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Abstract: Hypermetabolism is a significant sequela to severe trauma such as burns, as well 
as critical illnesses such as cancer. It persists in parallel to, or beyond, the original 
pathology for many months as an often-fatal comorbidity. Currently, diagnosis is based 
solely on clinical observations of increased energy expenditure, severe muscle wasting and 
progressive organ dysfunction. In order to identify the minimum number of necessary 
variables, and to develop a rat model of burn injury-induced hypermetabolism, we utilized 
data mining approaches to identify the metabolic variables that strongly correlate to the 
severity of injury. A clustering-based algorithm was introduced into a regression model of 
the extent of burn injury. As a result, a neural network model which employs VLDL and 
acetoacetate levels was demonstrated to predict the extent of burn injury with 88% 
accuracy in the rat model. The physiological importance of the identified variables in the 
context of hypermetabolism, and necessary steps in extension of this preliminary model to 
a clinically utilizable index of severity of burn injury are outlined. 

Keywords: hypermetabolism; metabonomics; flux analysis; cluster analysis; regression; 
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OPEN ACCESS



Metabolites 2012, 2              
 

459

1. Introduction 

Hypermetabolism is a significant consequence of severe trauma such as burns [1], as well as critical 
illnesses such as cancer [2]. It persists in parallel to, or beyond, the original pathology for many 
months as an often-fatal comorbidity. Prolonged hypermetabolism is characterized by increased resting 
energy expenditure and severe muscle wasting due to a negative nitrogen balance. The underlying 
mechanisms that control the onset and resolution of the hypermetabolic response are unknown. Therefore, 
current treatments are directed at symptoms which are metabolic, endocrine, and immune in nature. 

Increasing nutritional energy delivery and protein intake only partially alleviate the loss of lean 
body mass [3,4]. Experimental approaches to overcome the deleterious effects of hypermetabolism 
have been used with varying success, including glutamine and arginine supplementation [5,6]; 
combinatorial nutritional therapies using a diet high in vitamins, protein, amino acids, and ω-3 fatty 
acids [7]; peroxisome proliferator activated receptor-α agonists to improve fat oxidation and 
mitochondrial activity [8]; as well as antioxidant and anti-inflammatory agents [9]. Modulation of 
insulin action [10], direct insulin therapy [11,12], administration of other anabolic agents [13], as well 
as β-blockers [14] have also produced significant improvements, but are inherently impractical in the 
long-term, and in some cases produce undesirable, potentially fatal, side effects [15,16]. 

Rational design and optimization of nutritional therapies can be achieved by targeting the 
interconnected metabolic network and regulatory pathways impacted by hypermetabolism [17–21], 
thereby having a broad impact on the metabolome, and subsequently altering the physiome at the 
genomic and proteomic levels. Hence an understanding of the connections among individual 
metabolites and the overall injury physiome is necessary to rationally design metabolic interventions. 
While the advances in metabolomics and metabonomics are starting to present an ever-increasing 
amount of data, the capability to quantitatively and accurately predict the metabolic effects of 
nutritional supplements in order to design the kind of combination therapies that could treat 
hypermetabolism and other metabolic conditions remains absent. 

There are a variety of techniques to extract knowledge from “omics” data. These include pattern 
identification methods such as clustering and principal component analysis (PCA) typically applied to 
time-series mRNA microarray data to identify key trendlines [22]; network analysis to identify 
correlations between genes/metabolites [17]; and marker discovery [23], which utilizes a combination 
of techniques above to correlate disease with a specific measured variable. Metabonomics in particular 
focuses on the metabolic analysis of the consequences of a perturbation, such as disease and 
medication. While metabonomics of toxicity [24] and pharmaceuticals [25] is an emerging field, there are 
few studies performing rigorous metabolic analyses as a function of extent of injury or disease [23,26]. 

While there has been some effort to develop analytical mathematical models for hypermetabolism 
[27,28], predictive models remain absent. There are however efforts to develop such approaches, for 
instance Flux Balance Analysis (FBA), to identify the metabolic causes of fat accumulation in 
hepatocytes [29,30]; similar approaches could potentially predict metabolic responses to potential 
interventions, such as amino acid supplements and hence rationally develop combination therapies in 
hypermetabolism. However, in vivo hypermetabolism remains a mostly clinical observation, and 
quantitative measures of hypermetabolism to define the extent of burn injury are necessary for use of 
optimization-based FBA models. 
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The objective of this study was to identify sensitive indicators that correlate with the severity of 
injury and that can be measured from blood samples. For this purpose, we used rat models of 
cutaneous burn injury of increasing size, and analyzed metabonomic data on postburn day 4. We 
identified VLDL and acetoacetate in the circulation as being particularly sensitive to the extent of burn 
injury, and thus could serve as a quantitative measure of the grade of hypermetabolism. 

2. Experimental Methods 

Briefly, male Sprague–Dawley rats (Charles River Labs) weighing between 270 g and 300 g at time 
of burn, were subjected to a third degree cutaneous burn injury (i.e., depth of injury spans the entire 
thickness of the skin) covering 20% of the Total Body Surface Area (TBSA) (dorsal burn only) or 40% 
TBSA (burn on dorsum and abdomen) by contacting the skin with water at 100 °C. Sham-treated 
animals were handled identically to the burn groups, except that room temperature water was used. 
After injury, animals were immediately resuscitated with an intraperitoneal saline injection (20 mL/kg 
per rat) and allowed to recover in individual cages. Animals were weighed daily and food consumption 
was monitored. On the third day following the injury, all rats were fasted overnight in preparation for 
the blood samples to be taken on Day 4 as described in detail elsewhere [21]. Briefly, on day 4, each 
rat was anesthetized and blood flow through each of the major blood vessels entering the liver  
(the portal vein, PV, and hepatic artery, HA, USA) were measured using a perivascular ultrasonic 
flow-probe (Transonic Systems, Ithaca, NY, USA). The sum of flow rates into the liver was assumed 
to equal the flow rate out of the hepatic veins into the suprahepatic vena cava (SHVC). Following flow 
rate measurements, blood samples from the hepatic veins and PV were taken, followed by arterial 
blood. Blood samples were analyzed for blood gases and pH using a Rapidlab Blood Gas Analyzer 
865 (Bayer). Standard reagent kits were used to determine plasma glucose (Stanbio No. 1075-825), 
urea (Stanbio No. 0580), and lactate (Trinity Biotech USA No. 735-10). The ketone bodies 
acetoacetate and β-hydroxybutyrate were measured enzymatically by following the appearance or 
disappearance of NADH upon the addition of β-hydroxybutyrate dehydrogenase (Sigma), respectively. 
Nineteen of the common amino acids (except tryptophan) plus ornithine and ammonia were measured 
using a Waters HPLC apparatus (Waters Co. Milford, MA, USA). ELISA techniques were used to 
detect albumin (Sigma) and insulin (Crystal Chem Inc No. INSKR020). Alkaline phosphatase (ALP), 
alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin, blood urea nitrogen, 
and creatinine, HDL, LDL, VLDL, cholesterol and triacylglycerols were measured using a Piccolo 
Comprehensive Metabolic Panel (Abaxis, Inc., Union City, CA, USA). Finally, the liver was excised 
and weighed. Fluxes across the liver were subsequently determined as the difference between in- and 
effluxes, calculated per vessel as the product of metabolic concentration and flow rate normalized to 
the weight of the liver. Note that early injury markers, such as cytokines and tissue damage, have 
shown a clear linear trend with increasing burn severity [31,32]; however, we sought variables that 
were less likely to have a transient response or a response subsequently complicated by sepsis so we 
only employed metabolic markers still visible 4 days after injury for consideration as indicators of 
burn injury. 
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3. Numerical Methods 

