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Abstract: Shotgun lipidomics has evolved into a myriad of multi-dimensional strategies 
for molecular lipid characterization, including bioinformatics tools for mass spectrum 
interpretation and quantitative measurements to study systems-lipidomics in complex 
biological extracts. Taking advantage of spectral mass accuracy, scan speed and sensitivity 
of improved quadrupole linked time-of-flight mass analyzers, we developed a bias-free 
global lipid profiling acquisition technique of sequential precursor ion fragmentation called 
MS/MSALL. This generic information-independent tandem mass spectrometry (MS) 
technique consists of a Q1 stepped mass isolation window through a set mass range in small 
increments, fragmenting and recording all product ions and neutral losses. Through the 
accurate MS and MS/MS information, the molecular lipid species are resolved, including 
distinction of isobaric and isomeric species, and composed into more precise lipidomic 
outputs. The method demonstrates good reproducibility and at least 3 orders of dynamic 
quantification range for isomeric ceramides in human plasma. More than 400 molecular 
lipids in human plasma were uncovered and quantified in less than 12 min, including 
acquisitions in both positive and negative polarity modes. We anticipate that the 
performance of sequential precursor ion fragmentation both in quality and throughput will 
lead to the uncovering of new avenues throughout the biomedical research community, 
enhance biomarker discovery and provide novel information target discovery programs as 
it will prospectively shed new insight into affected metabolic and signaling pathways. 
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1. Introduction 

The unprecedented advances in mass spectrometry (MS), combined with the need for comprehensive 
lipid measurements from the research and medical communities, have led to the rapid evolution of 
lipidomics. The prime focus of lipidomics is to perform systems-level analysis of lipid species, and 
uncover their abundance, biological activities, subcellular localization and tissue distribution [1]. 
Today, lipidomics has proven to be the most essential discipline for the discovery of disease-related 
metabolic dysfunctions and promoting the discovery of disease biomarkers and new drug targets. 

The lipidome of mammalian plasma is believed to contain thousands of lipid entities that 
structurally and chemically regulate cell membranes, store energy, or become precursors to bioactive 
metabolites [2]. Lipids primarily reside in cellular membranes and their bioactive outputs are 
determined collectively by the individual molecular lipids present [3]. The molecular lipid structures, 
their local concentrations and spatial distributions will therefore define the physiological response. 
Indeed, several studies have clearly demonstrated and highlighted the importance and specificity of 
detailed molecular lipid structures in determining bio-functionality. For instance, Menuz and 
colleagues have shown that C24- to C26-carbon ceramides mediated the death of a C. elegans mutant 
that failed to resist asphyxia, whereas ceramides with shorter chains had the opposite effect [4]. We 
have recently showed that the C24-carbon ceramide induced ER stress, whereas the shorter chain 
(C20-22 and C16) ceramides had no effect in HL-1 cardiomyocyte cells [5]. Based on these  
above-mentioned studies, it can be anticipated that a defect in underlying lipid regulation can lead to 
deleterious effects on the organism and assist in the pathophysiology of diseases. Therefore, the 
analysis of molecular lipid species is essential, since these biological entities have potential impact in 
multiple research fields ranging from basic science to clinical diagnostics. 

Tandem mass spectrometry strategies have proven to be well suited for achieving detailed 
characterization of lipid molecular species. Recently, Quehenberger and colleagues described an 
extensive profiling of mammalian lipids in plasma and quantitative analysis of more than 500 lipid 
species [6]. We have established a high-throughput workflow to routinely accomplish similar analyses, 
however, with the essential exception that all lipids are identified and quantified as molecular species [7]. 
Lipid classes such as glycerophospholids, glycerolipids, glycosphingolipids and sterol lipids can be 
identified by distinguishing their characteristic headgroup ions, long-chain bases, fatty acid acyl ions 
and corresponding neutral losses. Classically, these types of ions have been used in precursor ion 
scanning (PIS), neutral loss scanning (NLS) and multiple reaction monitoring (MRM) experiments, 
primarily carried out on triple quadrupole (QqQ) instruments due to the high sensitivity, favorable 
quantitative capabilities, acquisition speed and selectivity of this technology [8–11]. These analysis 
modes have successfully been applied to both, coupled with either direct infusion, e.g., shotgun 
lipidomics, or liquid chromatography (LC) modes for multiplexing several lipid-class targeted 
experiments, simultaneously including internal standards and based on total lipid extracts [12–16]. 
However, the drawback of such analyses is that they require the selection of characteristic ions in 
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advance and are highly targeted. Currently, it is neither experimentally nor technologically feasible to 
perform untargeted experiments in this way, due to the vast number of theoretical ions that would need 
to be pre-selected for the analysis. Instead, shotgun or LC-based information-dependent acquisition 
(IDA) experiments have proven more effective for untargeted lipid identification. IDA experiments are 
typically based on prioritizing a list of candidate precursor ions in real time, based on survey MS data 
and user-defined information dependent criteria, such as peak intensity, and selecting these ions for 
MS/MS. However, some of the challenges of this approach include: lack of reproducibility, 
unrestrained MS/MS data quality and laborious analyses. 

