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Abstract: In the present study, proton NMR-based metabonomics was applied on femoral 

arterial plasma samples collected from young male subjects (milk protein n = 12 in a 

crossover design; non-caloric control n = 8) at different time intervals (70, 220, 370 min) 

after heavy resistance training and intake of either a whey or calcium caseinate protein 

drink in order to elucidate the impact of the protein source on post-exercise metabolism, 

which is important for muscle hypertrophy. Dynamic changes in the post-exercise plasma 

metabolite profile consisted of fluctuations in alanine, beta-hydroxybutyrate, branched 

amino acids, creatine, glucose, glutamine, glutamate, histidine, lipids and tyrosine. In 

comparison with the intake of a non-caloric drink, the same pattern of changes in low-

molecular weight plasma metabolites was found for both whey and caseinate intake. 

However, the study indicated that whey and caseinate protein intake had a different impact 

on low-density and very-low-density lipoproteins present in the blood, which may be 

ascribed to different effects of the two protein sources on the mobilization of lipid 

resources during energy deficiency. In conclusion, no difference in the effects on low-

molecular weight metabolites as measured by proton NMR-based metabonomics was 

found between the two protein sources. 
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1. Introduction 

Muscle hypertrophy occurs when there is a net protein synthesis, and it entails that the muscle 

synthesis exceeds muscle breakdown. Exercise and, especially, resistance training has a profound 

effect on muscle protein metabolism [1–3], but in the absence of amino acid intake, the balance is 

negative. The combination of exercise and ingestion of amino acids leads to positive muscle protein 

synthesis, primarily due to increased muscle protein synthesis. Milk is a valuable source of essential 

amino acids, and it has been shown that milk protein is an efficient source for muscle build-up [4–6]. 

Casein and whey are the two major protein fractions of bovine milk. Upon intake, micellar casein 

protein is “slowly” digested, due to its gel formation at the low pH of the stomach, whereas whey 

protein is digested faster [7,8]. Calcium caseinate digestion and absorption properties probably lie 

somewhere between those of whey and micellar casein. Thus, studies have shown that intake of whey 

protein induces a faster postprandial increase in plasma amino acid concentrations compared with 

intake of casein or caseinate protein [7,9,10]. In addition, it has been shown that the rate of the 

postprandial insulin response also is faster upon intake of whey protein compared with casein or 

caseinate protein [10–12]. Consequently, these plasma amino acid and insulin analyses have 

demonstrated that whey and calcium caseinate proteins modulate postprandial metabolism differently. 

However, it is still not known if these different postprandial responses in plasma amino acid and 

insulin concentrations are associated with other acute metabolic effects.  

Metabonomics is a tool for detecting various changes in the metabolic profile due to physiological 

stimuli, changes in food composition and pathological status [13]. The method also provides global 

insight in physiological processes. What makes metabonomics different from more traditional 

approaches is the fact that metabonomics is an untargeted and explorative technique aiming at 

describing the complete metabolic response without any a priori knowledge, and metabonomics has 

gained wide use in biomedical sciences. Also, within nutrition studies, the potential of metabonomics 

to unravel and depict the metabolic plasma response to a diet have been demonstrated, both in 

intervention studies performed over several days and in postprandial studies [14–18]. Kirwan et al. 

[19] have investigated the effects of cycling until fatigue by NMR-based metabonomics, however, diet 

effects were not investigated. Enea et al. [20] and Le Moyec et al. [21] investigated metabolome 

changes after exercise. Furthermore, studies on exercise-induced metabolic changes have been carried 

out using GC-MS on plasma, and the data have been elucidated by a metabonomic approach [22,23]. 

Nevertheless, metabonomic investigations of postprandial responses in combination with exercise are 

sparse [24]. Since physical exercise will inevitably require nutrition and energy, elevate the 

metabolism and generate more metabolic products, the level of endogenous metabolites will change 

accordingly, and metabonomic studies on plasma samples could be expected to gain important insight 

into exercise-induced changes in metabolism and the impact of nutrition source during the post-

exercise period. 
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Consequently, the aim of the present study was to investigate the postprandial metabolic changes to 

intake of milk protein drinks (whey or calcium caseinate) in combination with heavy resistance 

training in order to elucidate potential differences in the postprandial response to the two different 

protein sources. We therefore present a proton NMR-based metabonomics procedure applied on 

femoral arterial samples collected from young male subjects at different time intervals after heavy 

resistance training and intake of either whey or calcium caseinate protein. 