3.1. Theoretical Aspects 

The primary goal of this study was to identify key metabolites that are strongly correlated to the 
hypermetabolism in the form of a predictive model of the degree of burn injury. However, since 
metabolic data suffer from the existence of a high degree of correlation [17], a straightforward 
statistical analysis (e.g., ANOVA), is very limited. Many variables will be identified as correlated to 
injury because of their own interrelationships. Therefore, a critical issue is to identify the key variables 
involved, which may be defined as the minimum number of variables that can explain the metabolic 
response to injury. For the purposes of this work, this problem can equivalently be stated as the 
identification of the minimum number of variables necessary to construct an accurate model that can 
predict the degree of injury from metabolic data. 

It should be noted that in the absence of a mechanistic description of the effects of injury, empirical 
mathematical models are necessary, which further increases the problem of complexity as the type of 
model to be used becomes another variable. Therefore, the problem of constructing an “index of burn 
injury severity” is a multiobjective problem where the task is to simultaneously: (i) select and train the 
best mathematical model; (ii) maximize model accuracy by selecting the variables to use; (iii) minimize 
the number of variables in the model. To achieve this goal, we designed a novel algorithm to identify the 
metabolites that are most indicative of injury grade, as outlined in Figure 1 and discussed in detail below.  

Figure 1. The burn-injury indicator identification algorithm. 

 

Clustering of Dose-Response Patterns. The first step in the algorithm is clustering in order to group the 
metabolites responding similarly to increased injury, which serves multiple purposes. Clustering serves 
as the first step in reducing the problem dimensionality, as all metabolites collected in one group can 
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be considered to be regulated by the same mechanisms, and ideally can be considered as a single 
variable (or, a single metabolite can adequately represent all others in the same cluster). Therefore, the 
number of clusters necessary to represent the data presents an adequate first-guess for the ideal number 
of variables to capture the entire metabolic response. In addition, since we have obtained  
dose-response data rather than a simple injury vs. non-injury comparison, clustering also identifies the 
major patterns observed in response to increasing levels of burn injury, which enables incorporating a 
physiological interpretation prior to identification of the burn-grade indicators.  

A critical issue in clustering is the determination of the number of clusters, either defined directly as 
a parameter (as in k-means clustering which is employed here) or indirectly (as in hierarchical 
clustering). We utilized a tandem approach to determine the optimum number of clusters, combining 
analysis of explained variance (here measured as sums of point-to-centroid distances of all clusters) 
and the separation of individual clusters (assessed through silhouette analysis) [33]. It should be noted 
that the tandem use is necessary: in clustering, by definition, as the number of clusters increases, the 
error of clustering is reduced, until each instance (i.e., patient) itself is a cluster and the error is zero, 
which obviously is of little value. An alternative criterion to identify a good number of clusters that is 
commonly employed is the marginal gain of adding a cluster, which often displays “elbows” where the 
marginal value decreases steeply. However, often there are multiple elbows and so multiple choices of 
good numbers of clusters. To differentiate between such potential solutions, we employed the 
silhouette analysis, which is a measure of separation for clusters. Briefly, the silhouette value is a 
measure of how close each point in one cluster is to points in the neighboring clusters. This measure 
ranges from +1, indicating points that are very distant from neighboring clusters, through 0, indicating 
points that are not distinctly in one cluster or another, to −1, indicating points that are probably 
assigned to the wrong cluster [33]. Combining the marginal value and silhouette methods, it is possible 
to assess marginal return and mean silhouette values as a function of number of clusters, and identify 
the number of clusters that simultaneously have a local maxima in their silhouette value and display a 
decrease in cluster error. This is in essence a visual analysis of the two charts to identify the minimum 
number of clusters  

Identification of Independent Patterns. Identified patterns reveal the key trends in the dose response. In 
mRNA analysis, the co-regulated gene expression reveals information regarding genetic control  
motifs [34]. The situation is more complex in metabonomics, as correlations exist due to a variety of 
reasons such as simple stoichiometric dependencies [17]. Accordingly, it is necessary to extract the 
actual number of independent patterns in order to filter out these metabolic correlations that are not of 
primary interest for this study. 

To achieve this purpose, a Singular Value Decomposition (SVD) was performed on the cluster 
centroids: Briefly, each cluster was expressed as a vector (the cluster median for each level of injury 
was an entry in the vector), and the vectors were augmented to form a cluster centroid matrix. SVD 
was performed to identify the number of independent patterns, which can be used to explain the 
remaining patterns. This is in effect a rank analysis, but direct analysis of singular values enables 
identification of marginally non-zero singular values, which are likely artifacts of measurement error 
and/or statistical clustering rather than major patterns in the injury response. The number of distinct 
singular values that are also non zero (>10−2, a heuristically chosen limit) was chosen as the number of 
independent clusters. 
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The product of this tandem approach is: (i) identified patterns in the injury response; and (ii) the 
minimum number of patterns that can explain the entire response, which is interpreted here as 
equivalent to the minimum number of variables that are necessary to construct an index of injury. 

It is worth noting that this two-step hybrid procedure to reduce the problem dimensionality has 
problem-specific advantages over conventional dimension reduction methods such as PCA or Linear 
Discriminant Analysis (LDA). PCA is the optimum method for elimination of collinearities present in 
the data, but is not optimized for class separability, hence will be insensitive to the presence of patterns 
due to elevated injury. LDA is an elegant and “context sensitive” solution, but assumes linearity, 
which may or may not be valid in burn injury. The method employed here incorporates a sophisticated 
model selection process, including nonlinear classifiers such as Artificial Neural Networks. 

Pattern Analysis. The analysis of clustering provides several layers of information. The independent 
pattern analysis performed above provides the ideal number of variables that are necessary to capture 
the injury response. Detailed analysis of cluster membership may reveal further physiological 
information; for instance, in this work we used changing cluster membership between the liver inlets 
(hepatic artery and portal vein) and outlet (vena cava) for any particular metabolite as an indicator of 
altered liver function due to burn injury. 

