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Abstract: The metabolic composition of plasma is affected by time passed since the last 

meal and by individual variation in metabolite clearance rates. Rat plasma in fed and fasted 

states was analyzed with liquid chromatography quadrupole-time-of-flight mass 

spectrometry (LC-QTOF) for an untargeted investigation of these metabolite patterns. The 

dataset was used to investigate the effect of data preprocessing on biomarker selection 

using three different softwares, MarkerLynxTM, MZmine, XCMS along with a customized 

preprocessing method that performs binning of m/z channels followed by summation 

through retention time. Direct comparison of selected features representing the fed or 

fasted state showed large differences between the softwares. Many false positive markers 

were obtained from custom data preprocessing compared with dedicated softwares while 

MarkerLynxTM provided better coverage of markers. However, marker selection was more 

reliable with the gap filling (or peak finding) algorithms present in MZmine and XCMS. 

Further identification of the putative markers revealed that many of the differences 

between the markers selected were due to variations in features representing adducts or 

daughter ions of the same metabolites or of compounds from the same chemical 

subclasses, e.g., lyso-phosphatidylcholines (LPCs) and lyso-phosphatidylethanolamines 

(LPEs). We conclude that despite considerable differences in the performance of the 

preprocessing tools we could extract the same biological information by any of them. 

Carnitine, branched-chain amino acids, LPCs and LPEs were identified by all methods as 

markers of the fed state whereas acetylcarnitine was abundant during fasting in rats. 

OPEN ACCESS



Metabolites 2012, 2             

 

 

78

Keywords: rat plasma; biomarkers; LC-QTOF; data pre-processing; MarkerLynx; 

MZmine; XCMS 

 

1. Introduction 

In nutritional studies, blood samples are frequently collected in order to relate dietary conditions 

with metabolic markers. Blood may be obtained either in the fasted or postprandial state, depending on 

the hypothesis being tested. The fasting state, typically following an overnight fast, is considered to be 

more reproducible and can be defined as a baseline level for metabolic studies. However, imbalances 

in diet-dependent metabolism may not be detectable in the fasted state [1]. On the other hand, 

determination of the metabolic response in the extended postprandial state, which is the normal 

metabolic situation of human beings throughout the day, is more challenging as individual variability 

is high [2]. The basic metabolic rate varies roughly with surface area in mammals and an overnight 

fasting period in rats having an eight times higher rate of energy metabolism than humans may 

therefore represent a more extreme condition than overnight fasting in humans. A rat model may 

therefore be convenient to study the major differences between fasting and fed states, the latter defined 

as the state of rats following a normal ad libitum meal pattern. A rat model also offers full control of 

the food intake in the study subjects. 

In this study, an untargeted metabolomics based approach to study the metabolic differences 

between rat plasma at fasted and fed states was performed. Metabolomics is defined as the process of 

monitoring and evaluating changes in metabolites during biochemical processes and has become an 

emerging tool to understand responses of cells and living organisms with respect to their gene expression 

or alterations in their lifestyles and diets of biochemical variation, during or after food intake [3]. 

A wide range of metabolites and other compounds can be detected in various biofluids by nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). These approaches can be 

either untargeted through total data capture or highly targeted, such as measuring a large number of 

defined lipids. MS based instruments, with higher sensitivity compared to NMR [4,5], have become a 

widely used technique in metabolomics studies. Liquid chromatography (LC) coupled with time-of-

flight (TOF) MS offers high resolution, reasonable sensitivity and improved data acquisition for 

complex sample mixture analyses. The system has served as a powerful tool in many other studies 

focusing on untargeted metabolic profiling of biofluids [6–8]. 

LC-MS analysis produces large amounts of data with complex chemical information. An important 

task is to arrange data in a way so that relevant information can be extracted. The complexity of LC-MS 

data brings out the concept of data handling which can be roughly summarized in two basic steps: data 

preprocessing and data analysis. Data preprocessing covers the methods to go from complex raw data 

to clean data. Raw data are comprised of retention times and mass to charge ratios of thousands of 

chemical compounds. Several software tools (commercial or freely available) have emerged for LC-MS 

data preprocessing. These tools typically include specific algorithms for the two key steps in data 

preprocessing, (1) peak detection and (2) alignment. Each software tool creates a list of peaks denoted 

by a specific mass and retention time. Each entry has a signal intensity denoting peak height or area. 
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Alignment corrects retention time and mass differences across samples so that a peak, considered as 

one chemical compound, is represented by the same mass and retention time across all samples. The 

peak detection and alignment result in a data table providing the detected peaks across samples which 

can be denoted as clean data. All of these tools aim to provide high speed, automated data 

preprocessing. The basic principles of the many LC-MS data preprocessing software tools have 

recently been summarized [9,10]. To be able to obtain high efficiency in data preprocessing, the software 

tool employed should have the parameter settings required to match the structure of the specific dataset. 

Existence of various data preprocessing tools brings out concerns about what are the characteristics 

of the software tools and what are the pros and cons of their algorithms. There are some studies 

attempting to define quality parameters for comparison of peak detection [11,12] or alignment [13] 

algorithms of different data preprocessing tools, but a direct comparison of the overall performance of 

the most commonly used data preprocessing tools has not so far been attempted. The question to be 

addressed in this study is whether there is agreement between the biological information as represented 

by the biomarkers extracted by preprocessing the same dataset with different data preprocessing 

methods. Therefore we compare here the potential biomarkers extracted from the current small dataset 

using four different softwares for preprocessing; (1) MarkerLynxTM (MassLynx (Waters, Milfold, MA, 

USA)); (2) MZmine [14]; (3) XCMS [15,16] and (4) a customized method that is implemented in 

MATLAB (The Mathworks, Inc., MA, USA). MarkerLynxTM is a commercial software whereas 

XCMS and MZmine are freely available software tools. The customized method included m/z binning 

and retention time collapsing which can be considered as a more old-fashioned method for LC-MS 

data preprocessing. The applicability of this method for LC-MS data has been evaluated in other 

studies [17] but an extensive comparison with other approaches has not been published previously. 

Thus, in this study the UPLC-QTOF profiles of rat plasma collected in the fasted and fed states 

were analyzed for two different purposes: (1) to investigate the effect of different data preprocessing 

tools on biomarker selection; and (2) to interpret the biology behind the biomarkers identified for the 

two states. 

