
   

 

Supplementary Material 

Machine learning to predict enzyme-substrate interactions in 
elucidation of synthesis pathways: A review 

1 Molecular Descriptors 

Molecular descriptors are numerical representations or mathematical encodings that capture 
information about the properties and characteristics of a molecule in the fields of chemistry and 
bioinformatics. 

Molecular descriptors are numerical or symbolic representations of molecules used to describe their 
structural, chemical, or physical characteristics [1,2]. In the context of enzymes and substrates, 
molecular descriptors play a crucial role in predicting enzyme-substrate interactions and elucidating 
synthetic pathways by capturing different aspects of enzymes and substrates, providing valuable 
information for understanding their features and properties. These descriptors are used to summarize 
the structure and properties of a molecule in a way that can be computationally analyzed and compared. 
They may include chemical composition, molecular geometry, physical and chemical properties, atom 
connectivity, electrical charges, polarity, functional groups, and many other relevant features. 

Descriptors can be grouped into five types: molecular structure, amino acid sequence, 
physicochemical, molecular topology, and similarity [3]. Sequence and structure-based descriptors are 
the most commonly used for enzymes [3–10], utilizing detailed information about protein composition 
and configuration. On the other hand, similarity, topology, and physicochemical descriptors are most 
commonly used for substrates [3,11–15]allowing the evaluation of how molecules participating in 
enzymatic reactions interact and behave. 

 

Structure 

 3D structure 
 Superficial area 
 Ring Size 
 Turning radius 
 Molecular diameter 
 Surface Area 

Sequence 

 Sequence Length 
 Composition Amino Acid 
 Frequency Amino Acid  
 Hydrophobic Amino Acid Composition 
 Sequential Motif Frequency 
 Tripeptide 
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 Bipeptide 
 Domain Length 
 Kmers 
 Kernels 

Physicochemical 

 Melting Point 
 Boiling Point 
 Density 
 Solubility 
 Molecular weight 
 LogP 
 Viscosity 
 Refractive Index 
 Electrical Conductivity 

Topology 

 Connectivity Index 
 Wiener Index 
 Number of Atoms 
 Number of Bonds 
 Randic Index 
 Number of Carbon Atoms 
 Number of Hydrogen Atoms 
 Fingerprints 

Similarity 

 Tanimoto Coefficient 
 Tversky Similarity 
 Dice-Bray-Curtis Coefficient 
 Jaccard Coefficient 
 Kulczynski Coefficient 
 Euclidean Distance 

2 Machine Learning Methods 

2.1 Support Vector Machine 

Support Vector Machines (SVMs) are widely used algorithms in artificial intelligence (AI) for 
classification and regression. These models are based on the idea of finding the optimal hyperplane 
that separates data into different classes or fits the best possible line for regression. SVMs have proven 
to be effective in solving complex problems and making decisions [4,16,17]. 

The basic formulation of an SVM model for linear classification can be expressed as follows: 
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𝑦 𝑥  𝑠𝑖𝑔𝑛 𝑤  𝑥  𝑏     𝑒𝑐𝑐1  

In this formula, 𝑥 represents the feature vector of an input instance, 𝑤 is the weight vector defining the 
optimal hyperplane, and "𝑏" is the bias or intersection term. The 𝑠𝑖𝑔𝑛  function assigns a specific 
class to the input instance, meaning if the formula's result is positive, it is assigned to one class, and if 
it's negative, it's assigned to another class. Let's expand equation 1 for 2 and 3 inputs, which in our case 
will be the molecular descriptors. For 2 inputs, we have: 

𝑠𝑖𝑔𝑛
𝑤
𝑤 𝑥 𝑥 𝑏  𝑠𝑖𝑔𝑛 𝑤 𝑥 𝑤 𝑥 𝑏  

Now we apply the sign function, which will give us two categories: one when the function gives us a 
value less than zero and another when it's greater than zero. If it's equal to zero, it corresponds to the 
line that divides both. We apply it, and we have: 

 𝑏 𝑤 𝑥 𝑤 𝑥 0      𝑒𝑐𝑐2  

𝑏 𝑤 𝑥 𝑤 𝑥 0       𝑒𝑐𝑐3  

𝑏 𝑤 𝑥 𝑤 𝑥 0        𝑒𝑐𝑐4  

When graphing equations 2, 3, and 4, we obtain Figure S1, where two regions can be distinguished. 
The blue region represents equation 3, the orange region represents equation 4, and the green line is 
equation 2, the line that separates both regions. This division will allow us to classify data into two 
categories. 

 

Figure S1, Graph of equations 2, 3, and 4; green line represents equation 2, blue region represents 
equation 3, and orange region represents equation 4. 

To make the SVM model work optimally, it's necessary to find the appropriate values for "w" and "b." 
This is achieved through the training process, which involves maximizing the distance between the 
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hyperplane and the closest data points to it, known as support vectors. The goal is to find the hyperplane 
that maximizes the margin between classes, ensuring good generalization and better performance on 
previously unseen data. To find these values, we apply the following equation: 

𝑚𝑎𝑥
1
2

‖𝑊‖  

Subject to: 

𝑦 𝑊𝑥 𝑏 1 ∀ 𝑖 

Where 𝑖 represents the training data and 𝑦  the category to which the training data belongs. When we 
apply it to the two descriptors, we get: 

𝑚𝑎𝑥
1
2

𝑤 𝑤  

Subject to: 

𝑦 𝑤 𝑥 𝑤 𝑥 𝑏 1 ∀ 𝑖  

By applying the training data to maximization and graphing it with equations 2, 3 and 4 we have: 

 

Figure S2, Graph of equations 2, 3 and 4 next to the training data. 

