable structural similarity, whereas scores >0.95 indicate very high structural similarity.

The whole set of challenges was processed with the command line version of MetFusion. Results
were stored in a structure data file (SDF), which is better known by the *.sdf file extension. This file
keeps the molecular structure and associated information, like compound name, score, and additional
properties, for each candidate. In addition to the integrated result list as an SD file, we also keep the
individual intermediate result lists and create a spreadsheet file containing the result lists and the coloured
similarity matrices which can be used to examine the results in more detail.

3. Results and Discussion

In this section we discuss the results of our resubmissions and note where and why they differ from
the original submissions. The challenges 2, 4, 5 and 6 from category 2 were not calibrated when
initially offered to the participants, resulting in higher than stated ppm deviations. This was recognised
after the contest closed, and the data of these challenges was recalibrated and made available to the
participants online for the articles in the proceedings. Each participant was allowed to resubmit their
findings. Additionally, our hypotheses for the neutral mass of challenges 11 and 12 were wrong in
the first submission. The correct neutral mass for challenge 12 could be extracted from the available
meta-data that all participants had access to. Challenge 11 did not provide [M+H]+ ions, instead the

[M-H,O]+ fragment was the major ion suitable for back-tracking the neutral mass by an experienced
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mass spectrometrist. We used the correct neutral mass from the published CASMI solution for
challenge 11.

For both MetFrag and MetFusion we report the number of candidates and the absolute rank for each
challenge, and the median rank broken down to the natural compound and environmental challenges.
The median is used because the distribution of ranks is heavily tailed and a few challenges with very
poor ranking severely skew the mean values. In addition to the absolute rank, we also report the relative
ranking position (RRPcasur), defined as RRPoasyr = 3 (1 — 2&WC) where BC and WC are the
number of candidates ranked better and worse than the correct solution, and 7°'C' is the number of total

candidates, respectively. See [16] for more details.

3.1. MetFrag

In the initial submission, the correct solution was missing for Challenges 2, 4 and 6 because the
measured mass was outside the 5 ppm margin. In addition, the simple precursor heuristics described
in Section 2.1 missed the neutral mass of challenges 11 and 12. These cases were corrected with the
updated information for the resubmissions.

Table 1 shows the number of candidates obtained from the PubChem snapshot with a search for the
neutral mass and the absolute rank of the correct solution. For Challenges 1 to 6 we also show the ranks
with the MLS score included.

Table 1. MetFrag results with neutral exact mass filter after resubmission. Shown are
the number of candidates per challenge(#Cand.), the InChiKey filtered MetFrag rank and
the relative ranking position (RRP). Additionally, for challenges 1-6 the InChiKey filtered

MetFrag rank with the metabolite-likeness score (MLS) included is shown.

Natural Product Challenges Environmental Challenges
Chall. #Cand. Rank RRP MLS RRP Chall. #Cand. Rank RRP

10 447 260 0.441

1 994 5 0.996 4 0.997 11 465 23 0.976

2 248 3 0.992 3 0.992 12 1531 36 0978

3 1094 12 0.990 9 0.993 13 1031 5 0.998

4 2234 547 0.757 454  0.797 14 125 27 0810

5 2891 988 0.679 1238 0.573 15 1825 173 0.907

6 1860 1860 0.439 281 0.850 16 1948 1948 0.453

17 475 15 0.970

Median 1477 280 0.874 145 0921 753 32 0.939

The results achieved with the molecular formula database query are shown in Table Al. For every
challenge MetFrag found the correct hit among the candidates with both types of queries, where the mass
window result sets contain twice as many candidates. The absolute ranks obtained with the formula query
decrease the median rank (Challenges 1-6: 280=-270; Challenges 10-17: 32=-22.5) compared to the
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ranks of the mass query, but on the other hand the median RRP is lower (Challenges 1-6: 0.874=-0.607;
Challenges 10-17: 0.939=-0.917) with the use of the molecular formula filter, because compounds
within the mass search window but with the wrong molecular formula often obtain a lower MetFrag
score compared to the correct solution. The molecular formula filter eliminates these worse candidates
(W) from the outset, which reduces the RRP.

Next, we describe the outcome if the metabolite-likeness score is considered together with the
MetFrag score for the Challenges 1-6. The number of candidates remains unchanged, but natural
compounds (including the correct solution) should obtain better scores and improve both the absolute
rank and the RRP.