2. Results and Discussion 

2.1. Comparison of Data Preprocessing Methods 

The number of features obtained from each preprocessing method is given in the Supplementary 

information 3. We succeeded in extracting a similar number of features with optimized parameter 

settings (positive or negative), except for the custom method in negative mode where we have an 

approximate doubling compared with the other software tools. 

Primarily, common and unique extracted features from three different softwares were illustrated in 

Figure 1. We found 37%–46% of the features extracted by each software to be in common. Rauf et al. [16] 

found higher number for common features (46%–52%) from leaf and seed extracts comparing 

MZmine and XCMS (centWave) peak detection algorithms. The difference can be the result of more 

complex nature of plasma samples compared to plant extracts. 
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Figure 1. Venn diagrams illustrating the number of common and method specific features 

extracted from three software tools (right: positive mode; left: negative mode). 

 

All three software tools and the customized method employed here were able to produce a feature 

set showing substantial separation of samples from the fasted and fed states in a PCA scores plot 

(Figure 2 for negative mode data and Supplementary information 5 for positive mode data). 

Figure 2. PCA scores plots of negative mode data processed with MarkerLynx (a), 

MZmine (b), XCMS (c) and customized methods (d). 

 

PLSDA model of each preprocessed data on independent test sets provided an average classification 

error rate of 0–0.02 (Supplementary information 6) indicating that all models resulted in good 

classification performance. The classification error rates were very similar for datasets obtained from 
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different data preprocessing methods. On the other hand, the average classification error rates of 

datasets where classes were permuted were calculated as 0.49–0.51, corresponding to misclassification 

of half of the samples, which is an expected value for permuted data [18]. None of the 2,000 permutations 

had classification error lower than 0.00–0.02, indicating original fasted vs. fed discrimination was 

significant. Histograms of permutation test are given in Supplementary Information 7. 

As previously mentioned, autoscaling is applied in this study to detect possible variation between 

two states for any feature, regardless of its concentration. Nevertheless, autoscaling complicates 

variable selection as it gives the same chance to all peaks to influence the PLSDA model, and the 

decision of a regression coefficient cut-off value for selection of important features becomes difficult. 

Hereby, we decided to select of 25 features only but there is no proof to say the feature with 26th 

highest regression coefficient was not a potential biomarker. Thus, the 25 markers from each method 

and their various ranks from other softwares were included in Tables 1 and 2 for the negative and 

positive modes, respectively. While there is no way to say which software is the more correct, the 

consequence of the differences observed here is that there is no basis for putting too much emphasis on 

the rank in PLS-DA methods. Howeverin many metabolomics studies, PLS-DA regression coefficients 

or VIP cut-offs have commonly been employed for marker selection, even without the rigorous 

iteration used here. 

Table 1. Retention times and measured masses of the markers obtained from MarkerLynx, 

MZmine, XCMS and custom data processing of negative mode data that contributed most 

to the separation of samples in fasted and fed states. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Adduct Monoisotopic 

mass 

1 0.64 105.02 57 17 14 194 fed U1   

2 0.82 116.07 91 26 17 507 fed U2   

3 1.15 180.06 67 28 21 27 fed U3   

4 1.15 383.12 40 80 25 624 fed U3   

5 1.36 59.01 21 34 9 7 fasted 3-

hydroxybutanoic 

acid F 

 104.0473 

6 1.36 260.00 49 68 nd 22 fasted 3-

hydroxybutanoic 

acid F 

 104.0473 

7 1.37 229.07 20 35 nd 72 fasted 3-

hydroxybutanoic 

acid A 

[2M+Na-

H] 

104.0473 

8 1.37 103.04 39 15 nd 20 fasted 3-

hydroxybutanoic 

acid 

[M-H] 104.0473 

9 1.37 261.18 1424 nd 18 14 fed Isoleucine [2M-H] 131.0946 

10 1.37 130.09 25 nd 24 65 fed Isoleucine [M-H]- 131.0946 

11 1.80 178.05 nd 22 nd 166 fed U4   
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Table 1. Cont. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Suggested 

Adduct 

Monoisotopic 

mass 

12 1.88 134.06 14 9 6 40 fasted Hippuric acid * F  179.0582 

13 1.88 178.05 15 7 4 116 fasted Hippuric acid * [M-H] 179.0582 

14 2.02 344.10 383 nd 222 12 none U5   

15 2.46 365.07 3 6 nd 43 fed U6   

16 2.46 623.36 8 nd 3 94 fed U6   

17 2.46 343.08 2 2 1 6 fed U6   

18 2.47 623.87 4 nd nd 16 fed U7   

19 3.00 185.12 793 23 77 284 fed U8   

20 3.50 505.30 1833 nd nd 10 none U9   

21 4.11 586.31 nd 13 nd 13 fed LPC(20:5) [M+FA-H] 541.3168 

22 4.12 309.20 1 10 7 1802 fed LPC(20:5) F  541.3168 

23 4.15 452.28 22 30 22 1006 fed LPC(14:0) F  467.3012 

24 4.16 512.30 17 21 19 45 fed LPC(14:0) A [M+FA-H] 467.3012 

25 4.16 979.60 19 nd nd 33 fed LPC(14:0) A [2M+FA-H] 467.3012 

26 4.17 502.29 13 11 nd 25 fed LPC(18:3) F  517.3168 

27 4.18 562.31 5 8 51 17 fed LPC(18:3) [M+FA-H] 517.3168 

28 4.18 818.50 16 nd nd 1672 fed U10   

29 4.18 526.30 11 19 11 912 fed LPC(20:5) F  541.3168 

30 4.19 586.31 7 18 8 13 fed LPC(20:5) [M+FA-H] 541.3168 

31 4.23 563.32 nd nd 13 15 fed U11   

32 4.34 476.28 23 1 nd 1 fed 2-acyl LPC(18:2) F  519.3325 

33 4.35 564.33 10 12 nd 3 fed 2-acyl LPC(18:2) [M+FA-H] 519.3325 

34 4.35 504.31 147 3 nd 2 fed 2-acyl LPC(18:2) F  519.3325 

35 4.35 578.30 nd 5 nd 35 fasted U12   

36 4.36 632.33 120 25 nd 113 fed U13   

37 4.38 281.25 33 nd 15 nd fasted U14   

38 4.43 476.28 105 4 2 1 fed 1-acyl LPC(18:2) F  519.3325 

39 4.44 168.35 6 nd nd 1512 fed 1-acyl LPC(18:2) F  519.3325 

40 4.44 995.59 60 nd nd 4 fed 1-acyl LPC(18:2) F  519.3325 

41 4.44 168.63 18 nd nd 170 fed 1-acyl LPC(18:2) F  519.3325 

42 4.44 504.31 65 14 32 2 fed 1-acyl LPC(18:2) F  519.3325 

43 4.45 457.10 12 nd 561 2332 fasted U15   

44 4.45 564.33 32 31 20 3 fed 1-acyl LPC(18:2) [M+FA-H] 519.3325 

45 4.45 335.40 nd nd nd 8 none none   

46 4.45 335.70 nd nd nd 9 none none   

47 4.45 477.28 nd nd nd 21 fed 1-acyl LPC(18:2) 

iso1  

  