2. Results 

2.1. Post-Exercise Effect 

A representative 600 MHz 1H NMR femoral arterial plasma spectrum obtained from a subject at 70 

min after both heavy resistance and intake of protein drink (calcium caseinate) is shown in Figure 1.  

Figure 1. Representative 600 MHz 1H nuclear magnetic resonance (NMR) spectrum of a 

plasma sample 70 min after a bout of heavy resistance and intake of protein drink (calcium 

caseinate) (Red line). The difference between the 70 min post-exercise sample and the 

corresponding -70 min pre-exercise sample from the same individual is also shown (Blue 

line). Nomenclature: 1, lipid; 2, branched amino acids; 3, lactate; 4, alanine; 5, acetate; 6, 

N-acetyl glycoprotein; 7, glutamate/glutamine; 8, acetone; 9, acetoacetate; 10, citrate; 11, 

creatine; 12, cholines; 13, glucose; 14, mainly glucose region; 15, tyrosine; 16, histidine; 

17, formate.  

 



Metabolites 2013, 3               

 

 

36

To determine the effect of exercise, PCA was carried out on all -70 and 70 min samples (Figure 2). 

Principal component (PC) 6 in the score plot discriminates between the pre- and post-exercise samples. 

The loadings ascribe these changes to a decreased intensity of beta-hydroxybutyrate and choline and 

an increased intensity of amino acids: alanine, branched amino acids, glutamate, glutamine, histidine, 

lysine and tyrosine after exercise. No clear effects of exercise were observed on the signals from lipids. 

Figure 2. (a) Principal component analysis (PCA) score plot of all 1H NMR data from 

blood samples taken -70 (violet-diamond) and 70 (red-triangle) minutes after a bout of 

heavy resistance training. (b) PCA loadings for component 6. Nomenclature: 1, lipid; 2, 

beta-hydroxybutyrate; 3, choline; 4, branched amino acids; 5, alanine; 6, 

glutamate/glutamine; 7, lysine; 8, tyrosine; 16, histidine. The ellipse represents the 

Hotelling T2 with 95% confidence. 

 

 

(a) 

(b) 
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PCA was performed on the baseline-subtracted femoral arterial plasma samples for both whey 

protein and calcium caseinate. Both treatments showed a separation between the blood samples taken 

at 70 min after a bout of heavy resistance and the later time points (220 and 370 min; data not shown). 

To explore the biochemical differences, Figure 3 shows an OPLS-DA model with one predicted and 

one orthogonal component (R2X = 0.42, R2Y = 0.82 and Q2 = 0.53) between time-points 70 and 220 

min for the calcium caseinate treatment. The loadings for the predicted component indicates a higher 

intensity of beta-hydroxybutyrate and lipids at 220 min and a higher intensity of alanine, branched 

amino acids, creatine, glucose, glutamate/glutamine, histidine and tyrosine at 70 min after resistance 

exercise (Figure 3(b)). A similar OPLS-DA model for the intake of whey protein revealed similar 

dynamic changes in the post-exercise period (data not shown).  

Figure 3. (a) Orthogonal partial least squares regression-discriminate analysis (OPLS-DA) 

score plot of baseline subtracted 1H NMR data from blood samples taken 70 (red-triangle) 

and 220 (green-box) minutes after a bout of heavy resistance training and the intake of 

calcium caseinate drink. (b) PCA loadings for component 5. Nomenclature: 1, lipid; 2, 

beta-hydroxy butyrate; 3, branched amino acids; 4, alanine; 5, glutamate/glutamine; 6, 

creatine; 7, glucose; 8, tyrosine; 9, histidine. The ellipse represents the Hotelling T2 with 

95% confidence. 

 

 

(a) 

(b) 



Metabolites 2013, 3               

 

 

38

2.2. Milk Protein Effect 

To examine the differences between the different drinks ingested, PCA was carried out on all the 

baseline-subtracted femoral arterial plasma samples (Figure 4). The control samples are found to 

separate along PC 1 from the whey and calcium caseinate samples. This discrimination can be ascribed 

to higher intensities of lipids and choline-containing compounds (choline, phosphocholine and 

glycerophosphocholine) after intake of milk proteins compared to the control. In addition, PCA models 

obtained at the individual time points for the milk protein samples discriminated between whey and 

calcium caseinate at 70 min after a bout of heavy resistance training. The loadings indicated higher 

lipid signal intensity from 0.81-0.85 ppm and 1.22-1.27 ppm (data not shown). 

