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Abstract: Metabolic reprogramming has emerged as a prominent hallmark of cancer, characterized
by substantial alterations in nutrient uptake and intracellular metabolic pathways. Consequently,
intracellular metabolite concentrations undergo significant changes which can contribute to tumori-
genesis through diverse mechanisms. Beyond their classical roles in regulating metabolic pathway
flux, metabolites exhibit noncanonical functions that play a crucial role in tumor progression. In this
review, we delve into the nonclassical functions of metabolites in the context of tumor progression,
with a particular focus on their capacity to modulate gene expression and cell signaling. Further-
more, we discuss the potential exploitation of these nonclassical functions in the enhancement of
cancer therapy.

Keywords: metabolites; noncanonical functions of metabolites; metabolic reprogramming; tumor
progressions

1. Introduction

Metabolic reprogramming is a hallmark of malignancy characterized by alterations in
the activity of metabolic enzymes and levels of upstream and downstream metabolites [1,2].
Metabolites, which are catalyzed by diverse enzymes, serve as intermediate products of cel-
lular metabolism [3]. In the context of tumorigenesis, these metabolic disturbances give rise
to the abnormal accumulation of metabolites, commonly referred to as oncometabolites [4].
Cancer cells independently modulate their flux through different metabolic pathways to
satisfy the heightened demand for bioenergy and biosynthesis while concurrently avoiding
excessive oxidative stress [2]. Remarkably, cancer cell metabolism exhibits a shared ability
to extract vital nutrients from nutrient-poor environments, thereby enabling cancer cells’
survival and proliferation. In addition, cancer cells undergo metabolic adaptations to
synthesize lipids, proteins, and nucleic acids [5]. These adaptations enable cancer cells to
modulate their fuel utilization in order to fulfill cellular functions.

Moreover, while metabolites serve as substrates in metabolic reactions to provide
materials and energy, they also act as regulators of gene expression and signal transduction,
influencing diverse cellular processes [6,7]. Recent findings indicate that metabolites have
nonmetabolic functions through direct protein modifications [3]. Intriguingly, metabo-
lites play essential roles in cancer-related epigenetic modifications and transcriptional
regulation [8]. For instance, acetyl-CoA not only functions as an intermediate in cen-
tral metabolism but also serves as an acetyl donor in acetylation reactions, positioning
it at the intersection of metabolism and modification [9]. Such revelations highlight the
complex interplay between metabolism and cellular processes. Additionally, tumor cells
have the ability to perceive and utilize various metabolite signals, such as those derived
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from central carbon metabolism, lipids, amino acids, and nucleotides, to drive tumorige-
nesis and metastasis [6]. For example, amino acids can act as signals to regulate mTOR
complex 1 (mTORC1) activity and metabolic homeostasis [10]. Therefore, it is crucial to
elucidate the mechanisms by which metabolites modulate signaling pathways to facilitate
tumor progression.

In this article, we aim to investigate evidence supporting the influence of altered
metabolite levels in cancer cells on malignant phenotypes by regulating gene expression
and cell signaling. By comprehending these novel pathways, we can potentially identify
innovative approaches to target tumor progression more effectively. Here, we present
compelling evidence for the involvement of metabolite alterations in cancer progression
and discuss potential therapeutic strategies that may emerge as a consequence.

2. Metabolites Regulate Gene Expression

Gene transcription is regulated through the alteration of chromatin structure, which
is influenced by DNA methylation at cytosine and adenine residues, as well as histone
modifications [11]. Metabolites play crucial roles in modifying histones and DNA, thereby
directly impacting chromatin structure and gene transcription. Furthermore, metabolites
can also regulate gene expression by modulating mRNA stability.

2.1. Metabolites Regulate Gene Expression via Epigenetics

Metabolic rewiring and epigenetic remodeling, which are closely interconnected and
mutually influence each other, are well-established characteristics of cancer. Epigenetics
involves heritable changes in gene expression that occur without changes in the DNA
sequence [12]. Processes such as DNA methylation, histone modification, nucleosome
remodeling, and RNA-mediated targeting play crucial roles in regulating fundamental
biological processes related to cancer development [13].