48 4.45 564.10 nd nd nd 23 none none   

49 4.45 565.34 nd nd nd 5 fed 1-acyl LPC(18:2) 

iso2 

  

50 4.45 587.30 nd nd nd 11 none none   
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Table 1. Cont. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Suggested 

Adduct 

Monoisotopic 

mass 

51 4.45 996.59 nd nd nd 19 fed 1-acyl LPC(18:2) 

iso3 

  

52 4.50 552.33 24 46 63 320 fed U16   

53 4.62 452.28 48 55 23 1006 fasted U17   

54 4.65 566.35 374 24 nd 138 fed 1-acyl LPC(18:1) [M+FA-H] 521.3481 

55 4.73 478.29 9 16 12 18 fed LPE(18:1) * [M-H] 479.3012 

56 4.88 445.33 76 20 10 1206 fasted U19   

57 5.14 277.22 85 106 5 98 fasted Gamma-Linolenic 

acid * 

[M-H] 278.2246 

58 5.22 338.30 100 nd nd 24 none U20   

59 5.38 279.23 145 nd 16 177 fasted Linoleic acid * [M-H] 280.2402 

MX: MarkerLynx; MZ: MZmine; ‘U’, Unidentified compound; A: Adduct; F: Fragment *, identity confirmed with 

authentic standards; ‘nd’, not detected by the software peak-finding algorithm. 

Table 2. Retention times and measured masses of the markers obtained from MarkerLynx, 

MZmine, XCMS and custom data processing of positive mode data that contributed most 

to the separation of samples in fasted and fed states. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Suggested 

Adduct 

Monoisotopic 

mass 

1 0.53 112.11 nd 12 13 301 fasted U1   

2 0.57 730.70 276 nd nd 25 fasted U2   

3 0.61 103.04 46 nd 19 2901 fed L-Carnitine *F  161.1052 

4 0.61 102.09 1368 nd 21 481 fed L-Carnitine *F  161.1052 

5 0.61 162.11 31 41 10 10 fed L-Carnitine * [M+H] 161.1052 

6 0.66 70.07 12 11 25 22 fed D-proline *F  115.0633 

7 0.66 116.07 13 14 12 11 fed D-proline * [M+H] 115.0633 

8 0.86 130.09 24 521 44 838 fasted U3   

9 0.90 144.10 23 nd 16 455 fasted L-Acetylcarnitine*F  203.1158 

10 0.90 204.12 28 18 6 8 fasted L-Acetylcarnitine* [M+H] 203.1158 

11 0.90 145.05 21 13 11 41 fasted L-Acetylcarnitine*F  203.1158 

12 1.17 248.15 49 23 7 38 fasted U4   

13 1.64 231.12 nd 100 1 649 fasted U5   

14 1.90 105.03 1 17 2 78 fasted Hippuric Acid*F  179.0582 

15 1.90 77.04 3 19 3 578 fasted Hippuric Acid*F  179.0582 

16 2.23 316.21 19 46 nd 179 fasted U6   

17 2.42 899.43 nd nd nd 17 fed U7   

18 2.42 287.20 nd nd nd 1 fed U7   

19 2.42 286.20 7 3 50 4 fed U7   
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Table 2. Cont. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Suggested 