Indeed, except for Challenge 5 all ranks are better or equal with the MLS contribution in the score
as shown in Table 1. The median absolute rank decreases from 280=-145 (RRP: 0.874=-0.921) and
even more for the molecular formula candidate search, where the median rank improves from 270=119
(RRP:0.607=-0.797).

Reticuline (the correct candidate of Challenge 5) has the lowest metabolite-likeness score of 0.296
among all challenge compounds and therewith the worst rank (1209) related solely to the MLS (see
Table 2), which explains why the final result for Reticuline was even worse with MLS.

Table 2. The metabolite-likeness score (MLS) of the compounds of Challenges 1 — 6 and
their rankings among the retrieved candidates based on the MLS alone, while Table 1 uses

the combined score.

Challenge Trivial name InChIKey (first block) MLS MLS rank
1 Kanamycin A SBUJHOSQTIJFQIJX 0.508 47
2 1,2-Bis-O-sinapoyl-beta-D-glucoside KQDOTXAUJBODDM 0.716 35
3 Glucolesquerellin ZAKICGFSIJSCSF 0.474 3
4 Escholtzine PGINMPJZCWDQNT  0.436 439
5 Reticuline BHLYRWXGMIUIHG 0.296 1209
6 Rhoeadine XRBIHOLQAKITPP 0.374 132

Challenges 6 and 16 were very problematic for MetFrag, which could only assign to the given
spectrum a single fragment of the correct molecule for the first case and no fragments of the correct
molecule for the second case. Although the MLS improved the final rank for challenge 6, this is only
based on the (second lowest among all challenges) MLS of 0.374. Figure A1 shows the rankings related
the the calculated scores of all candidates of challenges 1 to 6.

The results show that MetFrag is able to rank four molecules of the total 14 challenges among the top
ten hits when applying mass filtering. The number can be increased to five by including knowledge of
the molecular formula of the correct compound.

The external participants Dunn et al. [17] and the internal participant Meringer et al. [19] both used
MetFrag in conjunction with other methods for the identification. The combined MetFrag and manual
interpretation method of Dunn ef al. had better ranks than MetFrag alone, but missed a lot more
challenges because the Kyoto Encyclopedia of Genes and Genomes (KEGG) [18] was used for candidate

retrieval, which only contains a subset of the challenge compounds.
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3.2. MetFusion

The overall results for MetFusion are shown in Table 3. PubChem has grown considerably over
the past two years and consequently the online query against PubChem yields more candidates: for
the first six challenges, MetFrag retrieved 1477 candidates (median) from our PubChem snapshot
(September 2010), whereas the corresponding online query against PubChem from January 2013 yields
3582 candidates (median)— more than twice as many, and more than three times for the environmental
challenges. The same observation can be made for the remaining challenges 10-17. The rapid growth
of PubChem over even short time periods becomes obvious; e.g., for Kanamycin A. In January 2013, 37
isomers with an identical first block of their InChIKey were retrieved, whereas only eight weeks later
three additional isomers were found.

Table 3. MetFusion results per challenge after resubmission. Shown are number of
candidates per challenge (#Cand.), the InChlKey filtered MetFusion rank as well as the
maximum Tanimoto similarity (Max. TS) between the candidates and the MassBank results

and finally the relative ranking position (RRP).

Natural Product Challenges Environmental Challenges
Chall. #Cand. Rank Max. TS RRP Chall. #Cand. Rank Max. TS RRP

10 1085 981 0.40 0.096

1 2229 1 1.0 1.0 11 1444 170 0.28 0.883
2 625 4 0.93 0.995 12 3772 136 0.28 0.964
3 2945 14 0.99 0.995 13 3344 1 1.0 1.0
4 4219 74 0.84 0.983 14 507 3 1.0 0.996
5 4280 1426 0.42 0.667 15 3394 1 1.0 1.0
6 6175 25 0.79 0.996 16 4427 1351 0.33 0.695
17 1848 88 0.35 0.953
Median 3582 20 0.89 0.995 2596 112 0.38 0.959

The results for challenges 1 to 6 and challenges 10 to 17 show that more similar spectra are present in
MassBank for the biological compounds than for the environmental challenges. The median Tanimoto
similarity between the challenges and the most similar compound in MassBank is 0.89 for the natural
compounds, compared to 0.38 for the environmental challenges where the reference spectra did not
contribute significantly to the integrated MetFusion score in five cases. This can be attributed to a
much larger chemical diversity of natural products in MassBank. This is also evident by the low
maximum spectral similarity. The lack of reference spectra for diverse non-biological compounds is
the major reason for the mediocre performance of MetFusion in these cases. We expect a considerable
improvement in this area as contributions to MassBank from the environmental community have
recently increased.

