

Supplementary Material

Machine learning to predict enzyme-substrate interactions in
elucidation of synthesis pathways: A review

1 Molecular Descriptors

Molecular descriptors are numerical representations or mathematical encodings that capture
information about the properties and characteristics of a molecule in the fields of chemistry and
bioinformatics.

Molecular descriptors are numerical or symbolic representations of molecules used to describe their
structural, chemical, or physical characteristics [1,2]. In the context of enzymes and substrates,
molecular descriptors play a crucial role in predicting enzyme-substrate interactions and elucidating
synthetic pathways by capturing different aspects of enzymes and substrates, providing valuable
information for understanding their features and properties. These descriptors are used to summarize
the structure and properties of a molecule in a way that can be computationally analyzed and compared.
They may include chemical composition, molecular geometry, physical and chemical properties, atom
connectivity, electrical charges, polarity, functional groups, and many other relevant features.

Descriptors can be grouped into five types: molecular structure, amino acid sequence,
physicochemical, molecular topology, and similarity [3]. Sequence and structure-based descriptors are
the most commonly used for enzymes [3–10], utilizing detailed information about protein composition
and configuration. On the other hand, similarity, topology, and physicochemical descriptors are most
commonly used for substrates [3,11–15]allowing the evaluation of how molecules participating in
enzymatic reactions interact and behave.

Structure

 3D structure
 Superficial area
 Ring Size
 Turning radius
 Molecular diameter
 Surface Area

Sequence

 Sequence Length
 Composition Amino Acid
 Frequency Amino Acid
 Hydrophobic Amino Acid Composition
 Sequential Motif Frequency
 Tripeptide

 Supplementary Material

 2

 Bipeptide
 Domain Length
 Kmers
 Kernels

Physicochemical

 Melting Point
 Boiling Point
 Density
 Solubility
 Molecular weight
 LogP
 Viscosity
 Refractive Index
 Electrical Conductivity

Topology

 Connectivity Index
 Wiener Index
 Number of Atoms
 Number of Bonds
 Randic Index
 Number of Carbon Atoms
 Number of Hydrogen Atoms
 Fingerprints

Similarity

 Tanimoto Coefficient
 Tversky Similarity
 Dice-Bray-Curtis Coefficient
 Jaccard Coefficient
 Kulczynski Coefficient
 Euclidean Distance

2 Machine Learning Methods

2.1 Support Vector Machine

Support Vector Machines (SVMs) are widely used algorithms in artificial intelligence (AI) for
classification and regression. These models are based on the idea of finding the optimal hyperplane
that separates data into different classes or fits the best possible line for regression. SVMs have proven
to be effective in solving complex problems and making decisions [4,16,17].

The basic formulation of an SVM model for linear classification can be expressed as follows:

 3

𝑦 𝑥 𝑠𝑖𝑔𝑛 𝑤 𝑥 𝑏 𝑒𝑐𝑐1

In this formula, 𝑥 represents the feature vector of an input instance, 𝑤 is the weight vector defining the
optimal hyperplane, and "𝑏" is the bias or intersection term. The 𝑠𝑖𝑔𝑛 function assigns a specific
class to the input instance, meaning if the formula's result is positive, it is assigned to one class, and if
it's negative, it's assigned to another class. Let's expand equation 1 for 2 and 3 inputs, which in our case
will be the molecular descriptors. For 2 inputs, we have:

𝑠𝑖𝑔𝑛
𝑤
𝑤 𝑥 𝑥 𝑏 𝑠𝑖𝑔𝑛 𝑤 𝑥 𝑤 𝑥 𝑏

Now we apply the sign function, which will give us two categories: one when the function gives us a
value less than zero and another when it's greater than zero. If it's equal to zero, it corresponds to the
line that divides both. We apply it, and we have:

 𝑏 𝑤 𝑥 𝑤 𝑥 0 𝑒𝑐𝑐2

𝑏 𝑤 𝑥 𝑤 𝑥 0 𝑒𝑐𝑐3

𝑏 𝑤 𝑥 𝑤 𝑥 0 𝑒𝑐𝑐4

When graphing equations 2, 3, and 4, we obtain Figure S1, where two regions can be distinguished.
The blue region represents equation 3, the orange region represents equation 4, and the green line is
equation 2, the line that separates both regions. This division will allow us to classify data into two
categories.

Figure S1, Graph of equations 2, 3, and 4; green line represents equation 2, blue region represents
equation 3, and orange region represents equation 4.