Here, we present an alternative approach to the IDA technique, utilizing the latest features of the 
hybrid quadrupole time-of-flight (QTOF) technology, employing an approach for sequential precursor 
ion fragmentation (MS/MSALL). MS/MSALL is a simple direct infusion information-independent 
acquisition technique of stepping through a pre-defined mass range in small increments and effectively 
fragmenting everything within the set mass range. In the absence of IDA prioritization, all precursors 
are selected in the Q1 quadrupole at unit-based resolution in a step-wise fashion to completely cover 
the entire mass range of interest. Collision-induced dissociation (CID) is carried out in Q2 at high 
speed, while collecting more than a thousand of MS/MS spectra covering every precursor in the mass 
range of each cycle. The MS/MSALL approach is bias-free and potentially delivers very informative 
product ion spectra, even in the absence of an MS precursor ion signal. The MS/MS data can further be 
directly applied towards batch library searching or any spectral MS2-level algorithms for a more 
succinct unambiguous lipid molecular profiling workflow. As highlighted in previous publications 
describing such workflows using benchtop orbitrap instrumentations [17] and linear ion traps [17,18], 
sequential precursor ion fragmentation in a single experiment is highly desirable for numerous 
applications as nothing is missed, all masses are simply fragmented, independent of signal intensity, 
and data can be mined retrospectively. As the recent QTOF instrumentation can be attributed with the 
sensitivity of a triple quadrupole system as well as with high resolution throughout, a broad mass 
range, full coverage MS/MS data, acquired with high mass accuracy (≤2 ppm) offer greater capability 
towards the identification and confirmation of lipids in complex biological extracts. MS/MSALL 
represents a novel scanning technique amenable to the analysis of biological lipid extracts and 
automated untargeted high throughput molecular lipidomics. 

2. Results and Discussion 

2.1. Workflow of the Sequential Precursor Ion Fragmentation 

An untargeted, shotgun lipidomics workflow was developed consisting of the ordered acquisition of 
high resolution, accurate mass time-of-flight detection of all precursor and product ions: an acquisition 
technique termed MS/MSALL. This LC-free workflow is generic; no extensive method development or 
optimization was performed. The concept, as illustrated in Figure 1, is to carry out a high resolution 
TOF MS scan covering a user-defined mass range followed by a series of high resolution MS/MS 
experiments collected in the order corresponding to each Q1 precursor isolation step (stepped by 
approximately 1 amu). The collision energy was ramped over 40 eV during each MS/MS step to 
provide a sweep of fragmentation accumulated for high coverage of precursor-derived fragment 
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readily identify the characteristic sphingosine-derived fragment ions [19] (Figure 4). The d18:1 and 
d17:1 sphingosine-derived fragment ions were detected at m/z 264.2689 and m/z 250.2533, respectively. 
The mass error calculated against their theoretical masses was shown to be below 1.5 ppm, thus aiding in 
unambiguous identification of both ceramide molecular species. 

Figure 3. Identification of ceramide d18:1/17:0 by TOF MS. Human plasma total lipid 
extracts were spiked with the isobaric CER d18:1/17:0 standard and analyzed as described 
in the Experimental section. Positive ion mode TOF MS reveals the presence of the 
ceramide as a sum composition, identified by the observed peak at m/z 552.5346, 
corresponding to the protonated complete ceramide molecular ion, [M+H]+. The peak was 
detected at a mass resolution of 32000. 