Variable Elimination and Model Selection. For each model (classifier) type considered, the variable 
elimination task involves finding an optimum list of variables that maximizes the model’s prediction 
accuracy. N-fold cross-validation accuracies were used to estimate the real-world accuracy for the 
trained regression models [35,36]: data are separated into N subsets; model training and validation is 
performed N-times, and in each run one of the subsets is used only for validation and the rest for 
model training. N-fold cross validation significantly reduces variability in accuracy estimates due to 
uneven validation data selections as all data is reused for testing the model accuracy. Multiple repetitions of 
the n-fold cross validation ensure that the selection process for the subsets does not affect the results. 

For a given set of variables, comparison of alternative regression models is a straightforward task 
that can be based on the cross-validation results. If the number of variables is preset, the variable 
elimination is also a straightforward, albeit computationally intensive procedure: this problem is a 
combinatorial-optimization problem, where a set number of variables are chosen to maximize cross 
validation accuracy. In this work, we employed the variable selection algorithm in WEKA which 
employs a genetic algorithm to select the best variables to maximize the cross-validation accuracy for 
each classifier. This was followed by a ranking subroutine (Best-first algorithm in WEKA, a greedy 
step-climbing algorithm augmented with backtracking facility) which was used to select only the 
preset number of variables.  

However, the number of variables is typically a confounding factor. Briefly, the training accuracy 
improves in regression as the number of variables/free parameters increases, but this results in 
overtraining, such that the model is not valid for real data (i.e., the model is not generalizable), hence 
cross-validation accuracy will decrease after a certain point. The straightforward approach is to 
evaluate the cross-validation accuracy as a function of the number of variables used in the model, and 
choose the minimum number of variables that provide a high cross-validated accuracy, but this process 
is a very computationally intensive task since the variable elimination described above has to be 
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repeated for each set number of variables, and this process has to be repeated for all possible models. 
Further, there are often multiple good solutions that have very similar accuracies. Therefore, in 
choosing the best combination of model, variables, and accuracy, determination of the proper weights 
of these competing objectives becomes a subjective decision. 

By comparison, the number of independent patterns identified as described above, provides a 
simple criterion that can be determined through an objective and quick process. This approach also 
avoids issues during selection of the best regression model (i.e., the decision of which model to use for 
the index of hypermetabolism), since number of variables employed by each model becomes an a 
priori set quantity that is equal for all tested alternatives.  

3.2. Methods 

Data Preprocessing. The data per rat include metabolite concentrations of each of the PV, HA, and 
hepatic veins, and metabolic fluxes across the liver on day 4 post-burn. To eliminate outliers, variables 
with values beyond the median ± 2 × interquartile range for the group were considered as missing [37]. 
Since individual rat data are used in the construction of a hypermetabolism index, rats with >30% 
missing extracellular metabolite measurements were removed from the experimental dataset. Overall, 
7 out of 12, 7/12, and 7/13 rat datasets were retained for the sham, 20% and 40% TBSA burn 
conditions, respectively. The missing values were replaced by the median of the measurements of that 
group. This resulted in a data matrix of 165 measurements on each of 21 animals. 

Analysis. To identify major patterns in the dose response to burn, k-means clustering was performed in 
MATLAB. The average of each variable was calculated for each burn group (sham, 20%, 40%). Each 
variable was normalized to [−1 1] interval. The Euclidian distance was used as the clustering 
performance which provided better silhouette values compared to other distance measures (results not 
shown). Each clustering was run with >10 replicates and that the cluster means and their membership 
remained similar was confirmed (results not shown). It was observed that the changes in the cluster 
centroids were negligible between clustering runs, an indicator that the number of clusters was well 
chosen and cluster separation achieved was close to ideal. The centroid of each cluster was identified 
as the dose-response pattern. 

Training, cross-validation, and selection of regression models were performed in WEKA data 
mining software [36]. The analysis was performed on per-rat data. The following classifiers were 
tested: Linear Regression (LR), normalized gaussian Radial Basis Function Network (RBFN), Neural 
Network (NN) (multilayer perceptron), Sequential Minimal Optimization algorithm for training a 
support vector Regression model (SMOR), M5P Decision Tree (M5P-DT), Decision Table (DT), M5 
Rules (M5-R). For each method, variable selection was performed as described above. The accuracy of 
each regression model was then evaluated via five 10-fold cross validations, where all randomizable 
variables in the model, as well as the partitioning of data into 10 folds, were randomized.  

4. Results  

Clustering. Analysis of the mean silhouette results demonstrated that increase from four to six cluster 
increased clusters separation only marginally (2.2%), hence four was chosen as the optimum number 
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(Figure 2). Figure 3 displays the results of clustering along with the centroids of each cluster as a 
function of burn injury degree. Table 1 lists all the variables included in the analysis, their averages for 
each burn group, and the cluster membership for each variable. 

Figure 2. Cluster analysis indicates four distinct patterns present in metabolic profiles:  
(A) Number of clusters vs. sum distance from cluster centroid. (B) Number of clusters vs. 
silhouette value. (C) Silhouette values for each metabolite within the four clusters 
identified; a value of 1 indicates the metabolite profile is identical to the cluster centroid; 
−1 indicates the metabolite displays a perfect inverse profile. 

 

Figure 3. Identified Clusters. (A–D) Profile of metabolites classified within clusters 1–4. 
(E–H) Centroids (patterns) for each cluster. 
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Table 1. Variables included in analysis and cluster membership. 

Variable Vessel Cluster
Sham  
(median ± IQR)

20% 
(median ± IQR) 

40% 
(median ± IQR)