In addition to the ranked list of candidates, MetFusion also creates a ranked similarity matrix, where
the columns correspond to the result list from MassBank (best hits on the left, ordered by the MassBank

score) and the rows correspond to the MetFrag results. Each cell contains the Tanimoto similarity (TS)
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of the corresponding structures from MassBank and MetFrag. Examples are shown in Figures 1 and 2.
Tanimoto similarities are also visualised through a colour code ranging from red via yellow to green with
increasing TS.

Figure 1. The top-left part of the reranked similarity matrix from MetFusion for Challenge 6.
The correct compound rhoeadine is ranked 25th (CID 5318652) and is highlighted with a
green border. The maximum Tanimoto similarity (TS) for rhoeadine has bicuculline with
a similarity of 0.79, but a MassBank score of only 0.3 (data not shown). There are other
alkaloids with better similarity that are thus ranked higher. Six columns were removed for
better readability, altogether with a low maximum TS of 0.4.

KOX00837 KO008812 WA001623 BML00811 CO000309 BML00783 BML00840 ZMS00126 EA280410 BML00613
44483244
11717916
5316069
68331626
7348779
11731734
18728255
59991416
371260
21763791
68152375
68131382
10905079
21589025
601054
605862
21768980
131593
68152387
44559282
57581018
11058079
5315436
13875892

*A)ijIqepeal Jaj3aq 10} JNO 9| 818 SUWN|OD XIS

337868

Overall, MetFusion was able to rank the correct candidate in the top position for the three challenges 1,
13 and 15. Challenges 2 and 14 had the correct compound ranked at position 4 and 3, respectively.

For Challenge 6, using MetFrag alone have a very poor result because 3812 candidates had an
identical score of 0.0. MassBank does not contain spectra for the correct compound rhoeadine, and
the most similar spectrum returned is palmatine (KOX00837), with a low 0.42 TS to the correct structure
(as shown in Figure 1), while the structurally most similar entry (bicuculline, TS = 0.79) in MassBank
has a poor spectral score of only 0.3. The main contribution from the MassBank results are three spectra
from other alkaloids (allocryptopine, noscapine, and hydrastine) with a similarity between 0.59 and 0.77.

For Challenge 14, shown in Figure 2, MassBank returned a spectrum of carbazole ranked first, an
isomer of the correct 1H-Benz[g]indole, followed by three spectra of compounds with both a different
molecular formula and lower TS than the MetFrag candidates. During the contest, spectra of the correct
1H-Benz[g]indole measured on the same instrument as the challenge data were submitted to MassBank
by one of the MassBank consortium members. The UF011410 hit in MassBank was only ranked fifth,
with an unexpectedly low MassBank score of only 0.70, most likely because we used a merged query
spectrum and MassBank applies a 5% intensity cut-off. These two factors led to a greater difference
between the merged spectrum and the deposited reference spectrum. The available Orbitrap spectra
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would benefit from a lower cut-off threshold of 2 rather than 5, but we relied on the default cut-off. With
this low spectral similarity, the MassBank contribution was unable to lift the correct compound to the
first rank, but only to rank 25.

Figure 2. Excerpt of reranked similarity matrix from MetFusion for Challenge 14. The
correct compound is ranked 3rd (CID 98617) and highlighted with a green border. The two
better ranking candidates have slightly higher MetFrag scores that add to their corresponding
MetFusion scores. Compound 6854 is carbazole, a structurally highly similar compound
towards the correct 1H-Benz[g]indole. The presence of Tanimoto similarities with value of
1.0 indicate perfect structural matches according to corresponding reference spectra available
in MassBank for both 1H-Benz[g]indole (UF011410) and carbazole (UF026313).

UF026313 UF024612 UF015113 WAO002682 UF011410 WAO000556 UF026913 UF011312 WA001663

59832560
59832555

11344211
12450009
6854

13908560
13287594
12867691
10877507
14399831
11171191
21163914
22349125
22641511
12667390
12667393

For challenges 1 to 6 MetFusion performed significantly better than MetFrag, and the median rank of
the correct compound was 20, compared to 280 with MetFrag and 145 with MLS. This is even more
remarkable because we used the online PubChem query, which returned 3145 candidates (median),
whereas the PubChem snapshot only provided 1063 candidates (median) over all challenges.