 

Figure 4. Identification of isobaric ceramides by MS/MSALL. Human plasma total lipid 
extracts were spiked with the isobaric CER d18:1/17:0 and CER d17:1/18:0 standards and 
analyzed as described in the Experimental section. Positive ion mode MS/MS of the 
precursor ion m/z 552.5 confirms the identification of the isobaric ceramides CER 
d18:1/17:0 and CER d17:1/18:0 by the detection of their characteristic fragment ions at m/z 
250.2533 and m/z 264.2689, respectively. The mass range m/z 235–275 is shown. 
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2.5. Sequential Precursor Ion Fragmentation Delivers Quantitative Data 

The sphingosine-derived fragment ions have been commonly used on QqQ instruments for the 
quantitative analysis of ceramides by PIS [19] and MRM [9,22]. However, the limited mass resolution 
on QqQ platforms can jeopardize quantification due to interfering ions that have similar masses to the 
one(s) of interest. This applies to both the shotgun- and the LC-based techniques, despite the 
chromatographic separation step in the latter method [7]. 

Utilizing the accurate mass fragment ions to achieve accurate quantification was demonstrated 
previously [23]. In order to evaluate the linear response of the MS/MSALL technique and its dynamic 
quantification range based on sphingosine-derived fragment ions, we prepared a serial dilution of the 
CER d17:1/18:0 in human plasma while the concentration of CER d18:1/17:0 was kept constant. We 
plotted the peak intensity ratio of the m/z 250.25 to m/z 264.27 against the spiked concentration of the 
CER d17:1/18:0 standard (Figure 5). A linear calibration line was obtained ranging from 0.001 μM to 
1.0 μM, with an R2 regression value of 0.992. Based on the calibration line, the quantification limit is 
in the low nanomolar range for these particular lipid species. These results agree with previous work 
on hybrid QTOF instrumentations [23]. In addition, the new technology provides improved sensitivity 
at millisecond accumulation rates almost reaching the level of the latest QqQ technology using PIS of 
m/z 264.3 (data not shown). Performing the same experiments on QqQ technology resulted in very 
similar calibration line slopes (data not shown). The reason behind the minor differences in the 
calibration slopes between the two platforms is largely due to differences in system setup and flow 
rates, e.g., influence of make-up flow vs. direct nanoflow infusion [24], or the interference of 
background ions as discussed above. At this point we did not pursue to investigate this further. 

2.6. Reproducibility of the Sequential Precursor Ion Fragmentation Technique 

The pre-defined MS/MS precursor sequence in each cycle of the MS/MSALL workflow ensures that 
a dataset is collected with maximum reproducibility. The reproducibility of the technique was assessed 
by monitoring response of synthetic lipid standards in a series of three technical replicates of human 
plasma. The intensities of characteristic fragments of monitored lipids gave a coefficient of variation 
(CV) in the range of 2–10% in positive ion mode (Table 1); in negative ion mode the CV range was  
1–11%. Overall, the MS/MSALL technique delivered, irrespective of the polarity mode, a median CV of 
approximately 5%. 

2.7. MS/MSALL Accompanied with High Resolution MS Increases the Confidence in Endogenous Lipid 
Identification  

As MS/MSALL proved to deliver both accurate and quantitative data for spiked lipid species, we 
proceeded to evaluate its performance on selected endogenous lipid species of human plasma. 
Distinguishing alkyl- (O) and alkenyl (P) linked phosphatidylcholines (PC) from diacyl PCs have been 
hampered due to their similar masses and the overlapping characteristic fragment ions generated upon 
CID. For instance, the mass difference between the total PC 37:5 (total number of carbons:total 
number of double bonds in attached fatty acids) and total PC-O 38:5 is only about 36 mDa. Based on 
the resolution of the instrument and the mass accuracy achieved in the ceramide experiments discussed 
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above, a TOF MS acquisition should be sufficient to distinguish between these two isobaric species. 
Indeed, in positive ion mode two peaks at m/z 794.5674 and m/z 794.6034, corresponding to PC 37:5 
and PC-O 38:5, respectively, were detected (Figure 6A). The mass error for these minor species was 
less than 3 ppm, even with the signal-to-noise of less than 5 (peak-to-peak). Thus, this indicates that 
the mass accuracy can be retained even for minor peaks.  