Arginine HA 1 110.51 ± 10.239 182.13 ± 83.525 181.24 ± 14.245 
Creatinine (Cre) HA 1 0.2 ± 0 0.2 ± 0.05 0.2 ± 0 
Cysteine HA 1 15.76 ± 6.57 21.36 ± 0.92 25.55 ± 1.524 
Fraction of 
Carboxyhemoglobin (FCOHb) HA 1 7.9 ± 0.35 8.3 ± 1.5 8.5 ± 0.8 
Fraction of Methlyated 
hemoglobin (Fmeth) HA 1 0 ± 0 0 ± 0 0 ± 0 
Low Density Lipoprotein 
(LDL) HA 1 18 ± 14 22 ± 6 38 ± 8.75 
Ornithine HA 1 98.84 ± 22.359 117.73 ± 2.414 139.78 ± 12.129 
Total Bilirubin (TBIL) HA 1 0.3 ± 0.075 0.3 ± 0 0.3 ± 0.1 
Total cholesterol/HDL ratio 
(TC/H) HA 1 2.1 ± 0.1 2.2 ± 0.3 2.2 ± 0.05 
Arginine PV 1 113.3 ± 104.288 227.17 ± 42.862 223.04 ± 5.409 
Aspartate Amino Transferase 
(AST) PV 1 74 ± 16.5 83 ± 32.5 88 ± 27.5 
AST/ALT PV 1 1.73 ± 0.599 1.91 ± 0.82 2.1 ± 0.893 
Cholesterol PV 1 56 ± 24.5 74.5 ± 21.75 79 ± 10 
Creatinine (Cre) PV 1 0.2 ± 0 0.2 ± 0.05 0.2 ± 0 
Cysteine PV 1 14.89 ± 2.658 16.46 ± 1.543 16.55 ± 1.155 
Fraction of 
Carboxyhemoglobin (FCOHb) PV 1 7.2 ± 0.8 8.1 ± 1 7.7 ± 0.75 
Flow Rate PV 1 9 ± 9.226 20.5 ± 10.2 22 ± 6.5 
Fraction of Methlyated 
hemoglobin (Fmeth) PV 1 0 ± 0 0 ± 0.05 0 ± 0.1 
Isoleucine PV 1 91.03 ± 34.218 100.74 ± 12.663 99.65 ± 3.513 
Low Density Lipoprotein (LDL) PV 1 17 ± 6 30 ± 6 42.5 ± 9.5 
Leucine PV 1 243.09 ± 67.215 308.18 ± 25.007 336.71 ± 23.168 
Lysine PV 1 215.96 ± 92.604 234.02 ± 21.353 269.19 ± 20.227 
Phenylalanine PV 1 58.35 ± 9.465 65.69 ± 4.891 66.63 ± 7.422 
Total Bilirubin (TBIL) PV 1 0.3 ± 0.05 0.3 ± 0.05 0.3 ± 0.05 
Total cholesterol/HDL ratio 
(TC/H) PV 1 1.9 ± 0.1 2 ± 0.1 2.3 ± 0.05 
Total CO2 PV 1 20 ± 4.5 23 ± 0 23 ± 3.5 
Threonine PV 1 175.33 ± 61.707 219.96 ± 60.936 228.44 ± 50.882 
Tyrosine PV 1 62.95 ± 8.409 73.73 ± 6.036 78.49 ± 8.038 
Valine PV 1 176.6 ± 62.552 206.26 ± 19.143 206.03 ± 4.825 
Arginine SHVC 1 62.27 ± 2.077 211.01 ± 23.971 206.12 ± 37.934 
AST/ALT SHVC 1 2.03 ± 0.786 2.41 ± 1.036 2.36 ± 0.913 
Blood Urea Nitrogen (BUN) SHVC 1 13 ± 2 15.5 ± 1.5 17.5 ± 2.5 
Cholesterol SHVC 1 49 ± 10 55 ± 22 74 ± 7 
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Table 1. Cont. 

Variable Vessel Cluster
Sham  
(median ± IQR)

20% 
(median ± IQR) 

40% 
(median ± IQR)

Creatinine (Cre) SHVC 1 0.2 ± 0 0.2 ± 0.05 0.2 ± 0 
Cysteine SHVC 1 12.07 ± 0.595 16.68 ± 2.042 18.37 ± 2.285 
Flow Rate SHVC 1 9.5 ± 9.255 20.9 ± 10.2 22.2 ± 6.7 
Fraction of Methlyated 
hemoglobin (Fmeth) SHVC 1 0.25 ± 0.25 0.3 ± 0.15 0.3 ± 0.3 
Isoleucine SHVC 1 79.1 ± 12.184 103.88 ± 12.065 103.42 ± 8.164 
Potassium (K) SHVC 1 3.2 ± 0.95 4.2 ± 0.95 4 ± 1.15 
Low Density Lipoprotein 
(LDL) SHVC 1 17 ± 10.25 23 ± 6 36 ± 0 
Ornithine SHVC 1 77.44 ± 19.421 89.36 ± 35.165 123.36 ± 14.992 
Total Bilirubin (TBIL) SHVC 1 0.3 ± 0.05 0.3 ± 0 0.3 ± 0.05 
Total cholesterol/HDL ratio 
(TC/H) SHVC 1 2.05 ± 0.2 2.1 ± 0.1 2.2 ± 0 
Valine SHVC 1 121.63 ± 54.408 204.83 ± 24.603 206.6 ± 21.909 
AST/ALT HA 2 2 ± 0.752 2.48 ± 1.04 2.07 ± 0.733 
Chloride (Cl) HA 2 109 ± 10.5 114 ± 19 109 ± 10.5 
Fraction of Oxyhemoglobin 
(FO2Hb) HA 2 91.2 ± 4.85 91.5 ± 2.15 84.8 ± 8.35 
Sodium (Na) HA 2 143 ± 6 153 ± 16.5 142 ± 9 
Partial pressure of CO2 (pCO2) HA 2 43.95 ± 4.9 51.3 ± 12.65 46.8 ± 1.4 
pH HA 2 7.27 ± 0.059 7.3 ± 0.034 7.27 ± 0.042 
Partial Oxygen pressure (PO2) HA 2 106.2 ± 19.85 117.3 ± 18.5 100.35 ± 35.525 
Tyrosine HA 2 79.81 ± 17.969 88.17 ± 6.785 78.64 ± 8.325 
Acetoacetate PV 2 115.35 ± 115.91 134.15 ± 91.278 50.81 ± 115.089 
Alanine PV 2 391.58 ± 10.724 452.9 ± 113.48 395.22 ± 95.64 
Alanine Amino Transferase 
(ALT) PV 2 42 ± 11 46 ± 4.5 42 ± 4.5 
β-hydroxybutyrate PV 2 81.41 ± 87.551 103.82 ± 64.453 88.47 ± 49.107 
Blood Urea Nitrogen (BUN) PV 2 12 ± 5.5 16 ± 2.5 14 ± 3.5 
Fraction of Oxyhemoglobin 
(FO2Hb) PV 2 73.6 ± 12.4 82.7 ± 18.75 73.7 ± 15.2 
Glucose PV 2 143 ± 126.5 183 ± 55.5 147 ± 48.5 
Potassium (K) PV 2 3.7 ± 1.25 4.1 ± 0.7 3.7 ± 0.6 
Partial pressure of CO2 
(pCO2) PV 2 55.6 ± 3.05 60.55 ± 5.5 57.5 ± 2.3 
pH PV 2 7.28 ± 0.01 7.3 ± 0.077 7.26 ± 0.028 
Acetoacetate SHVC 2 126.21 ± 27.78 126.21 ± 13.89 30.96 ± 95.246 
Aspartate Amino Transferase 
(AST) SHVC 2 84 ± 16 85 ± 13 80 ± 31 
Fraction of Oxyhemoglobin 
(FO2Hb) SHVC 2 23.3 ± 5.55 28.7 ± 17.65 14.1 ± 14 
Leucine SHVC 2 218.34 ± 52.758 261.92 ± 91.466 210.42 ± 147.222 
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Table 1. Cont. 