Metabolites are recognized as key regulators of epigenetic modifications, with mount-
ing evidence suggesting that metabolites drive chromatin dynamics through chemical
post-translational modifications (PTMs) [14,15]. Given that many metabolite alterations
and a resulting aberrant epigenetic regulation are common across various cancer types,
they represent promising targets for anti-cancer therapies. Moreover, metabolites serve as
essential cofactors and regulators of multiple enzymes involved in chromatin modifications.
And numerous PTMs rely on metabolites as substrates. In the nucleus, metabolites are
utilized for chromatin modifications, especially the utilization of acetyl-CoA for histone
acetylation and S-adenosylmethionine (SAM) for histone and DNA methylation [16].

2.1.1. Acetyl-CoA

Acetyl-CoA is primarily produced as a substrate for the TCA cycle in mitochondria
and formed through the breakdown of glucose, fatty acids, and amino acids [17]. In the
process of glycolysis, glucose is converted into pyruvate. Subsequently, the mitochon-
drial pyruvate dehydrogenase complex (PDH) facilitates the oxidative decarboxylation
of pyruvate, leading to the production of acetyl-CoA [18]. In addition, two key enzymes
can also catalyze the production of acetyl-CoA: ATP-citrate lyase (ACLY) and acetyl-CoA
synthetase 2 (ACSS2), which generate acetyl-CoA in the cytosol and nucleus. ACLY cleaves
mitochondria-derived citrate to produce acetyl-CoA, while ACSS2 synthesizes acetyl-CoA
from acetate [19] (Figure 1). In eukaryotic cells, acetyl-CoA serves as the exclusive donor of
acetyl groups for acetylation, a dynamic chromatin modification crucial for gene regula-
tion [20]. Acetylation is facilitated by acetyl-CoA and hindered by its product, CoA [21].
Acetyl-CoA exists in distinct pools within mammalian cells, including mitochondrial,
cytosolic, nuclear, peroxisomal, and endoplasmic reticulum (ER) compartments. The signif-
icance of acetyl-CoA in various pathways and cellular compartments makes it a primary
target for metabolic remodeling and molecular rewiring in cancer [16]. Thus, we will
elucidate the important roles of acetyl-CoA and its related enzymes in various cancers in
the following content.
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Figure 1. The synthesis of acetyl−CoA. Acetyl-CoA can be catalyzed from citrate, pyruvate, and
acetate by ACLY, PDH, and ACSS2, respectively.

In breast cancer cells, the acquisition of a mesenchymal phenotype is facilitated by
enhanced fatty acid oxidation (FAO), which generates acetyl-CoA and maintains histone
acetylation on the promoters of genes associated with the epithelial–mesenchymal tran-
sition (EMT) [22]. Moreover, the lipogenic enzyme acetyl-CoA carboxylase 1 (ACC1) has
been identified as a crucial contributor to metastasis in breast cancer. ACC1 catalyzes
acetyl-CoA to malonyl-CoA in the fatty acid synthesis pathway. Mechanistically, the in-
vasion of murine and human breast cancer cells has been shown to result in an increase
in the phosphorylation of ACC1. The phosphorylation of ACC1 is mediated by TGFβ-
activated kinase 1 (TAK1) and leads to ACC1 inactivation. Inhibiting ACC1 leads to the
accumulation of cellular acetyl-CoA, the subsequent elevation of SMAD family member 2
(SMAD2) transcription factor acetylation and activation, and ultimately the induction of
the EMT and metastasis [23]. The study concluded that ACC1’s contribution to the EMT
and breast cancer recurrence is not connected to its role in the fatty acid synthesis pathway.
Rather, it seems to rely on ACC1’s regulatory function in maintaining cellular acetyl-CoA
levels, which leads to the modification of transcription factors. Pancreatic cancer is one
of the most lethal malignancies in humans [24]. Previous studies have shown that high
levels of histone acetylation in human pancreatic ductal adenocarcinoma (PDA) tumors
correlate with a higher stromal content and a poor prognosis [25,26]. Notably, histone
acetylation is dynamically regulated, and the metabolic enzyme ACLY plays an important
role in it because of its metabolite acetyl-CoA. ACLY is a substrate of AKT, and signaling
between AKT and ACLY promotes the production of acetyl-CoA and global increases in
histone acetylation in cancer cells [27]. In a separate study, researchers identified acyl-CoA
thioesterase 12 (ACOT12) as a key player in hepatocellular carcinoma (HCC) metasta-
sis. ACOT12, the primary cytoplasmic acetyl-CoA thioesterase expressed in the human
liver [28], is the exclusive enzyme responsible for hydrolyzing acetyl-CoA. The expression
of ACOT12 is significantly downregulated in HCC tissues and is closely associated with
HCC metastasis and poor survival rates in patients. Further mechanistic investigations
have revealed that ACOT12 regulates cellular acetyl-CoA levels and histone acetylation in
HCC cells. The downregulation of ACOT12 promotes HCC metastasis by epigenetically
inducing Twist-related protein 2 (TWIST2) expression and facilitating the EMT. Collectively,
these findings establish a connection between acetyl-CoA alteration and cancer metasta-
sis, suggesting that acetyl-CoA-related enzymes could serve as prognostic markers and
potential therapeutic targets for combating cancer metastasis [29].