Figure 4. (a) PCA score plot of all baseline subtracted plasma samples showing the 

different protein sources: orange-triangle, control; black-box, whey protein; grey-dot, 

calcium caseinate protein. (b) PCA loadings for component 1. Nomenclature: 1, lipid; 2, 

choline. The ellipse represents the Hotelling T2 with 95% confidence.  

  

  
  

  

 

(a) 

(b) 
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Subsequently, two OPLS-DA models with one predicted and one orthogonal component were 

performed to elucidate differences between the control samples and whey or calcium caseinate 

samples, respectively, at time point 70 min for baseline subtracted data (Figure 5; water vs. whey: R2X 

= 0.49, R2Y = 0.81 and Q2 = 0.59; water vs. calcium caseinate: R2X = 0.44, R2Y = 0.79 and Q2 = 

0.52). The loadings for the predictive components of both models show that intake of both whey and 

calcium caseinate proteins results in a higher intensity of branched amino acids, alanine, acetoacetate, 

creatine and tyrosine and a lower intensity of acetate, glycoproteins, citrate and glucose. However, 

after intake of calcium caseinate protein, all the lipid signals have positive loading values, whereas the 

lipid signals for the difference between non-caloric and whey drinks have both positive and negative 

values in the OPLS-DA loadings. The OPLS-DA model discriminating between control and whey 

(Figure 5 (b)) points to the higher intensity of the lipid signals from CH3 groups at 0.80-0.86 ppm and 

CH2 groups at 1.18-1.28 ppm. Conversely, the lipid signals at 0.87-0.90 ppm and 1.28-1.36 ppm have 

decreased intensity for whey samples compared to control samples.  

Figure 5. OPLS-DA score plots discriminating between control and whey (a) and calcium 

caseinate (b) at 70 min (baseline subtracted) after a bout of heavy resistance. 

Corresponding loading plot describing the component for OPLS-DA models of control vs. 

whey (c) and control vs. calcium caseinate (d). Nomenclature: 1, lipid; 2, branched amino 

acids; 3, alanine; 4, acetoacetate; 5, creatine; 6, tyrosine; 7, acetate; 8, N-acetyl 

glycoprotein; 9, citrate; 10, glucose. The ellipse represents the Hotelling T2  

with 95% confidence.  

   

   

(c) (d) 

(b) (a) 
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3. Discussion 

3.1. Post-Exercise Effect 

In the present study, we have employed an NMR-based metabonomic approach to investigate the 

physiological processes and dynamic metabolic changes in femoral arterial plasma samples as a result 

of a bout of heavy resistance training in combination with intake of whey or calcium caseinate protein 

drinks. The post-exercise time-effect revealed that the femoral arterial blood differentiated 70 min after 

exercise and treatment from 220 and 370 min. Standard amino acids analyses performed on samples 

from the present study have shown that the plasma concentration of various amino acids peaked 45 

minutes after intake of the protein drink and returned to baseline 210-360 minutes after intake [10]. 

Thus, the higher amino acid intensities for the 70 min samples than the baseline and the later time 

points measured by 1H NMR-based metabonomics are in good agreement with the standard analyses. 

The higher plasma beta-hydroxybutyrate concentration prior to exercise (fasting) and the later post-

exercise effect could explain the production of ketone bodies by fat oxidation. In addition, no dynamic 

differences could be detected between the intake of a whey protein or a calcium caseinate drink after 

heavy resistance training. Measurement of a faster postprandial increase in plasma amino acid 

concentrations associated with the intake of whey compared to calcium caseinate would probably 

require sampling prior to the 70 min sampling, which was the first time point included in  

the present study.  

3.2. Milk Protein Effect 

Studying the difference between the post-exercise period by the three sampling points at 70, 220 

and 370 min after exercise indicated that the overall effect of intake of milk protein (whey or calcium 

caseinate) compared to a non-caloric drink is higher levels of lipids and cholines in the blood. This 

finding reflects the increased content of lipoproteins after absorption of nutrients in the gastrointestinal 

tract upon intake of whey or calcium caseinate protein drinks. OPLS-DA models with whey and 

calcium caseinate as classes made to investigate the difference between whey and calcium caseinate 

intake were poor, and they were unsuitable for interpretation (Q2 < 0.5; data not shown). Thus, to 

investigate only the short-term influence of intake of either whey or calcium caseinate protein drinks 

after a single bout of heavy resistance, OPLS-DA models were performed in comparison with the 

intake of the non-caloric drink at 70 min after intake. In comparison with the non-caloric drink, both 

whey and calcium caseinate protein drink intake revealed differences in the lipid signals mainly 

assigned to either LDL (0.87-0.90 and 1.28-1.36 ppm) or VLDL (0.80-0.86 and 1.18-1.28 ppm) 