Variable Vessel Cluster
Sham  
(median ± IQR)

20% 
(median ± IQR) 

40% 
(median ± IQR) 

pH SHVC 2 7.29 ± 0.02 7.32 ± 0.055 7.25 ± 0.021 
Partial Oxygen pressure (PO2) SHVC 2 27.2 ± 0.725 41.9 ± 15.6 15.1 ± 11.4 
Alkaline phosphatase (ALP) HA 3 192 ± 96.5 113 ± 21 194 ± 74 
Aspartate Amino Transferase 
(ALT) HA 3 49.5 ± 14.25 36 ± 7.5 39 ± 11.5 
β-hydroxybutyrate HA 3 183.61 ± 194.894 65.45 ± 39.132 165.2 ± 104.353 
Blood Urea Nitrogen (BUN) HA 3 12.5 ± 7 13 ± 1.5 17 ± 4.5 
Calcium (Ca) HA 3 8.5 ± 1.25 7 ± 1 8.8 ± 0.85 
Cholesterol HA 3 56.5 ± 14.75 58 ± 13 73 ± 21 
Fraction of Deoxyhemoglobin 
in Total Hemoglobin (FHHb) HA 3 0.3 ± 4.45 0.2 ± 0.4 0.3 ± 7.15 
Glutamine HA 3 406.45 ± 97.249 344.31 ± 47.021 414.34 ± 24.774 
High Density Lipoprotein 
(HDL) HA 3 33 ± 5 27 ± 18 36 ± 6.75 
Histidine HA 3 65.3 ± 0.404 61.03 ± 9.453 67.39 ± 8.07 
Lactate HA 3 0.84 ± 0.944 0.58 ± 0.942 3.47 ± 1.49 
Lysine HA 3 220.96 ± 66.163 181.93 ± 25.467 224.74 ± 13.38 
Phenylalanine HA 3 65.09 ± 7.564 63.2 ± 3.598 67.17 ± 1.202 
Total CO2 HA 3 21 ± 1.5 19 ± 1.5 25 ± 3 
Total Protein (TP) HA 3 5.3 ± 0.5 3.7 ± 0.7 4.7 ± 0.3 
Alkaline phosphatase (ALP) PV 3 174 ± 69 151 ± 33.5 184 ± 78 
Chloride (Cl) PV 3 110 ± 14.5 109 ± 13 112 ± 7 
Fraction of Deoxyhemoglobin 
in Total Hemoglobin (FHHb) PV 3 19.2 ± 13.25 9.2 ± 19.7 18.6 ± 15.85 
High Density Lipoprotein 
(HDL) PV 3 36 ± 12 33 ± 4.5 35.5 ± 2.5 
Histidine PV 3 140.94 ± 16.226 120.93 ± 9.821 147.78 ± 19.839 
Lactate PV 3 1.07 ± 0.095 0.68 ± 0.632 4.38 ± 1.986 
Sodium (Na) PV 3 146 ± 6.5 146 ± 12.5 149 ± 2.5 
Ornithine PV 3 119.81 ± 4.751 107.16 ± 6.154 120.82 ± 17.96 
Proline PV 3 161.22 ± 18.151 162.06 ± 8.013 171.2 ± 35.127 
Fraction of Deoxyhemoglobin 
in Total Hemoglobin (FHHb) SHVC 3 71.1 ± 6 59 ± 15.8 80 ± 13.45 
High Density Lipoprotein 
(HDL) SHVC 3 26.5 ± 6 24 ± 5 33 ± 0 
Histidine SHVC 3 53.01 ± 9.45 52.2 ± 18.937 61.6 ± 6.314 
Lactate SHVC 3 1 ± 0.34 0.74 ± 0.141 3.81 ± 2.135 
Lysine SHVC 3 205.05 ± 79.978 197.38 ± 80.877 210.04 ± 29.84 
Sodium (Na) SHVC 3 148 ± 7 148 ± 12.5 149 ± 7.5 
Partial pressure of CO2 (pCO2) SHVC 3 55.2 ± 6.9 51.3 ± 3.75 67.4 ± 7 
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Table 1. Cont. 

Variable Vessel Cluster
Sham  
(median ± IQR)

20% 
(median ± IQR) 

40% 
(median ± IQR) 

Total CO2 SHVC 3 22 ± 4 22 ± 2 25 ± 0.75 
Tyrosine SHVC 3 61.88 ± 6.68 61.29 ± 9.773 68.37 ± 7.3 
Acetoacetate HA 4 116.29 ± 22.819 110.34 ± 47.623 70.65 ± 31.749 
Alanine HA 4 348.27 ± 41.954 297.32 ± 22.715 281.4 ± 33.083 
Albumin HA 4 1.95 ± 0.175 1.2 ± 0.3 1.3 ± 0.25 
Alanine Amino Transferase 
(ALT) HA 4 49.5 ± 14.25 36 ± 7.5 39 ± 11.5 
Ammonia HA 4 49.7 ± 4.527 37.3 ± 4.081 23.1 ± 4.616 
Asparagine HA 4 41.98 ± 5.488 34.51 ± 3.945 32.73 ± 6.58 
Aspartate HA 4 11.83 ± 1.549 9.25 ± 5.852 10.16 ± 2.637 
Hemoglobin (%) HA 4 12.4 ± 1.35 12 ± 2.4 10.4 ± 1.05 
Flow Rate HA 4 0.65 ± 0.146 0.5 ± 0.069 0.5 ± 0.426 
Glucose HA 4 169 ± 87 134 ± 46 146.5 ± 16 
Glutamate HA 4 76.85 ± 6.662 54.15 ± 19.137 46.84 ± 17.453 
Glycine HA 4 216.75 ± 16.195 184.88 ± 25.974 163.76 ± 19.223 
Hematocrit HA 4 36 ± 3.5 35 ± 7 31 ± 3 
Isoleucine HA 4 113.82 ± 47.423 112.05 ± 19.396 108.01 ± 32.529 
Potassium (K) HA 4 4.25 ± 2.15 4.2 ± 1.45 3.9 ± 0.75 
Leucine HA 4 369.7 ± 174.817 275.1 ± 32.956 285.2 ± 87.999 
Methionine HA 4 52.33 ± 11.417 40.59 ± 8.321 38.75 ± 9.047 
Proline HA 4 164.52 ± 9.956 147.7 ± 27.492 147.69 ± 7.333 
Serine HA 4 223.83 ± 54.196 159.53 ± 12.872 169.06 ± 26.87 
Triglycerides (TG) HA 4 62 ± 35.75 29 ± 7 26 ± 6 
Threonine HA 4 256.03 ± 36.785 229.07 ± 41.332 202.04 ± 15.094 
Valine HA 4 234.98 ± 107.828 184.35 ± 36.559 178.74 ± 33.851 
Very low density lipoprotein 
(VLDL) HA 4 13 ± 0.5 6 ± 1 5 ± 0.5 
Albumin PV 4 2 ± 0.275 1.3 ± 0.35 1.3 ± 0.2 
Ammonia PV 4 108.65 ± 61.525 43.74 ± 33.121 72.67 ± 10.709 
Asparagine PV 4 51.08 ± 6.886 32.09 ± 3.895 31.74 ± 0.837 
Aspartate PV 4 19.18 ± 11.097 12.7 ± 1.594 12.06 ± 2.288 
Calcium (Ca) PV 4 8.7 ± 2.25 8.3 ± 0.55 7.9 ± 1.65 
Hemoglobin (%) PV 4 14.6 ± 0.95 13 ± 1.75 12.8 ± 0.5 
Glutamate PV 4 63.16 ± 13.278 42.22 ± 11.148 48.44 ± 15.319 
Glutamine PV 4 279.12 ± 59.911 253.05 ± 70.109 250.29 ± 33.243 
Glycine PV 4 273.49 ± 48.285 222.25 ± 33.939 204.59 ± 46.681 
Hematocrit PV 4 43 ± 3.5 40 ± 5 38 ± 2.5 
Methionine PV 4 44.77 ± 4.889 44.17 ± 4.749 43.82 ± 3.209 
Partial Oxygen pressure (PO2) PV 4 69.9 ± 11.75 54.2 ± 8.1 62.9 ± 15.65 
Serine PV 4 202.59 ± 14.805 148.88 ± 30.334 156.79 ± 14.701 
Triglycerides (TG) PV 4 52 ± 43 25.5 ± 11.75 23 ± 2 
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Table 1. Cont. 