Using genome-wide approaches, researchers have discovered that H3K27ac, a his-
tone modification associated with gene expression, is specifically regulated in response to
fluctuations in acetyl-CoA abundance. In glioblastoma (GBM) cells, genes that respond to
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acetyl-CoA include those involved in cell migration and adhesion to the ECM. Mechanisti-
cally, nuclear factor of activated T-cells (NFAT1) has been identified as a key mediator of the
acetyl-CoA-dependent regulation of genes related to adhesion and migration. Additionally,
high levels of acetyl-CoA regulate NFAT1 by controlling Ca2+ homeostasis, leading to
NFAT1 dephosphorylation and its nuclear translocation [30]. GBMs primarily rely on
acetate as a source of acetyl-CoA. And O-GlcNAcylation, a process catalyzed by O-GlcNAc
transferase (OGT), has been found to be elevated in various cancers. Conversely, reducing
O-GlcNAcylation can hinder cancer growth. Researchers uncovered that elevated OGT
levels and activity in GBM result in the cyclin-dependent kinase 5 (CDK5)-dependent
phosphorylation of ACSS2 on Ser267, enhancing its stability and preventing ubiquitination.
This phosphorylation also promotes acetate’s conversion to acetyl-CoA, thereby supporting
the growth and survival of GBM tumors. Therefore, the OGT/CDK5/ACSS2 pathway
represents a potential therapeutic target for manipulating altered metabolic dependencies
in brain tumors [31]. Researchers also discovered that under low-oxygen or low-serum
conditions, the upregulation of ACSS2 expression was crucial for maintaining the survival
of breast cancer cells. Using isotopic labeling methods, researchers have found that under
low-oxygen or low-serum conditions, tumor cells control acetate uptake through ACSS2
and utilize acetate to synthesize acetyl-CoA to promote fatty acid synthesis, thereby sustain-
ing the survival of tumor cells [32]. Furthermore, PDH, which catalyzes acetyl-CoA from
pyruvate, plays a crucial role in regulating cell state transitions. Notably, growth factors
and mitochondrial dysfunction promote the translocation of PDH from mitochondria to
the nucleus during the S phase. Within the nucleus, PDH generates acetyl-CoA, leading to
the acetylation of H3K9 and H3K18. This acetylation event supports the progression of the
S phase [33].

2.1.2. S-Adenosylmethionine

Methylation is distinct from other PTMs like acetylation in its capacity to modify both
proteins and DNA. In human DNA, methylation was found to occur predominantly at
cytosines within CpG (cytosine–guanine) sites. CpG sites are regions of DNA where a
cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases
on its 5′ → 3′ direction. CpG sites occur with high frequency in genomic regions called
CpG islands. This type of methylation is referred to as CpG methylation, and cytosine
methylated at the fifth carbon of the pyrimidine ring is called 5-methylcytosine (5mC) [34].
The methylation of CpG islands in promoter regions typically represses transcription. No-
tably, the global loss of 5mC is characteristic of cancer cells, accompanied by an abnormal
presence of punctate increases in DNA methylation at enhancers and promoters. This
altered distribution leads to the repression of tumor suppressor genes and a simultane-
ous rise in the expression of oncogenes, which promotes tumorigenesis [16,35,36]. DNA
methyltransferases (DNMTs) use S-adenosylmethionine (SAM) as a methyl group donor
and are responsible for 5mC [37]. DNMTs can be categorized into two main groups: the
maintenance methyltransferase DNMT1 and the de novo methyltransferases DNMT3A
and DNMT3B. The TET (ten–eleven translocation) family proteins, including TET1, TET2,
and TET3, have been identified as mammalian DNA hydroxylases involved in active DNA
demethylation. For demethylation reactions, TETs require oxygen and α-ketoglutarate
(α-KG) as substrates, along with ferrous iron as a cofactor [38].