[25,26]. Consequently, the present study indicates that whey protein increased VLDL and decreased 

LDL lipoprotein, whereas calcium caseinate protein increased both VLDL and LDL lipoprotein 

content in the plasma. The results were obtained with the CPMG pulse sequence [26], which attenuates 

the lipid signals; single-pulse spectra are better suited for assessing the protein-source effects on the 

lipoproteins. In-depth investigations of the lipoprotein changes can be achieved by 1H NMR 

spectroscopic methods described by Ala-Korpela et al. [28,29]. However, that is outside the scope of 

the present study.  
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The earlier onset of an increase in the amino acid concentration in the whey-treated group may be 

due to the faster digestion of the protein and, thereby, a higher maximum amino acid concentration in 

the blood. It could be expected that this difference in amino acid concentration observed about 15-45 

min after exercise for the whey and calcium caseinate groups was accompanied by other metabolic 

effects. However, the present examination of the blood metabolome at 70, 220 and 330 min after 

exercise and protein intake showed a similar change in the blood metabolome for the whey and 

calcium caseinate protein treatment groups. Despite the differences in the amino acid composition of 

the whey and calcium caseinate protein drinks, both whey and calcium caseinate protein drink intake 

had similar effects on the level of low-molecular weight metabolites in plasma when compared with 

the non-caloric drink. This finding could seem surprising, but should probably be explained by the fact 

that differences in the uptake of amino acids between the two protein sources, as seen previously [10], 

set in earlier than the first time point at 70 min. Even though no profound effect of protein source on 

the blood metabolite profile was found, it is expected that the present approach could be useful for 

elucidating more severe effects related to differences in the degree of exercise and/or energy source 

and energy intake.  

4. Experimental Section  

4.1. Subjects 

A full description of the study is given in Reitelseder et al. [10]. Twelve healthy male subjects were 

randomized to participate in two protein trials in randomized order (three individuals only participated 

in the first period, whey protein n = 2, calcium caseinate protein n = 1). Eight male subjects 

participated in a control trial. Mean ± S.E.M. for control and milk protein group, respectively:  

age: 26 ± 2, 28 ± 2 y; weight: 74 ± 2, 79 ± 3 kg; body mass index (BMI): 22.7 ± 0.7, 24.3 ± 0.7  

kg·m-2; lean body mass (LBM): 57 ± 2, 58 ± 2 kg; one repetition maximum (1RM; i.e. is the 

maximum amount of weight one can lift in a single repetition for a given exercise): 67 ± 4, 66 ± 4 kg. 

All participants were recruited with the criteria of being moderately active young males with no history 

of regular participation in aerobic or resistance training during the last 6 months. All participants were 

non-smokers and on a normal western diet adequate with regards to protein content (minimum of 0.8 g 

· kg-1 · d-1). Additionally, no family histories of diabetes or chronic medication were allowed. Before 

inclusion, study design, purpose and possible risks were explained to each subject, and subsequently, 

all subjects gave their written consent to participate in the protocol, which adhered to the Helsinki 

declaration and was approved by the local Ethics Committee of Copenhagen and Frederiksberg (H-KF 

2007-0014).  

4.2. Pre-Tests and Food Registration 

The pre-tests were performed on two separate days. The aim of the first day was to familiarize the 

subjects to test equipment and the protocol, and subsequently, on the second day, the determination of 

1RM was conducted. The two test days were separated by at least one week, and the 1RM 

determination was at least two weeks prior to the experiment. All subjects were instructed not to 

perform any strenuous activity during the three pre-experiment days. 
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4.3. Experimental Protocol 

The experiment was conducted as outlined in Scheme 1. All subjects arrived to the laboratory by car 

at 7:00 a.m. after an overnight fast (10 hours). An antecubital venflon was inserted and a background 

sample obtained. The femoral artery of the exercise leg was cannulated under local anesthetic 

treatment (lidocaine, 1%). Applying the Seldinger technique, 20 gauge catheters (Arrow, ES-04150, 

Reading, PA, USA) were inserted and kept patent with NaCl during the experiments. On the arterial 

side, a pressure bag (VBM Medizintechnik, Sulz a.N., Germany) was inflated to maintain a pressure of 