Variable Vessel Cluster
Sham  
(median ± IQR)

20% 
(median ± IQR) 

40% 
(median ± IQR) 

Total Protein (TP) PV 4 5 ± 1.25 4.7 ± 0.9 4.8 ± 0.85 
Very low density lipoprotein 
(VLDL) PV 4 13 ± 5 6 ± 1 5 ± 0.5 
Alanine SHVC 4 246.38 ± 53.891 156.72 ± 42.529 152.26 ± 14.02 
Albumin SHVC 4 1.9 ± 0.25 1.3 ± 0.25 1.2 ± 0.25 
Alkaline phosphatase (ALP) SHVC 4 166 ± 67.5 129 ± 21 147 ± 82 
Alanine Amino Transferase 
(ALT) SHVC 4 40 ± 15.5 38 ± 14 37 ± 5.5 
Ammonia SHVC 4 40.44 ± 2.622 21.86 ± 10.951 15.01 ± 9.875 
Asparagine SHVC 4 27.87 ± 1.556 20.1 ± 3.165 18.34 ± 0.097 
Aspartate SHVC 4 13.57 ± 1.938 10.37 ± 4.932 8.47 ± 0.817 
β-hydroxybutyrate SHVC 4 275.69 ± 457.311 257.28 ± 244.001 223.51 ± 174.944 
Calcium (Ca) SHVC 4 8.6 ± 2.5 7.9 ± 0.3 8 ± 1.5 
Chloride (Cl) SHVC 4 111 ± 14.5 110.5 ± 4.75 109 ± 11 
Hemoglobin (%) SHVC 4 12.75 ± 0.875 10.7 ± 1.75 11.6 ± 0.65 
Fraction of 
Carboxyhemoglobin (FCOHb) SHVC 4 290 ± 73.75 130 ± 24 176 ± 50 
Glucose SHVC 4 263 ± 73 186 ± 72.5 152 ± 36.25 
Glutamate SHVC 4 76.77 ± 43.277 49.62 ± 15.79 44.7 ± 19.093 
Glutamine SHVC 4 299.7 ± 56.737 254.82 ± 97.786 228.06 ± 93.284 
Glycine SHVC 4 192.45 ± 57.864 148.04 ± 8.773 117.74 ± 58.252 
Hematocrit SHVC 4 37.5 ± 2.5 31 ± 5 34 ± 1.5 
Methionine SHVC 4 38.47 ± 1.541 32.45 ± 2.444 34.55 ± 1.049 
Phenylalanine SHVC 4 54.68 ± 3.359 52.83 ± 15.86 49.57 ± 14.92 
Proline SHVC 4 137.82 ± 37.486 115.64 ± 6.032 113.16 ± 16.448 
Serine SHVC 4 166.82 ± 20.803 105.99 ± 12.727 92.92 ± 42.759 
Triglycerides (TG) SHVC 4 25 ± 28.5 20 ± 3 20 ± 0 
Threonine SHVC 4 198.18 ± 20.372 186.17 ± 59.461 157.26 ± 6.575 
Total Protein (TP) SHVC 4 4.9 ± 1.05 4.3 ± 0.45 4 ± 0.85 
Very low density lipoprotein 
(VLDL) SHVC 4 9.5 ± 4.5 5 ± 0 5 ± 0 

Identification of Major Patterns. While there are four major patterns in the metabolic response to burn, 
they are not necessarily independent. For instance, clusters 1 and 4 apparently display the inverse of 
the same response. To identify the number of independent patterns, SVD Analysis was employed. This 
analysis revealed that two patterns explained 98.6% of the total variability observed, indicating that the 
remaining two patterns were explainable within a margin of error of <2%. The patterns highest 
weighted in SVD were clusters #2 and #4. It should be noted that the pattern selection here is based 
purely on overall trends, unlike the analysis of Yang et al. [34] which identifies critical time points of 
sudden changes in gene expression. Since the resolution of data for burn injury is limited (i.e., we have 
only three levels of burn injury), it is not possible to employ a similar method to identify the degree of 
injury where the post-burn hypermetabolic response kicks in.  
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Analysis of Cluster Membership. In general there were no strong trends observed in the variables 
comprising the clusters (Table 2). Cluster 2 had nearly equal membership from all vessels. Cluster 4 
had the most variables (68 total). Albumin, asparagine, aspartate, glutamate, methionine, serine, 
hematocrit, triglycerides and VLDL concentrations systemically (i.e., in all vessels observed) were 
selected to cluster 4, which displayed a general decreasing response with increasing burn. pH and 
FO2Hb were in cluster 2, which showed a peak at 20% burn. Lactate had increased systemically and 
was in cluster 3 with a sharp increase at 40% burn; HDL and histidine also belonged in this cluster 
systematically, although the sharp increase at maximum burn was not present. LDL and cysteine 
increased systemically, and were in cluster 3. 

Table 2. Cluster membership as a function of vessel/flux. 