The synthesis of SAM during the methionine cycle, a crucial process in one-carbon
metabolism, requires the utilization of methionine and ATP [39] (Figure 2). In one-carbon
metabolism, serine, glycine, and threonine serve as the primary donors of one-carbon
units [40,41]. The modulation of cellular SAM levels, regulated by one-carbon metabolism,
influences the methylation status [42,43]. In colorectal cancer (CRC) cells, phosphoglyc-
erate dehydrogenase (PHGDH) catalyzes the initial step of de novo serine biosynthesis.
PHGDH is monoubiquitinated by the cullin 4A-based (Cul4A-based) E3 ligase complex.
This process boosts PHGDH activity and SAM levels, leading to the upregulation of cell
adhesion genes through SET domain containing 1A-mediated (SETD1A)-mediated histone
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methylation, ultimately promoting CRC metastasis [44]. Moreover, upregulated PHGDH
leads to increased histone methylation levels and promotes proliferation in HCC [45]. Liver
kinase B1 (LKB1) is a tumor suppressor serine/threonine–protein kinase and is mutation-
ally inactivated in a range of cancers. Studies have shown that the cooperation of LKB1
deficiency and GTPase KRas (KRAS) activation could promote cancer progression through
the mTOR-dependent induction of the serine–glycine one-carbon pathway, leading to
increased SAM production. At the same time, DNA methyltransferase is upregulated,
resulting in elevated DNA methylation, particularly the enrichment of retrotransposon
elements associated with transcriptional silencing [46]. Furthermore, the mechanistic target
of mTORC1 regulates metabolism and cell growth in response to nutrient, growth, and
oncogenic signals. mTORC1 stimulates the synthesis of SAM by promoting methionine
adenosyltransferase 2 alpha (MAT2A) expression. mTORC1 also increases the protein abun-
dance of pre-mRNA-splicing regulator WTAP. Through the control of MAT2A and WTAP
levels, mTORC1 stimulates m6A RNA modification to promote protein synthesis and
cell growth [47]. In the context of de novo and therapy-induced neuroendocrine prostate
cancer (NEPC), the downregulation of protein kinase C (PKC) results in the upregulation
of serine biosynthesis through an mTORC1/cyclic AMP-dependent transcription factor
4 (ATF4)-driven pathway. This metabolic reprogramming facilitates epigenetic changes
conducive to the development of NEPC characteristics [48].
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by methionine adenosyltransferase (MAT).

2.1.3. Other Metabolites

In addition to acetyl-CoA and SAM, there are other metabolites reported to play
non-canonical roles in cancer development. The succinate dehydrogenase (SDH) complex
is an enzyme complex bound to the inner mitochondrial membrane which is responsible
for catalyzing the conversion of succinate to fumarate. In many human cancers, mutations
in the genes encoding the five subunits of the SDH complex (SDHA, SDHB, SDHC, SDHD,
and SDHAF2) are frequently observed as germline or somatic alterations [49–52]. Myc,
a well-known oncogene, promotes the acetylation-dependent deactivation of SDHA by
activating the degradation of NAD-dependent protein deacetylase sirtuin-3 (SIRT3). This
process leads to the accumulation of cellular succinate, further promoting tumor-specific
gene expression mediated by H3K4me3. Moreover, the supplementation of dimethyl
succinate partially rescues the inhibitory effect of Myc depletion on H3K4me3 levels [53].
Notably, mutations in isocitrate dehydrogenase (IDH) have also been implicated in cancer-
associated metabolic alterations. These mutations result in a novel enzymatic function that
converts α-KG to the R enantiomer of 2-hydroxyglutarate (R-2HG). The R-2HG has been
identified as an oncometabolite. The R-2HG inhibits the activity of TET2, a well-recognized
tumor suppressor, and suppresses DNA demethylation [34,54]. Interestingly, in contrast
to its oncogenic function, in cancer cells without IDH mutations, the R-2HG exerts its
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anti-tumor effect by inhibiting the enzymatic activity of the fat mass and obesity-associated
protein (FTO), an RNA N6-methyladenosine (m6A) demethylase [55] (Figure 3).
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Moreover, metabolic enzymes and metabolites have been found to possess non-
metabolic functions in immune cell signaling which can modulate the immune response.
One particular enzyme, methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), has been
demonstrated to play a key role in tumor development by promoting the expression of
programmed cell death ligand 1 (PD-L1). This promotion is dependent on MTHFD2’s
ability to drive the folate cycle, ensuring an adequate supply of uridine-related metabolites,
including UDP-GlcNAc. The increased availability of UDP-GlcNAc leads to the global
O-GlcNAcylation of proteins, with cMYC being one of the targeted proteins. This process
enhances the stability of cMYC and boosts the transcription of PD-L1 [56].