Adduct 

Monoisotopic 

mass 

20 3.42 536.34 35 nd nd 24 fed U8   

21 3.49 158.16 338 222 63 19 fasted U9   

22 4.11 542.33 16 16 nd 21 fed LPC(20:5) [M+H] 541.3168 

23 4.12 564.31 nd 15 nd 43 fed LPC(20:5) A [M+Na] 541.3168 

24 4.16 312.03 151 nd 17 2659 fed U10   

25 4.16 468.31 20 24 23 15 fed LPC(14:0) [M+H] 467.3012 

26 4.19 540.31 25 64 nd 47 fed LPC(18:3) A [M+Na] 517.3168 

27 4.19 518.33 15 6 81 62 fed LPC(18:3) [M+H] 517.3168 

28 4.23 445.40 nd nd nd 12 fasted octadecanoylcarnitineIso   

29 4.23 444.37 18 33 47 33 fasted octadecanoylcarnitine   

30 4.35 337.28 9 9 5 57 fed 2-acyl LPC(18:2) F  519.3325 

31 4.35 520.34 6 1 nd 2 fed 2-acyl LPC(18:2) [M+H] 519.3325 

32 4.36 542.33 4 2 nd 21 fed 2-acyl LPC (18:2) A [M+Na] 519.3325 

33 4.36 819.96 22 nd nd 950 fed U11   

34 4.36 502.33 nd 10 nd 28 fed 2-acyl LPC(18:2) F [M+Na] 479.3376 

35 4.42 566.32 1024 2058 15 50 fasted U12   

36 4.42 844.47 219 233 20 1312 fasted U13   

37 4.44 519.90 nd nd nd 18 fed U14   

38 4.44 521.35 nd nd nd 5 fed 1-acyl LPC(18:2) Iso1 [M+H] 519.3325 

39 4.45 523.35 nd 7 nd 89 fed 1-acyl LPC(18:2)Iso2 [M+H] 519.3325 

40 4.45 519.70 316 nd nd 7 fed U15   

41 4.45 997.64 14 20 9 3 fed 1-acyl LPC(18:2) A  519.3325 

42 4.45 819.97 2 21 835 950 fasted U16   

43 4.45 520.34 8 4 18 2 fed 1-acyl LPC(18:2) [M+H] 519.3325 

44 4.45 998.64 30 nd nd 6 fed U17   

45 4.45 460.29 59 54 14 612 fed 1-acyl LPC(18:2) F  519.3325 

46 4.45 520.10 nd nd nd 13 none U18   

47 4.45 520.90 nd nd nd 23 none U18   

48 4.45 521.55 nd nd nd 20 none U18   

49 4.45 521.80 nd nd nd 16 none U18   

50 4.45 807.97 5 8 4 2664 fed U19   

51 4.63 949.64 34 25 48 85 fasted U20   

52 4.64 454.30 32 22 22 1425 fasted U20   

53 4.65 975.70 76 nd nd 14 fed U21   

54 4.65 522.36 10 nd nd 70 fed 2-acyl LPC(18:1) * [M+H] 521.3481 

55 4.65 339.29 17 5 8 573 fed 2-acyl LPC(18:1) *F   

56 4.68 520.34 11 nd 24 2 fed U22 [M+H] 519.3325 

MX: MarkerLynx; MZ: MZmine; ‘U’, Unidentified compound; A: Adduct; F: Fragment *, identity confirmed with 

authentic standards; ‘nd’, not detected by the software peak-finding algorithm. 
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2.2. Custom Method vs. Software Tools 

The algorithm of the custom preprocessing method differs from the others by not having any peak 

detection and alignment steps. It can therefore be considered as more independent, albeit more 

primitive and simple. 

We compared first the m/z bins selected by the custom method with the markers from the three 

dedicated softwares (Figure 3a). Out of 25, only five of them were common for all data preprocessing 

tools in the positive mode and three in the negative. On the other hand, 48% (positive mode) and 58% 

(negative mode) of the m/z bins were identified also as markers by at least one of the software tools. 

Figure 3. (a) Pie chart illustrating the number of custom data preprocessing markers that 

are unique and that are detected as markers by the other software tools (CS:Custom, 

MZ:MZmine, XC:XCMS, MX:Markerlynx); (b) Venn diagrams illustrating the number of 

common and method specific markers extracted from three software tools (right: positive mode; 

left: negative mode). 

(a) 

 

(b) 

 

Another perspective in the comparison of different data preprocessing methods is illustrated in 

Figure 4 where, each row represents the rank of one marker from Table 1 (columns 4–7) for all four 

different data preprocessing methods. The first impression from this figure may be that the number of 

black regions (undetected peaks) might seem alarmingly high for some of the methods. It is important 

here to state that the custom data preprocessing leads to a number of false positives. The major causes of 

false positives are splitting of analytes into two adjacent bins or chromatographic collapsing. 
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Figure 4. Heatmap comparing the importance of each marker based on four different data 

preprocessing tools for (a) negative and (b) positive mode data. Each row represents the 

lowest value rank of a metabolite for four different methods (Table 1, 3rd column). The 

markers were sorted in ascending order based on the rank obtained with MarkerLynx  

(red: rank 1–25; orange: rank 26–50; yellow: rank > 50; black: not detected). 

(a) 

 

(b) 
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An additional point from Figure 4 is the large area of yellow regions for the custom method, which 

presents markers detected with higher than 50 as rank in PLS-DA. This is explained mainly by 

retention time collapse causing peaks to be added with other peaks having the same mass but different 

retention time. For instance, the chromatogram of m/z bin = 820 as illustrated in Supplementary 

information 8 includes two peaks. The sample track signals of the peak at retention time = 4.32–4.38 

(No. = 33, Table 2) is higher in the fed state while the peak with retention time = 4.4–4.48 38 (No. = 42, 

Table 2) is higher in the fasted state, indicating that they are actually markers. As these two different 

peaks are in the same m/z bin, the retention times collapsing leads to the loss of these markers. In other 

cases a small peak representing a marker is added with a larger one without marker characteristics 

thereby diluting the effect so that the bin escapes selection. 

2.3. Comparison of the Dedicated Software Tools 

Further comparison of the 25 markers for positive and negative mode data from each of the three 

dedicated software tools is illustrated in two Venn diagrams (Figure 3b). In general these three tools 

seem to have 8–10 markers in common among the selected 25 markers detected in the negative and 

positive mode (Figure 3b). There is a trend towards a larger difference between XCMS and each of the 

other methods in the pairwise comparisons. So all of the data preprocessing methods seem to miss out 

potentially important markers observed to be ranked among the top-25 markers by the other methods. 

In fact, only 8–10 markers would be observed to be in common if three different research groups were 

to investigate the same biological phenomenon using different softwares for data preprocessing, 

provided they had recorded similar LC-MS data. There are three possible explanations of the 

differences between detected markers: 

(1) The marker is not included in the feature list of the other softwares. The potential cause is 

differences between peak detection algorithms. The number of detected features is different as shown 

in Figure 1. This condition is illustrated by Figure 4 as black regions. 

(2) The marker is detected but the peak height assignment was not the same among software tools, 

which did not result in significant difference between fasted and fed states. One reason of this is shown 

in the next section as influence of gap filling. This condition is illustrated as yellow in Figure 4. 

(3) The data analysis method affected the marker selection. This was discussed as an effect of 

autoscaling previously. This condition is illustrated by orange in Figure 4. 

Additional differences might be caused by optimization of parameter settings and other factors from 

the metabolomics experiment. The loss of information and potential introduction of noise from feature 

selection by a single preprocessing method would therefore seem to be a potential source of error in 

metabolomics. 

2.4. The Influence of Gap Filling 

An important drawback for MarkerLynxTM is that it does not contain any gap filling algorithm 

resulting in many zero values in the final extracted feature set. Zeros may obscure the later data 

analysis step and may result in incorrect grouping of ‘effect markers’ and ‘exposure markers’, because 

‘true’ zeros as well as smaller and larger peaks missed by the algorithm are given the same zero value [19]. 

Consequences of this lacking gap filling algorithm is illustrated with two real cases. In the first case, 
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MarkerLynxTM algorithm records the signal of some samples from the group with a lower signal as 

zero, thereby increasing the differences between groups and the chance that the feature is selected as a 

marker. For instance, marker number 42 (Table 2) has rank 2 for MarkerLynxTM whereas it came out 

with higher ranks by the others (Supporting Information 6) due to this phenomenon. In the second 

case, the signal of some samples recorded as zero while those samples belong to the group with higher 

signal. In this way, the true difference between the two groups was deflated and those markers had 

higher rank number (lower importance) with MarkerLynxTM. Many examples (Supplementary 

information 9) of this situation is observed, particularly in the negative mode data where the signal 

intensity is generally lower, thereby explaining the large yellow region for MarkerLynxTM in Figure 4a. 