Figure 5. MS/MSALL is quantitative. Human plasma total lipid extracts spiked with the 
isobaric ceramide standards (shown in Figure 4) were utilized for evaluating the linear 
instrument response. The peak intensities of the fragment ions corresponding to d17:1 
sphingosine and d18:1 spingosine, respectively, were obtained from the MS/MSALL 
acquisitions. Synthetic CER d17:1/17:0 standard was serial diluted (0.001 µM to 1 µM) 
relative to a constant amount of the synthetic CER d18:1/17:0 standard. The y-axis shows 
the ratio of the intensities of spectral peaks at the m/z 250.25 and 264.27 and the x-axis 
represents the absolute concentration of CER d18:1/17:0 from three independent 
calibration data series (six different concentrations). R2 linear regression value was 0.992. 
Error bars indicate standard deviation (n = 3). 
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Table 1. Reproducibility of the sequential precursor ion fragmentation technique. 

Synthetic 
standard 

Measured 
m/z 

Peak intensity (cps) 
Mean (n = 3) CV 

(%) Sample A Sample B Sample C 
LPC 17:0 184.07 1070 1165 966 1067 9.33 

D6-CE 18:0 369.35 810 916 896 874 6.44 
PC 17:0/17:0 184.07 12360 12056 12775 12397 2.91 
D3-GlcCER 
d18:1/16:0 264.27 282 302 282 288 4.00 

LPC 17:0 269.25 2875 2893 3496 3088 11.45 
PC 17:0/17:0 269.25 3559 4211 3821 3864 8.49 
PE 17:0/17:0 269.25 8682 8536 8629 8616 0.86 
PS 17:0717:0 269.25 3189 3332 3461 3327 4.09 
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Figure 6. MS/MSALL expedites identification of isobaric lipids in human plasma. Human 
plasma total lipid extracts were prepared and analyzed as described in the Experimental 
section. (A) Positive ion mode TOF MS reveals two distinct peaks at m/z 794.5695 and at 
m/z 794.6058 suggesting the presence of both PC 37:5 and PC O-38:5, based on their 
masses; (B) Positive ion mode MS/MS of the precursor ion (m/z 794.6) confirms the 
presence of PC, based on the detection of the phosphoryl choline head group (m/z at 
184.0731), but simultaneously reveals the presence of PE species based on the detection of 
the mass at m/z 653.5548, corresponding to the NL of the PE head group [11];  
(C) Negative ion mode MS/MS of the precursor ion monitored as an acetate adduct (m/z 
852.7), detects the underlying acyl anions. Collectively the obtained results propose the 
presence of PC 17:0/20:5, PC P-18:0/20:4, PC O-18:0/20:5 and PC O-16:0/22:5 (Table 2). 
The raw MS/MS further suggests the presence of overlapping lipid species based on the 
detected acyl ions (italic underlined) which partially originate from isotope peaks of lower 
mass lipids. The MS/MS scan was performed in both polarity modes using collision energy 
of 50 eV and the data was de-isotoped. 

(A) 

 

(B) 
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Figure 6. Cont. 

 
a obtained by MS/MS of m/z 792.6; b proposed lipid identification based on observed fatty acid. 

Table 2. Pinpointing the identity of PC 37:5 and PC O-38:5 in human plasma. 

Molecular Ion Calculated mass PC 
17:0/20:5

PC P-
18:0/20:4 

PC O-
18:0/20:5 

PC O-
16:0/22:5 

PE 
18:0/22:5 

TOF MS       
[M+H]+ 794.5694/794.6058 794.5674 794.6037 794.6037 794.6037 794.5674 

[M+CH3COO]− 852.5760/852.6124 852.5745 852.5745 b 852.5745 b 852.5745 b 792.5408 
[C5H15NO4P]+ 184.0733 184.0731 184.0731 184.0731 184.0731  

[M+H−C2H8NO4P]+ 653.5503     653.5414 
MS/MS       

[C17H33O2]− 269.2486 269.2534     
[C18H35O2]− 283.2642     283.2689 a 
[C20H29O2]− 301.2173 301.2209  301.2209   
[C20H31O2]− 303.233  303.2373    
[C22H33O2]− 329.2486    329.2506 329.2546 a 