2.2. Metabolites Modulate mRNA Stability

Tumors can sustain their growth and malignant phenotype under stress by utilizing
alternative pre-mRNA splicing to regulate post-transcriptional gene expression. For ex-
ample, researchers found that PHD finger-like domain-containing protein 5A (PHF5A), a
component of U2 snRNPs, could be acetylated at lysine 29 in response to cellular stresses.
This acetylation strengthens the interaction among U2 snRNPs, affecting global pre-mRNA
splicing patterns and gene expression. The hyperacetylation of PHF5A induces alternative
splicing, leading to the stabilization of lysine-specific demethylase 3A (KDM3A) mRNA
and increased protein expression. Importantly, in a pathological context, the axis of PHF5A
K29 hyperacetylation and KDM3A upregulation is associated with a poor prognosis for
colon cancer [57]. In addition, UDP-glucose 6-dehydrogenase (UGDH) is a critical enzyme
in the uronic acid pathway. Phosphorylated UGDH interacts with Hu antigen R (HuR)
and converts UDP-glucose to UDP-glucuronic acid. This conversion reduces the inhibition
of HuR’s association with zinc finger protein SNAI1 mRNA by UDP-glucose, thereby
increasing the stability of SNAI1 mRNA. The increased production of SNAIL triggers the
epithelial–mesenchymal transition, facilitating the migration of tumor cells and promoting
lung cancer metastasis [58].
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3. Metabolites Regulate Cell Signaling

Metabolites play a dual role in cellular processes, serving as both substrates in
metabolic reactions and signaling molecules that regulate various biological activities.
In the context of cancer cells, the capacity to perceive alterations in metabolic intermediates
enables the enhanced coordination of multiple biological processes and heightened cellular
metabolism. By detecting and harnessing signals from a wide array of metabolites, cancer
cells actively facilitate tumorigenesis and metastasis [7]. Apart from common metabolites
like glucose and amino acids detected by the AMPK/mTOR signaling pathway, numerous
other metabolic products can also trigger various signaling pathways.

Within the tumor microenvironment, cancer cells can release soluble molecules that acti-
vate their own oncogenic signaling pathways for growth and metastasis. These molecules also
have the ability to alter surrounding cells, enhancing tumor progression [59]. Macrophages, a
significant cell population in tumor microenvironments, play a vital role in maintaining
immune homeostasis. These cells undergo activation and polarization in response to signals
from their microenvironment, resulting in the development of two distinct phenotypes:
classically activated (M1) and alternatively activated (M2) phenotypes [60,61]. Interest-
ingly, cancer cells release succinate into the extracellular space, which may contribute
to the upregulation of tumor-associated macrophage (TAM) markers and the polariza-
tion of TAMs. This effect is mediated by succinate’s activation of succinate receptor 1
(SUCNR1), as evidenced by increased intracellular calcium levels, ERK1/2 signaling, and
prostaglandin E2 (PGE2) production. Moreover, cancer cells secrete succinate into the sur-
rounding medium, thereby augmenting cancer cell migration and invasion and ultimately
promoting metastasis in vivo [62].