Another observation particularly in Figure 4a is that MarkerLynxTM has fewer black regions, 

meaning very few undetected peaks and several markers that are detected by MarkerLynxTM but not by 

the other two softwares. Since the total number of features obtained from preprocessing the data was 

similar for all three softwares, one possible explanation could be the differences in the filtering step. 

The 80% rule applied to the MarkerLynxTM dataset differs from that of the others by retaining features 

with many non-zero observations in at least one sample group. The filtering algorithm of MZmine 

does not allow the user to define the filter for each sample group. By filtering away features with many 

zeros, there is a risk of removing perfect markers that appear only in one of the sample groups. 

Therefore the filter has to be set to no more than 80% of the number of observations in the smallest 

sample group in order to be equivalent to the 80% rule. Another possible reason could be the 

differences between the peak detection algorithms. MarkerLynxTM provides an automated peak 

detection algorithm whereas many parameters are user-defined for the others. Although we optimized 

the selection of parameters carefully by testing several settings, we cannot rule out that better overlap 

could have been obtained with a different parameter set. 

2.5. Software Preprocessing Settings 

The number of detected peaks depends very much on the data preprocessing settings of each 

software algorithm. Although we attempted to attain the largest possible similarity in the preprocessing 

parameters of MarkerLynxTM, MZmine and XCMS, we were aware that it is not possible to obtain 

exactly the same results, since each method is based on different algorithms. To illustrate this point, 

we preprocessed the data with MZmine using less conservative settings for many peak detection 

parameters and constructed the heat map again, leading to a new pattern much more similar to XCMS 

(figure not shown). So, in reality, it may be possible to obtain similar patterns, at least with MZmine 

and XCMS where gap filling is available, depending on their individual parameter settings. 

In this study the contrasts between the fasted and fed states were very clear, whereas such strong 

contrasts may not be seen in many other metabolomics studies. Improper settings of data preprocessing 

parameters may therefore obscure the extraction of relevant information, and several settings and/or 

softwares should be applied. Proper settings are based on careful inspection of raw data as well as 

insight into the functionalities of software parameters. It could seem like an appealing option to allow 

a much larger number of peaks by being less conservative with many peak detection parameters. 

However, the consequence of detecting many peaks will be the inclusion of more noise and will 

complicate not only the alignment but also the data analysis step for the detection of biomarkers. 
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MarkerLynxTM and MZmine are both user friendly tools for users who do not want to go into R, 

MATLAB, or similar programming tools. Preprocessing data with MarkerLynxTM requires just a few 

user-defined settings. However the software does not provide any possibility for checking the success 

of any data preprocessing step. In comparison, MZmine provides a powerful visualization side that can 

be considered as quite useful for tuning the settings. Algorithms for visualization of peak detection 

results are also included in the XCMS package in R. 

2.6. Biomarker Patterns 

Three patterns are immediately visible for markers of the fed state in Tables 1 and 2. The first of 

these is the presence of sets of isomers having very similar masses but slightly different retention 

times, indicating that some specific groups of isomers are typical markers. The slight mass difference 

may be attributed to the mass accuracy of the instrument. Some examples are clusters at 512.29, 

478.29 and 590.35 in the negative mode, and at 468.32, 520.34, and 522.36 in the positive mode. In 

many cases the earlier eluting isomeric form was not detected in the XCMS preprocessed dataset, 

possibly because they are much smaller peaks. Considering the parameters set while preprocessing the 

data with XCMS (Supplementary Information 10), additional filtering or a too high bw parameter (for 

setting the RT shift) might be the cause of not detecting those peaks. Furthermore, these patterns are 

always spotted with the custom data preprocessing as they were included into the same m/z bin, 

thereby intensifying their relative importance. As can be seen from Tables 1 and 2, the possible 

isomers were therefore given the same rank for the custom data preprocessing. 

Another pattern in the marker sets is the presence of peaks with mass differences corresponding to 2 

or 4 hydrogen atoms but with different retention times. These pairs are observed in both modes  

(e.g., 476/478, 562/564/566 in the negative mode, and 506/508 or 520/522 in the positive, Tables 1 and 2). 

These clusters and patterns are all observed for compounds with retention times in the same (unpolar) 

range pointing towards a series of lipids with varying levels of saturation (2 for each double 

bond).Similar patterns can also be observed for changes in chain lengths (+26 for adding –CH=CH–) 

as the underlying biomarkers.  

Pattern recognition therefore identified lipids as potential discriminative markers between plasma 

samples collected at fasted and fed states. This confirms an expected finding and further identification 

of some of the lipids as well as some of the more polar peaks was therefore perused. 

2.7. Biomarkers of Fasted and Fed State 

Most of the masses belonging to the lipid-related patterns and clusters in the positive mode fit with 

the masses expected for positively charged lysophosphatidylcholines (LPCs) of varying chain lengths 

and degrees of saturation. LPC is a plasma lipid that has been recognized as an important cell signaling 

molecule and it is produced by the action of phospholipases A1 and A2, by endothelial lipase or by 

lecithin-cholesterol acyltransferase (LCA).LCA has a well-known function in catalyzing the transfer of 

fatty acids from phosphatidylcholine to free cholesterol in plasma for the formation of cholesteryl 

esters [20]. In the rat, the LPCs with more saturated acids are formed mainly in the plasma whereas 

unsaturated LPC is formed from PCs in the liver. We observe here a mixture of both saturated and 

unsaturated LPCs, indicating that the source may be dual. The cytolytic and pro-inflammatory effects 
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of LPCs are well-known so their level is closely regulated. However, in blood plasma the LPCs form 

complexes with albumin and lipoproteins, especially LDL, and are therefore not as likely to cause 

direct cell injury [21]. Another action of LPCs seems to be related to increased insulin resistance [22]. 