To confirm lipid identities in the potential presence of other isomeric and isobaric species we 
investigated the MS/MS spectrum of m/z 794.6 collected within the MS/MSALL analysis. As expected, 
the phosphoryl choline fragment ion at m/z 184.0731, derived from PC, was readily observed in the 
positive ion (Figure 6B). Interestingly, a fragment ion at m/z of 653.5548, corresponding to the neutral 
loss (NL) of m/z 141.0186, suggested that an overlapping phosphatidylethanolamine (PE) lipid was 
present. This species was tentatively identified as total PE 40:5, based on the characteristic NL [11] 
and the molecular ion. The elemental compositions and the theoretical masses of the protonated 
molecular ions of PE 40:5 and PC 37:5 are identical, however, in the negative ion mode these two 
lipids can be separated since PCs are primarily detected as acetate adducts, while PEs prefer a 
deprotonated form. Indeed, the predicted fragments supporting the identify of PE 40:5 and PC 37:5 and 
PC-O 38:5 were detected in corresponding MS/MS data in the negative ion mode derived from the 
MS/MSALL analysis. The MS/MS (m/z 792.5408) confirmed that PE 40:5 is present and predominantly 
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in the form of the molecular species PE 18:0/22:5, confirmed by the detected acyl anions [21] (data not 
shown). In a similar way, the PC 37:5 (MS/MS of m/z 852.5745) can be confirmed, proposing the 
presence of the molecular species; PC 17:0/20:5, PC P-18:0/20:4, PC O-18:0/20:5 and PC O-16:0/22:5 
(Figure 6C and Table 2). According to these results it can be expected that the content of isobaric and 
isomeric lipid entities in human plasma is very high. The complete cycle of MS and MS/MS from each 
polarity mode of each precursor mass, accompanied with high mass accuracy and selectivity, was 
found to be efficient in resolving interfering, isomeric and isobaric species in these types of complex 
samples. Thus, with the sequential precursor ion fragmentation technique, it can be expected that the 
lipidome coverage dramatically increases. Using the automated identification algorithms within 
lipidomics-driven lipid database searching tools [25] and starting from the most abundant signal, 404 
molecular lipid species were tentatively identified in the plasma samples (Supplementary Table 1). 

2.8. MS/MSALL is a Valid Methodology for the Assessment of Molecular Lipidomes 

Assessing lipidomics investigations on human plasma has been a focus of recent studies [26]. 
Although significant analytical advances have been accomplished, there are still considerable 
discrepancies between reported lipid compositions. This has been observed in abundant lipid classes 
such as triacylglycerols (TAG), which are easy to detect. For instance, the TAG results reported by 
Graessler et al. [27], Oresic et al. [28] and Quehenberger et al. [6] differ not only in the number of 
TAG species, but also in their compositions. More importantly, to date, most studies have focused 
primarily on overall lipid compositions, with less attention given to the actual molecular species, 
bearing in mind their direct biological impact. We assumed that the acquired MS/MSALL data should 
have sufficient information to re-construct the molecular species lipid profile for plasma samples. As 
an example, the lipid profiles of PE and TAG were chosen for demonstration purposes.  

From the MS/MSALL analysis we were able to identify and quantify 33 distinct molecular PEs (data 
not shown). Since NL scanning on QqQ instruments has been broadly adopted to quantify PEs [11], as 
complete species, we wanted to explore how well the sequential precursor ion fragmentation results 
would match this type of analysis. We found that the concentrations of the molecular species and their 
corresponding total species agreed well with the QqQ results. The concentrations of the PE 36:X  
(X = 0–5) series and the corresponding molecular species is shown in Figure 7. For example, 
according to the QqQ analyses, human plasma contained approximately 3.2 µM PE 36:4. The 
corresponding molecular species PE 16:0/20:4 and PE 18:2/18:2 were determined by MS/MSALL to 
2.7 and 0.5 µM respectively, which adds up to precisely the same amount as by the QqQ analysis. The 
identified lipid species and their concentrations compared well with data reported previously [13]. 
Similar observations were seen in the case of other lipid classes as well. For instance, MS/MSALL and 
QqQ analyses delivered closely similar concentrations of the ten most abundant molecular PC species 
(data not shown). However, slight discrepancies could be observed between the analyses. We reasoned 
that this mainly originated from improper isotopic correction and/or overlapping chemical background 
noise predominantly in the QqQ analysis.  
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In summary, these results demonstrate that our methodology for sequential precursor ion fragmentation 
is fully capable of delineating molecular PE and TAG species. This capability does not apply to these lipid 
classes only, but it could be expanded to the whole lipidome. The agreement of our results with the 
lipid output from conventional QqQ approaches justifies the validity of MS/MSALL. Thus, sequential 
the precursor ion fragmentation technique is not only rapid, but it also proves to be highly suitable for 
the characterization of lipidomes in most exhaustive detail with promising levels of quality, 
reproducibility and quantitation.  