Citrate is an intermediate metabolite in the tricarboxylic acid (TCA) cycle with signif-
icant implications in cancer biology. Cancer cells exhibit reduced oxidative metabolism,
relying more heavily on glycolysis, even in the presence of oxygen (the Warburg effect).
This metabolic shift diminishes the biosynthesis of citrate. The decreased concentration
of citrate in cancer cells has been associated with enhanced tumor aggressiveness [63].
Indeed, studies have demonstrated that citrate can impede the growth of A549 lung cancer.
Importantly, citrate combined with cisplatin exhibits additional therapeutic benefits. One
of the underlying mechanisms of this inhibition involves the suppression of cancer cell pro-
liferation through the inhibition of the insulin-like growth factor 1 receptor (IGF-1R)/AKT
signaling pathway and the subsequent activation of the phosphatase and tensin homolog
(PTEN)–eukaryotic initiation factor 2α (eIF2α) axis [64]. Citrate is one of the few metabo-
lites that can inhibit cancer proliferation. This investigation suggests that dietary citrate
supplementation has potential advantages in cancer treatment.

Glutamate dehydrogenase (GDH) is a crucial enzyme in glutaminolysis. It catalyzes
the reversible oxidative deamination of L-glutamate into α-KG, a key intermediate in the
TCA cycle [65]. α-KG plays multiple roles in various metabolic and cellular pathways [66].
Glutaminolysis, a mitochondrial pathway that utilizes glutamine as an alternative metabolic
substrate, contributes to anti-anoikis and pro-metastatic signaling through GDH1 and α-
KG. This activation occurs via the calcium/calmodulin-dependent protein kinase kinase 2
(CamKK2)-mediated AMPK signaling pathway [67]. In addition, GDH1 interacts with the
IkappaB kinase (IKK) complex, providing a local source of α-KG. This directly activates
IKKb and NF-kB signaling, promoting glucose uptake, tumor cell survival, and brain tumor
development [68].

Macropinocytosis, an actin-dependent mechanism by which cells take up fluid, is
a common metabolic process in pancreatic ductal adenocarcinoma (PDAC) cells [69,70].
It plays a crucial role in supporting the nutritional needs of tumor cells. The extent of
macropinocytosis in PDAC tumors is influenced by the availability of nutrients. When
there is a deficiency of glutamine, a specific subset of PDAC cells initiates macropinocytosis
by enhancing EGFR-Pak signaling. This compensates for the nutrient-depleted conditions
of the tumor microenvironment. These findings underscore the significant role of glutamine
in regulating micropinocytosis [71].
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Glucose is essential for providing the energy and intermediate metabolites required for
amino acid and nucleic acid syntheses. Cancer cells reprogram their metabolism to consume
large quantities of glucose, resulting in glucose depletion in tumor microenvironments. To
compensate for insufficient glucose, cancer cells utilize fructose as an alternative energy
source. Fructose triggers breast cancer metastasis through the ketohexokinase-A (KHK-A)
signaling pathway. Cytoplasmic KHK-A translocates into the nucleus during fructose
stimulation. Within the nucleus, KHK-A leads to recruitment of zinc finger protein SNAI2
to the E-cadherin promoter, triggering cell migration [72].

Pyruvate, typically produced from glucose via glycolysis, is the most basic α-keto
acid possessing both a carboxylic acid and a ketone functional group. It plays a vital role
in various metabolic processes. Pyruvate can be converted back into carbohydrates, such
as glucose, through gluconeogenesis, or into fatty acids from acetyl-CoA. Additionally, it
serves as a precursor for the synthesis of the amino acid alanine. Alternatively, pyruvate can
undergo fermentation to produce ethanol or lactic acid [73]. Researchers have found that
pyruvate could enhance DNA repair signals by directly binding to the FACT complex, a
histone chaperone comprising SPT16 and SSRP1 subunit. Pyruvate increases the association
of the FACT complex with γH2AX and subsequently facilitates the FACT-mediated chro-
matin loading of γH2AX, ultimately promoting DNA repair and tumor cell survival [74]
(Figure 4).
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4. Conclusions and Perspectives

The metabolic network, which consists of metabolic enzymes and metabolites, serves
as the fundamental basis for material and energy processes in cellular life. The process
of tumorigenesis in tumor cells is often accompanied by molecular-level alterations in
metabolism. For instance, mutations in genes encoding metabolic enzymes or changes in
their expression levels can significantly impact the intracellular concentration of metabolites.
This “classic” rearrangement of metabolic pathways can play a critical role in tumor
progression. In addition, as mentioned above, many metabolic enzymes and metabolites
can also regulate the development of tumors through “noncanonical” versatility at different
levels. Metabolic enzymes can perform “noncanonical” functions through their metabolic
substrates or products dependent on their metabolic enzyme activity. The metabolites of
these enzymes, such as acetyl-CoA, SAM, succinate, and α-KG, serve directly as substrates
for modifying DNA, histone, and other signaling molecules, and they also regulate the
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activity of DNA- and histone-modifying enzymes or other protein substrates to regulate
gene expression and other key cellular processes (Table 1).