A slow clearance of postprandial lipids is known to be a risk factor for diabetes but the LPCs might be 

a lipid fraction contributing more strongly to this action. It is interesting in this context to note that 

Kim et al. identified LPCs as the major discriminative compounds of plasma species separating fasting 

plasma from obese/overweight and lean men [7]. They reported lower levels of saturated LPCs and 

higher level of unsaturated LPCs in the plasma of lean as compared to obese or overweight men. We 

found a similar profile here in lean rats. The unsaturated LPCs have also been found to pass the blood-

brain barrier and to be important vehicles for delivering unsaturated lipids to the brain [23]. We 

speculate that the high level of unsaturated LPCs in the postprandial state of healthy individuals might 

be part of the satiety signaling system which is malfunctioning in obesity. 

The LPCs appear usually in two isomeric forms, as 1-acyl or 2-acyl LPCs. The true separation of 

isomeric groups of LPC(18:1) in a fed state plasma sample is illustrated in Supplementary information 

11. These isomers were unstable and spontaneously isomerized positionally, as also recognized in  

1-acyl authentic standards of LPC and LPE(18:1), where 9% of the authentic standard was detected as 

the peak belonging to the 2-acyl form. For the confirmation of the 2-acyl LPC form, standards of PC 

and PE(16:0/18:1) were hydrolyzed by phospholipase A1. In addition to the 2-acyl LPC and 

LPE(18:1) we observed that 7% of the acyl group had spontaneously migrated to the 1-acyl position 

(Supplementary information 11). Croset et al. studied the significance of positional acyl isomers of 

unsaturated LPCs in blood [24]. They concluded that 50% of PUFA was located at the 2-acyl position 

where they are available for tissue uptake, and that they can be re-acylated at the 1-acyl position to 

form membrane phospholipids.  

With the applied methodology we would only be able to extract the more polar lipids and detect 

lipids with m/z below 1,000 daltons. Therefore, we cannot conclude here that the LPCs, LPEs and free 

fatty acids are the major discriminative lipid species. Lipidomics studies have previously reported less 

polar lipid classes which may have m/z above 1,000 daltons, such as PCs, sphingomyelins and 

triacylglycerols as potentially reflecting the time since last meal [25,26]. With our current method, we 

were able to identify PCs but they were not discriminative in this study, possibly due to incomplete 

extraction. 

A group of carnitine based compounds was also detected as markers in the positive mode data. The 

main function of carnitine is to assist the transport and metabolism of fatty acids in mitochondria, 

where they are oxidized as a major source of energy [27]. In the plasma samples from the fasting state, 

the level of L-carnitine was found to be lower whereas acetyl-L-carnitine was higher. During fasting an 

elevated concentration of acetyl coenzyme A favors the production of acetyl-L-carnitine and the ketone 

body, 3-hydroxybutanic acid [28], and these were identified as characteristic markers for the fasting state. 

Two of the amino acids, isoleucine and proline, were found to be strongly discriminating between 

the fed and fasted states. Isoleucine belongs to the group of branched-chain amino acids which have 

been implicated in altered protein catabolism, insulin resistance and obesity [29,30]. However, leucine 

may have contributed to the signal since separation by our current UPLC-method was not efficient. It 
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seems therefore that isoleucine, and possibly other specific amino acids, may be markers of recent 

food ingestion and decrease with fasting. 

Many adduct or daughter ions were also observed among our markers as shown in Tables 1 and 2. 

In many cases, different adducts or fragment ions of the same metabolite may emerge with a higher or 

lower rank than the parent ion, and this is an important cause of differences in the ranking orders 

between the preprocessing softwares. So at the metabolite level, the differences between the 

preprocessing methods are actually much smaller. To illustrate the higher concordance at the 

metabolite level, we established a new rank for each metabolite (giving each metabolite the lowest 

rank value from among its representative adducts, fragments or isomers). The unidentified features 

were considered as representing the same metabolite as long as they are within the range of 0.02 min 

retention time window. The metabolite ranks of different methods are represented in Supplementary 

information 12, which illustrates that the rank patterns were much more similar between different 

methods at the metabolite level than at the feature level (Figure 4). Thus, it seems reasonable to 

conclude that different data preprocessing methods employed in this study provide around 50% 

common markers, but the agreement is actually much higher at the metabolite level since different 

markers (adducts or fragment ions) selected from the different preprocessing softwares represent the 

same metabolites. 

The observation that all these related ions come up with low rank numbers, i.e., high importance, 

and that their low ranks are shared between positive and negative modes as in this study strengthens 

not only the confidence in the identification step but also in our variable selection method. 

3. Experimental Section  

3.1. Animal Study and Sample Collection 

Eighty male Fisher 344 rats (4 weeks old) were obtained from Charles River (Sulzfeld, Germany). 

The animals had a one week run-in period to adapt to the standardized diet. The rats were subsequently 

randomized into five groups of 16 rats, each with equal total body weights and then fed five different 

diets which were all nutritionally balanced to give exactly the same amounts of all important macro- 

and micronutrients [31]. After 16 weeks, all rats were sacrificed by decapitation after CO2/O2 

anesthesia. Before sacrifice, 56 of the animals had fasted for 12 h and 24 of the animals were given 

access to food up until termination. Blood samples were collected immediately after sacrifice directly 

from the vena jugularis into a heparin coated funnel drained into 4 mL vials containing heparin as an 

anticoagulant. The blood was centrifuged at 3,000 g, 4°C for 10 min. The plasma fraction was aliquoted 

into 2 mL cryotubes and stored at −80°C until further processing. The animal experiment was carried 

out under the supervision of the Danish National Agency for Protection of Experimental Animals. 

3.2. Plasma Preprocessing and LC-QTOF Analysis 

Removal of plasma proteins was performed before LC-MS analysis of the plasma metabolites. The 

plasma samples were thawed on ice and 40 µL of each sample was added into a 96-well Sirocco™ 

plasma protein filtering plate (#186002448, Waters) containing 180 µL of 90% methanol 0.1% formic 

acid solution, and the plates were vortexed for 5 min to extract metabolites from the plasma protein 
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precipitate. A 96-well plate for the ultra-performance liquid chromatograms UPLC autosampler 

(Waters, cat # 186002481) was placed underneath the protein filtering plate and vacuum was applied 

to the plates (using a manifold) whereby the rubber wells in the Sirocco™ plates opened and the crash 

solvent including metabolites dripped into the 96-well UPLC plate. When the filtering plates were dry, 

180 µL of a 20:80 acetone/acetonitrile solution containing 0.1% formic acid was added to each well to 

further extract metabolites from the precipitated protein and vacuum was connected until dryness. The 

solvent was evaporated from the UPLC plates by using a cooled vacuum centrifuge and the dry 

samples were redissolved in 200 µL milliQ acidic water before analysis. A blank sample (0.1% formic 

acid) and a standard sample containing 40 different physiological compounds (metabolomics standard) 

was also added to spare wells to evaluate possible contamination and/or loss of metabolites in the 

filtering procedure. 