3. Experimental  

3.1. Materials 

Methanol, acetic acid, 2,6-di-tert-butyl-4-methylphenol and ammonium acetate were from  
Sigma-Aldrich (St. Louis, MO, USA). Chloroform was from Rathburn Chemicals Ltd (Walkerburn, 
UK). Synthetic lipid standards were purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA), 
C/D/N Isotopes (Essex, UK), Matreya LLC (Pennsylvania, PA, USA) and Larodan Fine Chemical AB 
(Malmö, Sweden). 

3.2. Sample Preparation and Extraction 

Lipids were extracted from 10 μL of human fresh frozen plasma (FFP): extracted as described [23] in an 
automated fashion [7]. The antioxidant 2,6-di-tert-butyl-4-methylphenol was added as a sample 
protectant. Synthetic lipid standards were added to the samples prior to extraction. Their final 
concentrations in sample extracts were; 1.6 μM of LPC 17:0, PC 17:0/17:0, PA 17:0/17:0, PE 
17:0/17:0, PG 17:0/17:0, PS 17:0/17:0, DAG 17:0/17:0, SM 18:1/12:0, TAG 17:0/17:0/17:0 and  
3.2 μM of D6-CE 18:0, D6-FC and 0.125 μM of SPH 17:1 and 0.5 μM of S1P 17:1, CER 18:1/17:0, 
D3-GlcCER 18:1/16:0 and 0.25 μM of D3-LacCER 18:1/16:0, Gb3 18:1/17:0. 

To investigate the dynamic quantification range, the samples were spiked with synthetic CER 
17:1/18:0 at variable concentrations prior to extraction. The final concentrations in the sample extracts 
were; 5.0, 1.3, 0.313, 0.078, 0.020 and 0.005 µM. The sample set also consisted of appropriate sample 
blanks to ascertain and prevent any carryover. The final lipid extracts were dried under a gentle stream 
of nitrogen and reconstituted in chloroform:methanol (1:2, v/v) and stored under nitrogen at −20 °C 
prior to the lipidomic analyses. 

3.3. MS and MS/MS Acquisitions on Hybrid Quadrupole Time-of-Flight 

Plasma extracts were analyzed by flow injection analysis. Approximately 150 µL of a 5-fold diluted 
lipid extract in 5 mM ammonium acetate in chloroform:methanol (1:2, v/v) was delivered to the source 
by isocratic flow at 20 µL/min of methanol: isopropanol (3:1, v/v) with 5 mM ammonium acetate 
using a Shimadzu Prominence XR UFPLC autosampler and isocratic pump (Shimadzu Corporation, 
Kyoto, Japan). A second isocratic pump delivered a solution of 98% isopropanol and 2% methanol 
containing 5 mM ammonium acetate as a make-up flow to the source through a T-junction at a rate of 
60 µL/min. Total flow was approximately 80 µL/min at point of entry into the DuoSpray® Source 
through the ESI probe. Source parameters included nebulizing gases GS1 at 20, GS2 at 15, curtain gas 
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at 20, positive mode ion spray voltage at 5000, negative mode ion spray voltage at −4000, declustering 
potential at 40 V, and at an ESI source operating temperature of 300 °C. The atmospheric-pressure 
chemical ionization (APCI) probe and inlet were connected to a calibrant pump which delivers mass 
calibration solution (12 small molecule singly-charged compounds in both positive and negative 
modes for MS and MS/MS covering the m/z ranges acquired). Each sample was injected twice, to 
complete a positive mode and a negative mode experiment back-to-back upon polarity switching, 
according to the instrument manufacturer. An appropriate wash step and sample blanks were included 
to assess carryover. Positive and negative ion MS and sequential precursor ion fragmentation 
acquisitions were carried out on a TripleTOF™ 5600 System (AB SCIEX, Concord, ON) controlled 
with Analyst® TF 1.5.1 software with MS/MSALL mode activated to carry out series of product ion 
scans defined by the mass range and Q1 stepped masses as set by the user. An MS experiment was 
carried out from m/z 200–1,200 at an accumulation time of 300 ms, followed by 1,000 product ion 
experiments with 1,000 precursors evenly spaced from m/z 200.051 to m/z 1,200.051, measuring across 
m/z 100–1,500, accumulated for 300 ms each, collected in order from low to high m/z. Total time to carry 
out one MS/MSALL acquisition was 5.48 min. Collision energy for each MS/MS step was 50 ± 30 eV 
and −40 ± 30 eV respectively for positive and negative ion mode experiments. 