Table 1. Roles of metabolites in various types of tumors.

Tumor Type Metabolites Biological Processes
Involved Ref.

Breast cancer

Acetyl-CoA

EMT [22]

Metastasis [23]

Tumor survival [32]

Fructose Metastasis [72]

Succinate TAM polarization and
cancer metastasis [62]

Pancreatic cancer

Acetyl-CoA Tumor proliferation [25–27]

SAM Tumourigenesis [46]

UDP-GlcNAc Cancer immune evasion [56]

Hepatocellular
carcinoma (HCC) Acetyl-CoA Metastasis [29]

Glioblastoma (GBM)

Acetyl-CoA
Cell migration
and adhesion [30]

Tumor proliferation [31]

α-KG Tumor survival [68]

Pyruvate DNA repair [74]

Colorectal cancer (CRC) SAM Metastasis [44]

Lymphoma Succinate Tumorigenesis [53]

Leukemia R-2HG Tumorigenesis,
anti-proliferation [34,35,55]

Lung cancer

UDP-glucose,
UDP-glucuronic acid Metastasis [58]

Citrate Anti-proliferation [64]

α-KG Metastasis [67]

Succinate TAM polarization and
cancer metastasis [62]

Prostate cancer Succinate TAM polarization and
cancer metastasis [62]

Neuroendocrine
prostate cancer (NEPC) Serine, SAM Tumor proliferation [48]

mTORC1-driven tumor
(melanoma, prostate cancer,

lung cancer.)
SAM Tumor growth [47]

Metabolic reprogramming and epigenetic changes are two crucial characteristics ex-
hibited by tumors. Recent studies have unveiled a significant and intricate interplay
between these two phenomena. On one hand, the metabolic changes characteristic of
cancer affect the activity or substrate abundance of epigenetic modification enzymes and
cofactors through changing metabolite levels. On the other hand, changes in the expression
or activity of epigenetically modified enzymes can also have a wide range of direct and
indirect effects on cell metabolism [15]. By systematically summarizing past research on
these changes, we can create new combined treatments that target tumor metabolism and
epigenetic modifications. Many clinical trials are testing epigenetic molecular inhibitors,
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such as histone deacetylase/HDAC inhibitors and DNA methyltransferases/DNMT in-
hibitors. Two types of DNMT inhibitors, 5-azacytidine and 5-azacytidine-2-deoxycytidine,
have been approved by the FDA for treating myelodysplastic syndrome (MDS), AML, and
chronic myelomonocytic leukemia (CMML) [75]. Importantly, tumors carrying mutations
in the metabolic enzymes IDH 1/2 are highly sensitive to DNMT inhibitors. Moreover,
LKB1-deficient tumors with KRAS activation produce more SAM, resulting in enhanced
methyltransferase activity and higher DNA methylation levels [46]. The combined inhibi-
tion of DNMT and serine metabolism can more effectively treat LKB-loss tumors with KRAS
activation. Furthermore, reduced αKG levels lead to the hypermethylation of histones and
resistance to BRAF inhibitors in melanoma. The combination of histone methyltransferase
or αKG supplementation with BRAF inhibitors may overcome this resistance [76]. Notably,
metastatic PDAC shows a strong reliance on the oxidative branch of the pentose phosphate
pathway (oxPPP). The reversal of malignant epigenetic programs by targeting oxPPP could
be an effective therapeutic strategy for metastatic PDAC [77]. Inhibitors targeting the
metabolic–epigenetic interactions of ACLY, ACSS2, PDK, etc., such as SB-204990, ETC-1002,
and DCA, are also undergoing preclinical or clinical trials. Consequently, targeting the
integrated epigenetic–metabolic pathway has shown promising therapeutic effects and the
potential to counteract drug resistance.