MetFusion results for challenges 10 to 12 were significantly worse when compared to MetFrag alone.
This can be attributed to the low Tanimoto similarity of the correct candidate to any of the spectral hits.
For each of these challenges, the MassBank scores are between 0.31 and 0.68 for the top hit, indicating
a lack of reference spectra for these compound classes. The missing spectral coverage is expressed in
both mediocre spectral scores and almost no Tanimoto similarity, visualised by the red-orange coloured
matrix cells with maximum Tanimoto similarity of 0.4. This indicates the case where the spectral library

cannot confirm any of the in silico candidates, thus leaving the user with no additional information.

4. Conclusions

The IPB entered the CASMI contest unofficially, because as part of the organising team and challenge
data providers we could not be considered independent. However, we entered CASMI as internal
participants with MetFrag and MetFusion and did not tune the parameters to obtain optimal results for
the initial submission.
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The use of small, domain-specific compound databases like KEGG, focussing on natural compounds
increases the risk that the correct compound is missed. While such a compound may be more likely to be
found in PubChem or ChemSpider, the number of false positives will increase due to the large number
of synthetic compounds. We used the metabolite-likeness score [11] as an additional term in the scoring
function of MetFrag. The metabolite-likeness score penalizes synthetic compounds and improved the
rankings for the natural product challenges 1-6 in all but one case. Moreover, we see potential for further
improvement of these preliminary results by optimisation of the weight factor w and the evaluation on a
larger dataset than available in the CASMI contest.

MetFusion was used without additional scoring terms, such as the metabolite-likeness score. The
similarity matrices provide a deeper insight into the integrated MetFusion score to (manually) assess the
reliability of the MassBank spectral summary.

Both approaches were applied fully automatically to the challenge data, but the selection of the neutral
mass for the candidate failed in two cases, and the scoring did not always rank the correct solution in the
top positions. Although expert knowledge is still required for a reliable interpretation, our approaches
can reduce the manual effort for small compound identification.

We are looking forward to participating in the next CASMI contest as external participants.
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Appendix

A. Additional MetFrag Results

Table Al. MetFrag results with molecular formula filter after resubmission. Shown are the
number of candidates per challenge, the InChIKey filtered MetFrag rank and the relative
ranking position (RRP). Additionally, for challenges 1-6 the InChIKey filtered MetFrag rank

with the metabolite-likeness score (MLS) included is shown.

Natural Product Challenges

Environmental Challenges

Chall. #Cand. Rank RRP MLS RRP Chall. #Cand. Rank RRP
10 257 170  0.377

1 9 5 0.500 4 0.625 11 104 9 0.961

2 43 1 1.000 1 1.000 12 950 26 0975

3 2 2 0.500 1 1.000 13 22 4 0.929

4 2005 534 0.735 444 0.779 14 111 19  0.859

5 2429 754  0.714 920 0.623 15 1789 172 0.905

6 1250 1250 0.416 234 0.814 16 1397 1397 0.438
17 415 15  0.966

Median 646 270 0.607 119 0.797 336 22.5 0917

634
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Figure Al. Scores plot of challenges 1-6. The MetFrag and metabolite-likeness score
(MLS) as well as the final scores of the candidates are shown for the challenges, respectively.
The green line marks the position of the correct candidate and the given score. The width of

each line correlates with the represented value of the score, respectively.
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B. Spectral Merging

library (xcms)

## Read spectra into a list
tandemms <— lapply (¢ ("MSMSneglO_Challenge3—-A,1_01_2186—-243.txt",
"MSMSneg20_Challenge3 —A,1_01_2184—-244.txt",
"MSMSneg30_Challenge3 —A,1_01_2185—-244.txt",
"MSMSneg40_Challenge3 —A,1_01_2187—-243.txt"),
function(x) {read.table (x,
as . is=TRUE,
sep="\t",
header=FALSE,
col .names=c("mz" ,"intensity"))})
## join into (redundant) peaklist
peaks <— do.call(rbind, tandemms)

## perform grouping of peaks based on mlz
g <— xcms ::: mzClust_hclust(peaks[,"mz"],
eppm=5%x10e—6, eabs=0.001)

## create composite spectrum

mz <— tapply (peaks[,"mz"], as.factor(g), mean)

intensity <— tapply (peaks[,"intensity"], as.factor(g), max)
compositeSpectrum <— cbind(mz, intensity)

(© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).
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