Each sample (10 µL) was injected into the UPLC equipped with a 1.7 µm C18 BEH column 

(Waters) operated with a 6.0 min gradient from 0.1% formic acid to 0.1% formic acid in 20:80 

acetone/acetonitrile. The eluate was analyzed in duplicates by TOF-MS (QTOF Premium, Waters). 

The instrument voltage was 2.8 or 3.2 kV to the tip of the capillary and analysis was performed in 

negative or positive mode, respectively. In the negative mode desolvation gas temperature was 400 °C, 

cone voltage 40 V, and Ar collision gas energy 6.1 V; in the positive mode we used the same settings 

except for collision energy of 10 V. A blank (0.1% formic acid) and the metabolomics standard were 

analyzed after every 50 samples during the run. 

3.3. Authentic Standards 

L-carnitine, linoleic acid and gamma-linolenic acid were purchased from Sigma Aldrich 

(Copenhagen, Denmark). 1-acyl LPC(18:1), 1-acyl LPE(18:1), PC(16:0/18:1) and PE(16:0/18:1) were 

obtained from Avanti Lipids (Alabaster, AL, USA). For the synthesis of acetyl L-carnitine, carnitine 

acetyltransferase from pigeon and acetyl coenzyme A were purchased from Sigma Aldrich. 

Acetylation of L-carnitine was performed as described by Bergmeyer et al. [32]. The 2-acyl lyso-forms 

were synthesized with phospholipase A1 from Thermomyces lanuginosus (Sigma Aldrich). 

Phospholipase A1 hydrolyzes the acyl group attached to the 1-position of PC(16:0/18:1) and 

PE(16:0/18:1) so that acyl-2 LPC(18:1) and LPE(18:1) were produced. The description of the method 

has been given by Pete et al. [33]. For the chemical verification of identified metabolites, one plasma 

sample from a rat in the fasted and another from the fed state were spiked with LPC(18:1) and 

LPE(18:1) individually, before analysis by the procedure outlined above. 

3.4. Raw Data 

The MassLynxTM (Version 4.1, Waters, Milford, MA, USA) software collected centroided mass 

spectra in real time using leucine-enkephalin as a lock-spray standard injected every 10 s to calibrate 

mass accuracy. Each of the 80 samples was analyzed in duplicates. For negative mode both 

measurements were included in the data analysis. However, for positive mode 64 sample 

measurements were excluded, which leaves 65 and 31 sample measurements for fasting and fed states, 

respectively. The exclusion criterion was based on an instrumental error occurred during analysis. In 

this case, the outliers had very low intensity due to injection errors. 
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The software stores data as non-uniform sample data files, each comprised of three vectors; 

retention time (0–6 min), m/z and intensity. The raw data was converted to an intermediate netCDF 

format with the DataBridgeTM utility provided with the MassLynx software. 

3.5. Software Tools for Data Preprocessing 

Raw data was transferred to MarkerLynxTM (Version 4.1, Waters, Milford, MA, USA) directly from 

MassLynx whereas netCDF files were imported to MZmine [14] and XCMS [15]. 

 The available information regarding the principle of algorithms used in MarkerLynxTM, MZmine 

and XCMS and the selected data preprocessing parameters are shown in electronic Supplementary 

information 1. The raw data was inspected while selecting the parameters for each software tool. For 

the peak detection step parameters such as minimum peak width included in MZmine (minimum and 

maximum peak width included in XCMS) and m/z tolerance included in MZmine (ppm in XCMS) 

were chosen by inspecting the raw data in a 2D sample plot (retention vs. m/z). For the alignment step 

(or peak grouping) TIC of at least 10 samples were overlapped to decide maximum retention time shift 

between samples. On the other hand, some parameters such as noise level or required peak shape were 

not straightforward to decide. Thus, at least 10 different parameter settings slightly varying were 

evaluated for each software tool. The optimum parameters were selected based on the best separation 

in a PCA scores plot. Deisotoping is performed in MATLAB for XCMS preprocessed data. The final 

outcome from each software tool is a feature set where each feature is denoted by the mass over charge 

(m/z) ratio and a retention time. The feature sets from the three software tools were transferred to 

MATLAB for further data analysis. 

3.6. Custom Methods for Data Preprocessing 

An alternative data preprocessing was performed directly on the raw data using MATLAB (Version 7, 

The Mathworks, Inc., MA, USA). To import netCDF files to MATLAB, the iCDF function [17,34] 

was employed. The steps of the custom data preprocessing are shown in Figure 5. As the first step, 

binning was performed on the m/z dimension as described by Nielsen et al. [17]. 

Alignment and offset correction were applied only to positive mode data as the instrumental 

response was observed to be significantly lower during the duplicate runs in the positive mode. To 

correct for instrumental response differences, prior alignment was performed using ICOshift [35]. The 

lower response of duplicates was corrected by calculating the difference matrices between each 

duplicate set, averaging and adding the average difference to the matrix with the lower response. Here 

it is assumed that the first injection of a sample holds the correct instrumental response whereas its 

duplicate with lower response is the one being corrected. The effect of this procedure is shown in 

Supplementary Information 2. 

A threshold level was applied for the elimination of small peaks/intensities lower than the analytical 

detection level. Values lower than a certain threshold level were considered as zero. The strategy to 

define the threshold was as follows: (1) The first median value of the whole dataset (excluding zeros) 

was calculated; (2) That median was evaluated as a threshold (by the ability of principal component 

analysis (PCA) score plots to fully separate the fasted vs. the fed state (data not shown); (3) The next 

median was calculated by using only those data from the whole dataset that were higher than the 
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previous median, and again the corresponding PCA scores plot (not shown) was evaluated; (4) This 

procedure was iterated until an improved separation was achieved by PCA. The threshold levels of the 

fourth median with the value of 16.17 cps (count per second) in the negative mode and 24.85 cps in the 

positive mode were selected as adequate. 