While many studies have demonstrated that alterations in metabolic abundance can
lead to aberrant epigenetic regulation in cancer cells, there are still some issues worthy of
consideration. First, we mentioned that the accumulation of acetyl-CoA and SAM promote
the acetylation and methylation modification of DNA in cancer. Does this imply that under
normal conditions, some cancer-related epigenetic modifications are subject to substrate
restriction? In other words, will physiological alterations in metabolites limit the activity of
chromatin-modifying enzymes? We believe that the answer to this question depends on
the enzyme’s affinity for the substrate and the local concentration of available metabolites
for the enzyme. For example, compared with the other histone methyltransferases (HMTs),
SETD1A had the lowest affinity for SAM and was only activated by high levels of SAM. In
CRC cells, K146mUb enhances PHGDH activity and increases the levels of SAM, thereby
activating SETD1A-mediated histone methylation, increasing cell adhesion gene expression
and promoting CRC metastasis [44]. In another example, pyruvate kinase M2 isoform
(PKM2) can translocate into the nucleus and provide a local source of pyruvate which
directly binds to and facilitates FACT-mediated γH2AX loading to chromatin, thereby
promoting the repair of DNA damage in glioma cells [74]. Second, how does metabolic
fluctuation induce specific cellular outcomes? A metabolite can be involved in multiple
metabolic reactions and signaling pathways, so how do metabolites induce specific path-
way changes? During the progression of cancer, some metabolic enzymes can undergo
subcellular relocalization, such as nuclear translocation, where they may function as tran-
scription or regulatory factors. Additionally, the intracellular redistribution of enzymes
and metabolites can lead to new protein–protein interactions, thereby regulating specific
cellular signals.

Well-known carcinogenic signaling pathways, the PI3K/AKT, EGFR, and Hippo path-
ways, mediate the expression of metabolic genes and increase the activity of metabolic en-
zymes. For example, the PI3K/AKT signaling pathway can upregulate glycolysis through
the post-translational modification of metabolic enzymes, such as the phosphorylation of
HK2 and PFKFB. It can also upregulate glutamine and fatty acid metabolism within cancer
cells. The FDA approved five types of PI3K inhibitors (Copanlisib, Idelalisib, Umbralisib,
Duvelisib, and Alpelisib), but due to various severe adverse reactions, some of them have
been revoked. Conversely, disruptions in metabolic pathways result in defects in cell
signaling pathways, thereby providing a way to inhibit the proliferation of cancer cells.
Ongoing research and clinical trials are focused on inhibiting metabolic enzymes through
the use of small molecules or dietary interventions. The ketogenic diet, with its high fat
and low carbohydrate intake, has been found to inhibit tumor development. Conversely,
a high-fat, high-carbohydrate diet can promote tumor growth. Restricting methionine in
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the diet can suppress tumor invasion and metastasis, while limiting serine and glycine
intake can slow tumor growth. And dietary fiber intake is associated with a reduced risk
of breast, prostate, and other cancers. However, evidence regarding the impact of dietary
intervention in tumor treatment is currently insufficient. Although scientists have achieved
promising results in animal experiments, extensive further research is necessary before
progressing to the clinical stage.

Although metabolic networks are attractive targets, several challenges have hindered
the development of related drugs. A central challenge is pervasive toxicity: the targeting
of specific key metabolic enzymes often leads to toxicity due to their physiological role in
normal cells. To effectively treat cancer by targeting tumor metabolism, it is imperative to
gain a better understanding of tumor metabolism and develop approaches that selectively
target tumors without compromising normal cell metabolism. Therefore, a further analysis
of the unique “noncanonical” functions of metabolites in tumors can provide a solid
foundation for innovative research on tumor treatment strategies. Metabolic plasticity poses
another significant and complex challenge. Within cells, there exist numerous redundant
mechanisms that ensure the maintenance of vital metabolic fluxes. Consequently, inhibitory
effects on pathways can be overcome by adjusting metabolic networks or shifting to
alternative cellular states that rely less on the targeted pathways, thus reducing toxic effects.
Inhibiting the activity of a cancer-specific mutated enzyme or a unique noncanonical
function of oncometabolites that are essential for sustaining tumor growth is a highly
promising strategy in cancer research.
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