2.2 Neural network models 

Neural network models are one of the fundamental pillars of modern artificial intelligence (AI). These 
models are inspired by the structure and functioning of the human brain and are used to solve a wide 
range of problems, from image recognition to natural language processing. Neural networks are 
composed of multiple layers of interconnected artificial neurons, which work together to process 
information and perform machine learning tasks [13]. 
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The basic formula for calculating the output of a neuron in a neural network can be expressed as: 

𝑦  𝑓 𝛴 𝑤 ∗  𝑥   𝑏  

In this formula, y represents the output of the neuron, 𝑤 are the synaptic weights that determine the 
importance of the connections between the neuron and the neurons of the previous layer, 𝑥 are the 
inputs to the neuron and 𝑏 is the bias or intersection term. The function 𝑓  is the activation function 
that introduces nonlinearity in the neural network. 

There are different types of activation functions used in neural networks. Some of the most common 
are: 

Sigmoid function: 𝑓 𝑥   1 / 1  𝑒  

ReLU (Rectified Linear Unit) function: 𝑓 𝑥   𝑚𝑎𝑥 0, 𝑥  

Tanh Function (Hyperbolic Tangent): 𝑓 𝑥   𝑒   𝑒  / 𝑒   𝑒  

 

Figure S3, neural network with n inputs, one neuron, one layer and a single output 

Figure S3 shows a neural network with one input, one layer, n inputs and one output, but we can also 
have several neurons in a layer (figure S4). If we apply the outputs of one layer to another, we will 
have a multilayer network, that is, the previous layer becomes the input of the neurons of the next layer 
(figure S5). This allows information to flow through the neural network and calculations and 
transformations to be performed at each layer to extract features and learn useful representations of the 
data, we can also have multiple outputs (figure S6). 
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Figure S4, neural network with n inputs, m neurons, two layers (one input and one output) and a 
single output 

  

 

Figure S5, neural network with n inputs, m+l+…+i neurons, k+1 layers and a single output 
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Figure S6, neural network with n inputs, m+l+…+i+j neurons, k+1 layers and j outputs 

One of the most used architectures in neural networks is the deep neural network, also known as a 
neural network with multiple hidden layers. The hidden layers are the intermediate layers of the 
network. The formula for calculating the output of a layer in a deep neural network can be expressed 
as: 

𝑦  𝑓 𝑊 ∗  𝑥  𝑏  

Here, 𝑊 is the weight matrix that connects the neurons of one layer with those of the next layer, 𝑥 is 
the input vector and 𝑏 is the bias vector. The 𝑓  function is applied to each element of the result 

In the training stage of a neural network, weights and biases are iteratively adjusted using optimization 
algorithms, such as gradient descent or Adam (adaptive moment estimation), to minimize a loss 
function that measures the discrepancy between the outputs. predicted and actual values. This allows 
the neural network to learn to make more accurate predictions as it is presented with a training data set. 

Another important concept in neural networks is that of recurrent connections, which allow information 
to flow in loops through the network. This is especially useful in sequential processing applications, 
such as time series analysis or natural language processing. Recurrent neural networks (RNN) use 
recurrent connections to capture long-term dependencies in data. 

2.3 Decision tree models 

Decision tree models are a powerful technique used in artificial intelligence (AI) to make decisions 
and perform classification and regression tasks. These models are based on the idea of building a 
decision tree that represents a series of questions and conditions about the characteristics of the input 
data, and uses those questions to reach a conclusion or prediction [9,17–19]. 

The basic formula for a decision tree is as follows: 

if (condition1) then (action1) 

else if (condition2) then (action2) 
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... 

else (actionN) 

In this formula, condition1, condition2, ..., conditionN are the questions or 
conditions about the characteristics of the data, and action1, "action2", ..., actionN 
are the actions or decisions that are taken based on the answers to those questions. Each condition in 
the tree is based on a specific characteristic of the input data, and the branches of the tree represent 
different possible values for that characteristic. 

 

Figure S7, left, decision tree of three conditions and two possible outputs (red or blue). Right, 
clustering performed by the decision tree from the training data 

Decision trees are built using algorithms that seek to divide the data set into more homogeneous subsets 
in terms of the target variable to be predicted. One of the most widely used techniques for constructing 
decision trees is the classification and regression tree (CART) algorithm. The CART algorithm uses 
Gini impurity or entropy as measures to evaluate the quality of a split and choose the best question or 
condition at each step. 

The Gini impurity can be calculated with the following formula: 

𝐺𝑖𝑛𝑖 𝑝   1  𝛴 𝑝  

In this formula, p is a vector that represents the proportion of each class in a subset of data. The term 
𝛴 𝑝  represents the sum of the squares of those proportions. A low Gini impurity value indicates 
that a subset is purer and contains a single class. 

Entropy is calculated using the formula: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝  𝛴 𝑝  ∗ log 𝑝  

Here, 𝑝  represents the proportion of each class in the data subset. Entropy measures the uncertainty in 
the data set. A low entropy value indicates that a subset is more homogeneous and contains a single 
class. 

Once the decision tree is built, it is used to make predictions on new data by following the path from 
the root to the leaves of the tree, answering the questions at each node and making the corresponding 
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decisions. Depending on the task, decision trees can also be used to calculate probabilities or perform 
regressions. 

One of the challenges of decision trees is the tendency to overfit the training data and not generalize 
well to new data. To mitigate this problem, techniques such as tree pruning are used, which simplifies 
the tree by removing nodes and reducing its complexity. 
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