3.4. Accurate Mass Data Processing 

The acquired TOF MS and MS/MSALL data were processed with LipidView™ 1.1 software. The 
data supporting the quantitative aspect of the analysis, such as linearity and reproducibility were 
obtained using a target processing method that focused on exogenous lipid species in the fixed and 
serial-dilution internal standard solutions and based on the concentrations described above. To study 
the overall plasma lipidome composition identification of lipid species was performed in both positive 
and negative modes and the results combined after processing. The identification focused on the 
species with even carbon chains. The typical mass tolerance window for processing was set at 5 mDa 
and the peaks in MS/MS scans exceeding signal-to-noise of 3 were considered. To prevent false 
positive identifications within the dataset, the contribution of isotope peaks coming from lower mass 
species was removed within and between adjacent MS/MS scans using the information on accurate 
fragment elemental composition and elemental composition of the parent species [25]. The identified 
lipids were quantified against their corresponding internal standard, i.e. endogenous lipid against a 
corresponding internal standard of the same lipid class or closely related, in cases where appropriate 
internal standard is lacking, and normalized against sample volume. A total of 404 molecular lipid 
species were tentatively identified in the lipid data (Supplementary Table 1). 

3.5. QqQ Shotgun Lipidomics Analyses 

Shotgun lipidomics was performed on a QTRAP® 5500 instrumentation (AB SCIEX™, Concord, 
ON) equipped with a robotic nanoflow ion source (NanoMate HD, Advion Biosciences) as previously 
described [24]. Briefly, prior to sample introduction, the extracted plasma samples were diluted 5-fold 
in 5 mM ammonium acetate in chloroform:methanol (1:2, v/v). Operating gas pressure for the 
NanoMate HD was set to 0.7 psi and voltages were set to 1.4 kV for positive ion mode and −1.4 kV for 
negative ion mode, respectively. PIS and NLS were performed in both positive and negative ion modes 
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as previously described [11,21]. The quadrupoles, Q1 and Q3, were operated at unit resolution and a 
scan rate of 200 Da/s was applied. The applied collision energy was optimized for each lipid class [7]. 
The instrument was operated using Analyst® 1.5 software. The acquired data was processed in 
LipidView™ software for lipid identification as described previously [25]. 

4. Conclusions 

We demonstrated that the sequential precursor ion fragmentation (MS/MSALL) technique 
successfully reveals the make-up of the human plasma lipidome. The method is justified by mirroring 
results obtained by conventional lipidomics methods. Orchestrated by accurate mass full scans and 
MS/MS information at each single mass unit from both polarity modes, MS/MSALL improves the 
precision of the lipid assessment and delivers quantitative information on the molecular lipid species, 
without hindering the discovery of unknowns. However, as MS/MSALL technique does not produce the 
complete picture of lipidomes; it requires supplementary techniques such as ion mobility [30] and 
OzID [20] to deliver the missing dimensions of the functional lipidome, as for instance the allocation 
of the position and the configuration of double bonds within the fatty acid moieties of lipid species and 
thereby disclose the detailed molecular lipid structures [31]. 

We also showed the capability of the sequential ion fragmentation technique to deliver quantitative 
information for more than 400 molecular lipid species in less than 12 min without compromising data 
quality; a feature that makes MS/MSALL an attractive set-up for high-throughput quantitative 
screenings [7]. In conjunction with this demonstrated high throughput, its ability to collect all accurate 
product ion data in an unbiased fashion paves the way to biomarker discovery, target discovery 
programs as it will prospectively shed new insights into the affected metabolic and signaling pathways, 
and the transition of lipidomics into clinical laboratories. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/2218-1989/2/1/195/s1. 
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