Cluster 

# variables in vessel/flux 
Hepatic
Artery 

Portal
Vein 

Vena
Cava 

Liver
Flux  

Total 

1 9 20 15 9 45 
2 8 10 6 8 26 
3 15 9 9 15 36 
4 23 16 25 23 68 
Total 55 55 55 5  

To analyze the role of the liver in the dose response to burn injury, the variables that were selected 
to the same cluster in the liver inlet (PV and HA) but different outlet (SHVC) were identified. FCOHb 
(HA and PV in cluster 1, SHVC in cluster 4), pCO2 (2/3), ALP (3/4) were the three variables identified. 

4.1. Model Selection and Index of Burn Injury Severity 

The variable elimination process was performed with each model with the number of variables set 
at two. The two best models were the M5-Rules and NN, with very similar cross validation accuracies 
(Table 3). The formula for the index of burn injury severity developed via the NN model is: 

( ) 1.0388
1

12.11)(%Burn 1.55-(SHVC) teAcetoAceta 63.4 VLDL(HA) 3.08- −⎟
⎠
⎞

⎜
⎝
⎛
+

=
−−e

TBSA  

Table 3. Comparison of tested models. 

 Average Relative Accuracy Variable 1 Variable 2 
RBF 46.06 ± 4.59 Ammonia (HA) Ornithine (SHVC) 
DT 70.54 ± 7.83 Asparagine (SHVC) ALB (HA) 
M5P-DT 72.36 ± 1.03 ALB (HA) Ammonia (HA) 
LR 73.28 ± 0.55 VLDL (HA) Acetoacetate (SHVC) 
SMOR 75.92 ± 2.20 VLDL (HA) Acetoacetate (SHVC) 
M5-R 87.82 ± 1.31 VLDL (HA) Asparagine (SHVC) 
NN 87.89 ± 2.79 VLDL (HA) Acetoacetate (SHVC) 

An interesting observation was that very low density lipoprotein (VLDL) (cluster #4) was a 
common choice in all the high-accuracy models. The acetoacetate level in the SHVC was the second 
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selection in the NN model, whereas SHVC asparagine concentration was selected in the M5P-R model. 
The top two regression models, NN and M5P-R, had nearly identical ~88% cross validation accuracy, 
which has value as a diagnostic index, but with significant room for improvement. 

The effects of using additional variables in the index were evaluated for NN and M5P-R (Table 4). 
The NN model was selected as the regression model of choice since accuracy increased significantly 
(23%) with up to 4 variables. By contrast, the accuracy of the M5P-R model was slightly increased 
with a third variable, but later decreased with addition of variables (it should be noted this is indeed the 
expected situation with proper cross-validation, which can account for over training; without 
validation data the accuracy would have increased monotonously with addition of new variables). The 
predictions of the NN model on a case-by-case basis are displayed in Table 5. However, note that these 
are the results of training on the full set of data, hence the overall accuracy is significantly higher than it 
would be expected in an actual application, which is what the cross validation results in Table 3 report.  

Table 4. Effect of number of variables on regression accuracy. 

Method Measure 2 Variables 3 Variables 4 Variables 5 Variables 

N
N

 

Average Relative 
Accuracy 87.89 ± 2.789 89.46 ± 1.379 90.69 ± 1.508 89.18 ± 1.552 

Selected 
Variables 

VLDL (HA), 
Acetoacetate 
(SHVC) 

VLDL (HA), 
Acetoacetate 
(SHVC), 
pO2 (SHVC) 

VLDL 
(SHVC), 
Acetoacetate 
(SHVC), 
pO2 (SHVC), 
CO2 (HA) 

VLDL (SHVC), 
Acetoacetate 
(SHVC), 
pO2 (SHVC), 
Asparagine 
(SHVC), 
CO2 (HA) 

M
5-

R
 

Average Relative 
Accuracy 87.82 ± 1.312 88.71 ± 0.983 87.66 ± 1.398 87.11 ± 1.038 

Selected 
Variables 

VLDL (HA),  
Asparagine 
(SHVC) 

Albumin (HA),  
Asparagine 
(SHVC), 
BUN (PV) 
 

VLDL (HA), 
Acetoacetate 
(SHVC), 
Albumin (HA), 
pCO2(SHVC) 

VLDL (HA), 
Acetoacetate 
(SHVC), 
Albumin (HA), 
pCO2(SHVC) 
Asparagine 
(SHVC) 

Table 5. Predictions of neural network model (Training on all data). 

Instance Burn % 
(actual) 

Predictions 
2 Variable 
Model (%burn) 

3 Variable 
Model (%burn)

4 Variable 
Model (%burn) 

5 Variable 
Model (%burn)

1 0 0.132 0.324 1.35 1.271 
2 0 −0.281 −0.373 −0.423  −0.320 
3 0 3.003 0.109 0.05 −0.195  
4 0 −0.614 0.415 −0.632 −0.52 0a 
5 0 0.309 −0.713 −0.011  −0.013 
6 0 −0.416 −0.213 −0.451 −0.635 
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Table 5. Cont. 

Instance Burn % 
(actual) 

Predictions 
2 Variable 
Model (%burn) 

3 Variable 
Model (%burn)

4 Variable 
Model (%burn) 

5 Variable 
Model (%burn)

7 0 −0.281 0.079 −0.301 −0.229 
8 20 19.048 19.876  20.654 20.528 
9 20 19.048 20.171 18.383 18.014  
10 20 19.048 19.585 19.72 19.590 
11 20 19.048 19.585 19.72 19.59 0 
12 20 25.415 19.686 19.993  19.715 
13 20 19.048 19.510 18.22 17.947 
14 20 20.255  20.757 20.651 17.947 
15 40 40.709 39.911 39.795 39.246 
16 40 40.957  40.268  40.919  40.870 
17 40 40.709 40.091 40.045  39.633 
18 40 41.238 39.938 39.866 39.709 
19 40 41.221 38.822 39.612 39.620 
20 40 39.865 39.757 38.984 38.333 
21 40 36.667 39.739 39.708  39.546  
Relative Absolute 
Error  

8.49% 2.54% 4.10% 5.04% 

Finally, since selection of acetoacetate is highly significant as an indicator of mitochondrial redox 
potential, we also tested the prediction success when acetoacetate/β-hydroxybutyrate ratio  
(a commonly used predictor of redox potential) is used [38,39]. Briefly, we repeated the variable 
selection/training algorithm for the following set: acetoacetate/β-hydroxybutyrate ratio (SHVC), 
acetoacetate/β-hydroxybutyrate ratio (HA), VLDL (SHVC), pO2 (SHVC), CO2 (HA), as well as 
acetoacetate/β-hydroxybutyrate ratio (SHVC) alone with NN and M5-R models. On its own, the 
acetoacetate/β-hydroxybutyrate ratio was extremely unsuccessful in predicting %TBSA, (average 
relative errors of 110.87 ± 7.444 and 110.26 ± 3.063 with NN and M5-R, respectively). Inclusion of 
other variables marginally improved the results but nowhere near the other results in Table 4: The 
average relative errors were 76.26 ± 15.887 and 64.55 ± 10.283 for NN and M5-R, respectively. 