To enable the application of subsequent two-dimensional data analysis methods, the intensity values 

of each sample matrix were summed (or collapsed) throughout the retention time index. The resulting 

data matrix (two-dimensional) is described by samples vs. m/z bins (Figure 5) and is also referred to as 

feature sets throughout this paper. 

Figure 5. Custom data preprocessing scheme. 
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3.7. Data Analysis 

The feature sets preprocessed by the three different softwares and the customized method were 

normalized to unit length and autoscaled. Autoscaling refers to combination of mean centering and 

unit scaling.  

The PLS_Toolbox (Version 5.3, Eigenvector Research, Inc., MA, USA) was used to implement the 

data analysis. PCA [36] was applied individually on feature sets obtained from each data preprocessing 

method for general visualization of discrimination of samples from rats in fasted vs. fed state. 

PLS-DA is based on the development of a PLS model [37] to predict class membership of a dataset 

X with a y vector including only 0 and 1 (1 indicates that one sample belongs to a given class). 

Validation of PLSDA classification models was performed by cross model validation as recommended 

by Westerhuis et al. [18]. 25% of the samples were divided as an independent test set. The remaining 

samples were cross validated (4-fold) to determine optimal number of latent variables that offers 

minimum cross validation classification errors. In addition, permutation test is applied with 2,000 

random assignments of classes. The test set sample classification errors were evaluated to qualify the 

classification results. 

3.7.1. Variable Reduction 

A rough and effective variable reduction procedure was performed specifically during 

MarkerLynxTM and custom data preprocessing by only keeping a feature if it had a nonzero 

measurement in at least 80% of the intensity values recorded within one of the sample groups (fasting 

vs. fed in this case); otherwise the feature was removed (80% rule) [38]. Gap filling (or peak finding) 

algorithms implemented in MZmine and XCMS softwares resulted in few zero entries. However, 

additional filtering algorithm was enabled in MZmine and XCMS prior to gap filling, which removes 

any feature if it appears in less than 10 samples (settings are defined in Supplementary information 3). 

3.7.2. Variable (Feature) Selection 

Further variable selection was performed with PLS-DA. The features or m/z bins with larger 

regression coefficients were considered as more discriminative between fasted and fed states and were 

regarded as potential biomarkers. Due to the fact that PLS-DA is very prone to overfitting, instead of 

applying only a single cross-validated PLS-DA model for variable selection on all samples, we 

performed repeated submodel testing. This implies removing samples randomly (here 10% were taken 

out at a time), constructing a PLS-DA model on the remaining 90% samples and repeating this  

1,000 times. By performing many models the importance of each feature for class separation is tested. 

The number of latent variables (LV) for each model was determined to minimize the classification 

errors using cross validation (CV). For each model the features are given a ‘rank’ in the order of their 

regression coefficients and the final rank of each feature for all the 1,000 submodels were summarized 

with one number using the median of the 1,000 ranks per feature. This method has the potential of 

reducing false positives so that the features appearing with higher rank in only a few of the submodels 

were not considered as markers. We arbitrarily selected the 25 top rank features from each feature set, 

i.e., those with highest absolute regression coefficient products as potentially representing biomarkers. 
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However, since these features might be daughter ions, adducts, summed ions, etc., we chose here to 

simply call them ‘markers’ whereas after identification the compounds represented by these markers in 

the top rank feature sets will be termed ‘biomarkers’.  

3.8. Marker Identification 

The initial identification of markers was performed according to their exact mass compared with 

those that were registered in the Human Metabolome Database [39]. Possible fragment ions were 

investigated by an automated tool using a mol-file format of a candidate compound (MassFragmentTM, 

Waters). Further confirmation of candidate biomarkers was obtained by verification of the retention 

time and fragmentation pattern of an authentic standard (see authentic standards section above). The 

authentic standards were in some cases selected as one representative of biomarkers belonging to the 

same chemical compound class, i.e., only one LPC out of a series was confirmed by a standard. 

Additionally, acyl-1 and acyl-2 LPC(18:1) and LPE(18:1) were spiked into two plasma samples 

collected in the fed and fasted states, respectively, at a concentration of 0.5 mg/L for a more reliable 

confirmation. 

4. Conclusions 

We aimed here to explore the effect of four data preprocessing methods on the pattern of final 

biomarkers for the fasting and fed states in a small rat study. In our custom method, the binning 

followed by collapsing across retention time gives rise to false positives and negatives. Even so, half of 

the marker bins selected contained markers detected by at least one of the other softwares. 

The less selective peak picking algorithm for MarkerlynxTM and the avoidance of peak picking 

algorithms for the custom method gave rise to detection of some markers that could not be detected by 

MZmine or XCMS. On the other hand, the gap filling algorithms in MZmine and XCMS improves 

marker selection because the true signal differences between groups becomes more correct, i.e., in 

accordance with the raw data. 

The selection of proper software parameters based on the specifics of the dataset is the key for 

obtaining a high quality data analysis, regardless of the applied software. The better parameter setting 

is a matter of experience and wrong settings may obscure the extraction of relevant information. The 

use of more than one software and/or the use of several settings during data preprocessing with any 

softwareare likely to improve marker detection in untargeted metabolomics. 

Although the comparison of the selected marker ions from different data preprocessing methods 

revealed some differences, further chemical identification revealed that they were often just adducts or 

daughter ions representing the same biomarker compound. Many of the biomarkers identified were 

chemically closely related so that any of the softwares and procedures applied here could identify 

biomarkers explaining a major part of the biological processes differing between the fasting and the 

fed states in our dataset. Thus, all data preprocessing methods agree that specific lipids, carnitines and 

amino acids are of importance for discriminating plasma samples from the fed and fasting states. Three 

major lipid classes, LPCs, LPEs and free fatty acids, emerged as discriminative markers in the rats. 

The high level in the postprandial state of LPCs, generally known to be pro-inflammatory, is 

interesting and their possible importance for low-grade inflammation in humans should be further 
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explored.  

L-carnitine and acyl carnitines were also found as important markers and the shift from free to acylated 

carnitine during fasting might be useful as a marker to follow the switch from postprandial lipid 

storage to the lipid degradation during fasting. Finally, proline and possibly branched chain amino 

acids seem to be important amino acid markers that decrease in the fasting state when protein 

catabolism is necessary for their availability. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/2218-1989/2/1/77/s1. 
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