~200 mmHg during the saline infusions. Catheters were secured with sutures, and the sites of insertion 

were frequently observed throughout the experiment. In 5 out of 29 experiments (whey: n=3; calcium 

caseinate:n=1; control: n=1) out of total 29 experiments (21 milk protein and 8 control experiments)  it 

was not possible to insert the arterial catheter, and no femoral artery samples were obtained for these 

experiments. The acute heavy resistance exercise bout consisted of 10 sets with 8 repetitions at a pre-

determined load corresponding to 80% of 1RM. In between sets were rest periods of 3 min. The 

exercise protocol aimed at stimulating the quadriceps muscle maximally. The chosen exercise was a 

one-legged, seated leg-extension (Technogym, Super Executive Line, Gambottola, Italy) with a range 

of motion from 100 to 30 degrees. Immediately after completion of the exercise, between time -60 and 

0 min, the participants received a drink containing either water, whey protein isolate or calcium 

caseinate at time 0 min (for amino acid composition, see Reitelseder et al. [10]. All subjects were 

blinded with regard to what drink they were receiving. The amount of protein was adjusted to 0.30 g • 

kg lean body mass (LBM)-1 and was dissolved in ~400 mL of water. This dose was chosen, because it 

corresponded to approximately 20 g of proteins, however, taking into account the individual LBM of 

the subjects. The drinks were consumed within ~5 min. Blood sampling was collected during pre-

exercise at -70 min (baseline) prior to the end of heavy exercise resistance and post-exercise at 70, 220 

and 370 min after heavy exercise resistance. 

Scheme 1. Experimental protocol. A single bout of heavy resistance exercise was 

performed following intake of test or control drink. Femoral arterial blood samples were 

collected through the protocol. 

  

4.4. NMR Measurements 

An amount of 400 μL aliquots of the plasma samples were mixed with 200 μL of D2O. The NMR 

measurements were performed at 310 K on a Bruker Avance III 600 spectrometer, operating at a 1H 
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frequency of 600.13 MHz, and equipped with a 5 mm 1H TXI probe (Bruker BioSpin, Rheinstetten, 

Germany). A Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with water suppression was applied 

for acquisition of 1H NMR spectra, with the CPMG delay added to attenuate signals from 

macromolecules. The total spin–spin relaxation delay was 100 ms, the spin-echo delay was 1ms and 

the recycle delay was 2 s. The spectra were acquired by 64 scans into 32 k data points on a spectral 

width of 17.34 ppm. A fixed receiver–gain value was used for recording all samples. An exponential 

line-broadening of 0.3 Hz was applied prior to the Fourier transformation. Each spectrum was 

manually phased, baseline-corrected and referenced to the anomeric α-glucose doublet signal at 5.23 

ppm. The NMR signals have been tentatively assigned to various metabolites based on existing 

literature [30] and the Human metabolome database [31]. The region between 0.91-1.05 containing 

signals from isoleucine, leucine and valine is characterized as the branched amino acid region.  

4.5. Data Handling 

The region at 0.5–9.0 ppm of the 1H NMR spectra were segmented into bins of 0.01 ppm and 

integrated. To exclude the water signal, the region at 4.55–4.85 ppm was not included in the further 

multivariate data analysis. The unsupervised method principle component analysis (PCA) was 

performed on Pareto-scaled and mean-centered binned NMR data on all the samples to detect 

clustering behavior and explore biochemical differences. In addition, orthogonal partial least squares 

regression-discriminate analysis (OPLS-DA) was carried out on pre-defined classes. The quality of the 

models was evaluated by: R2X describing how much of the variation that is explained by the model 

(goodness of fit) and Q2 representing the predictive ability of the model (goodness of prediction). All 

models were validated by full cross-validation. The multivariate data analysis was carried out using the 

SIMCA-P+ version 12.0.1.0 (Umetrics, Umeå, Sweden). In order to eliminate the inter-subject 

variation, 1H NMR spectra obtained on plasma samples collected prior to exercise and protein intake 

(baseline spectra) were subtracted from the 1H NMR spectra obtained on plasma samples collected at 

later time points. This approach has previously been described by Bro and Smilde [32] and applied  

by Yde et al. [33].  

5. Conclusions  

The present study investigated the potential of NMR-based metabonomics for elucidating the 

postprandial metabolic changes to intake of whey or calcium caseinate protein drinks in combination 

with heavy resistance training. The approach enabled us to study the dynamic metabolic changes in the 

metabolite profile after exercise and protein intake. Overall, there is no effect in small metabolites 

between the two protein sources, as measured by 1H NMR-based metabonomics, when examining the 

plasma profiles.  
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