5. Discussion and Conclusions 

The most important finding of this work is the strong correlation between VLDL levels and the 
extent of burn injury. Prior studies indicate that in burn trauma, VLDL secretion is impaired [40]. This 
is consistent with our observations that for increasing burn, there was a decrease in systemic VLDL. 
Interestingly, VLDL, LDL, HDL and TG are four of the relatively few variables that were systemically 
altered (i.e., belonged in the same cluster independent of the measured blood vessel). However, the 
model developed here suggests that VLDL is the most preferred variable for building a predictor of 
severity of burn injury; ahead of other potential metabolic targets such as hyperglycemia which is 
correlated to insulin resistance [9], alanine/glucose (a systemic cycle for conversion of skeletal muscle 
to glucose during hypermetabolism), or even glutamine and arginine, which tend to be depleted after 
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burn injury [5,41,42]. Of note here is that as clustering analysis shows, other potential variables 
identified in Table 4 demonstrate altering (i.e., belonging to different clusters based on measured 
vessel) injury dose-response profiles; therefore, predictions based on VLDL are least likely to be 
affected by tissue specific variations. Very likely, the fact that VLDL decrease is systemic also renders 
it a more accurate indicator of hypermetabolism. 

The second variable of interest, which was selected commonly for most regression models 
(including M5P-R with 3 or more variables) is acetoacetate (SHVC), which in the context of burn is 
most important as the precursor for β-hydroxybutyrate. While ketone bodies are not a subject of 
intense focus in hypermetabolism, it was previously suggested that the acetoacetate/β-hydroxybutyrate 
ratio reflects the mitochondrial redox potential in the liver [43,44], and in burn patients, a decrease of 
plasma acetoacetate to β-hydroxybutyrate ratio indicates mitochondrial dysfunction and correlates with 
developing multiple organ dysfunction [45]. Our rat data show a significant decrease in acetoacetate in 
the 40% TBSA burn group (Table 1). β-hydroxybutyrate was also decreased, although to a lesser 
extent, such that the acetoacetate to β-hydroxybutyrate ratio was decreased as well. In general, the 
decrease in total ketone bodies is regarded as an indicator of a limitation in oxidative phosphorylation 
after injury [46]. Concomitantly, other variables linked to mitochondrial activity or respiration, such as 
venous CO2, were also selected as additional injury indicators by the Neural Network model. It should 
be noted however, that the acetoacetate/β-hydroxybutyrate ratio by itself was not a particularly useful 
indicator of extent of burn injury. Further, replacing acetoacetate by the ratio severely decreased the 
accuracy achievable, with 100% error range, indicating that since the ratio was unsuccessful both on 
its own and when replacing acetoacetate concentrations, this reduction in accuracy is likely to be at 
least partially due to amplification or measurement noise. Note that β-hydroxybutyrate was one of the 
measurements with highest standard deviations relative to group means. 

A third variable that was commonly selected was asparagine. Asparagine/aspartate is one of the 
cycles that carry amino acids from the muscle tissue to the liver during injury and was previously 
reported to be altered in rat models of burn injury [47]. While asparagine was able to replace 
acetoacetate in the M5P-R model, for the NN model that was ultimately more successful and could 
exceed 90% accuracy acetoacetate proved a better variable to include in the index. 

It is worth noting that VLDL (SHVC) is not significantly different between the 20% and 40% burn 
groups, but is significantly reduced compared to the sham group. It can be argued that the ability to 
differentiate between sham and burn provided by VLDL complements acetoacetate (SHVC), which is 
different for the 40% burn group, but similar for the sham and 20% burn groups. The interesting note 
here is that neither of these variables is simply directly correlated to extent of burn, hence use of 
multiple variables is necessary. This supports our previous findings [21,48] that there are significantly 
different responses observed between the 20% and 40% burn groups, either because the response at 
20% TBSA is significantly less, or possibly as the 20% group is displaying a switch from 
hypermetabolism to a healing/normal phase as early as 4 days after burn injury. This response is likely 
the reason that a nonlinear model, such as the multi-layer perceptron, has higher accuracy than other 
linear models we tested in this study. This result may also justify why hypermetabolism diagnosis is 
still best based on clinical observations because this ad hoc method allows the physician to account for 
the nonlinear behavior based on past experience. 
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Using the 2-variable minimum identified by clustering, an index of burn injury severity was 
developed. The cross-validated accuracies of the best regression model, artificial Neural Network, was 
88%. We also tested the inclusion of additional variables into the regression model. As displayed in 
Table 4, the accuracy of the multilayer perceptron model could be increased to up to 91% with the 
addition of arterial total CO2 (cluster 3) and venous oxygen (cluster 2). While the NN therefore did not 
include any variable from cluster 1, since cluster 4 displays the inverse dose-response to cluster 1 very 
closely, this confirms the previous analysis that 2 clusters are sufficient in capturing most of the 
metabolic response to increased burn injury. 

From an application perspective, VLDL is in the same cluster systemically; hence point of 
measurement is unlikely to affect results significantly (repetition of 2-variable NN model with SHVC 
VLDL use led to only one rat in the sham burn group being significantly misclassified as 20% burn 
animal). Acetoacetate also displays a generally decreasing trend in all vessels. It should be noted that 
for an actual clinical index, ideally all measured variables will be systemically in the same cluster, as 
well as practical to measure. Most variables meet the criteria selected in the regression models. It is 
also likely possible to construct a regression model to predict unsuitable metabolites from more  
easy-to-measure ones, which we have not investigated here; a proper study of such an approach would 
require repetition of the experiments with tail-vein blood sample data complementing the HA, PV and 
SHVC samples to test if these less invasive samples correlate accurately to the data in this work. 

To our knowledge this is the first attempt at creating a quantitative index of burn injury severity; 
however, it is important to realize the limitations in clinical applications. As the animals were not 
subjected to any intervention following burn injury, there were no potential confounding effects from 
nutritional supplementation, which may not be the case in human patients. Obviously, differences 
between rat and human metabolism, as well as effects of age and gender differences on the hypermetabolic 
response [48], will have to be considered for the development of a clinically applicable index. 

These indicators of burn injury may provide insight and clues to new metabolic targets for therapy. 
In addition, the development of a quantitative score to identify the degree of hypermetabolism can 
ultimately provide a practical way to measure the patient response to injury and treatment. As the 
current diagnostic criteria are based purely on clinical observations, patient-to-patient variation in 
metabolism introduces a significant and undesirable degree of uncertainty in the care of the burn 
patient that could be avoided by such a quantitative index. 
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