To make the SVM model work optimally, it's necessary to find the appropriate values for "w" and "b."
This is achieved through the training process, which involves maximizing the distance between the

 Supplementary Material

 4

hyperplane and the closest data points to it, known as support vectors. The goal is to find the hyperplane
that maximizes the margin between classes, ensuring good generalization and better performance on
previously unseen data. To find these values, we apply the following equation:

𝑚𝑎𝑥
1
2

‖𝑊‖

Subject to:

𝑦 𝑊𝑥 𝑏 1 ∀ 𝑖

Where 𝑖 represents the training data and 𝑦 the category to which the training data belongs. When we
apply it to the two descriptors, we get:

𝑚𝑎𝑥
1
2

𝑤 𝑤

Subject to:

𝑦 𝑤 𝑥 𝑤 𝑥 𝑏 1 ∀ 𝑖

By applying the training data to maximization and graphing it with equations 2, 3 and 4 we have:

Figure S2, Graph of equations 2, 3 and 4 next to the training data.

2.2 Neural network models

Neural network models are one of the fundamental pillars of modern artificial intelligence (AI). These
models are inspired by the structure and functioning of the human brain and are used to solve a wide
range of problems, from image recognition to natural language processing. Neural networks are
composed of multiple layers of interconnected artificial neurons, which work together to process
information and perform machine learning tasks [13].

 5

The basic formula for calculating the output of a neuron in a neural network can be expressed as:

𝑦 𝑓 𝛴 𝑤 ∗ 𝑥 𝑏

In this formula, y represents the output of the neuron, 𝑤 are the synaptic weights that determine the
importance of the connections between the neuron and the neurons of the previous layer, 𝑥 are the
inputs to the neuron and 𝑏 is the bias or intersection term. The function 𝑓 is the activation function
that introduces nonlinearity in the neural network.

There are different types of activation functions used in neural networks. Some of the most common
are:

Sigmoid function: 𝑓 𝑥 1 / 1 𝑒

ReLU (Rectified Linear Unit) function: 𝑓 𝑥 𝑚𝑎𝑥 0, 𝑥

Tanh Function (Hyperbolic Tangent): 𝑓 𝑥 𝑒 𝑒 / 𝑒 𝑒

Figure S3, neural network with n inputs, one neuron, one layer and a single output

Figure S3 shows a neural network with one input, one layer, n inputs and one output, but we can also
have several neurons in a layer (figure S4). If we apply the outputs of one layer to another, we will
have a multilayer network, that is, the previous layer becomes the input of the neurons of the next layer
(figure S5). This allows information to flow through the neural network and calculations and
transformations to be performed at each layer to extract features and learn useful representations of the
data, we can also have multiple outputs (figure S6).

 Supplementary Material

 6

Figure S4, neural network with n inputs, m neurons, two layers (one input and one output) and a
single output

Figure S5, neural network with n inputs, m+l+…+i neurons, k+1 layers and a single output

 7

Figure S6, neural network with n inputs, m+l+…+i+j neurons, k+1 layers and j outputs

One of the most used architectures in neural networks is the deep neural network, also known as a
neural network with multiple hidden layers. The hidden layers are the intermediate layers of the
network. The formula for calculating the output of a layer in a deep neural network can be expressed
as:

𝑦 𝑓 𝑊 ∗ 𝑥 𝑏

Here, 𝑊 is the weight matrix that connects the neurons of one layer with those of the next layer, 𝑥 is
the input vector and 𝑏 is the bias vector. The 𝑓 function is applied to each element of the result

In the training stage of a neural network, weights and biases are iteratively adjusted using optimization
algorithms, such as gradient descent or Adam (adaptive moment estimation), to minimize a loss
function that measures the discrepancy between the outputs. predicted and actual values. This allows
the neural network to learn to make more accurate predictions as it is presented with a training data set.

Another important concept in neural networks is that of recurrent connections, which allow information
to flow in loops through the network. This is especially useful in sequential processing applications,
such as time series analysis or natural language processing. Recurrent neural networks (RNN) use
recurrent connections to capture long-term dependencies in data.

2.3 Decision tree models

Decision tree models are a powerful technique used in artificial intelligence (AI) to make decisions
and perform classification and regression tasks. These models are based on the idea of building a
decision tree that represents a series of questions and conditions about the characteristics of the input
data, and uses those questions to reach a conclusion or prediction [9,17–19].

The basic formula for a decision tree is as follows:

if (condition1) then (action1)

else if (condition2) then (action2)

 Supplementary Material

 8

...

else (actionN)

In this formula, condition1, condition2, ..., conditionN are the questions or
conditions about the characteristics of the data, and action1, "action2", ..., actionN
are the actions or decisions that are taken based on the answers to those questions. Each condition in
the tree is based on a specific characteristic of the input data, and the branches of the tree represent
different possible values for that characteristic.

Figure S7, left, decision tree of three conditions and two possible outputs (red or blue). Right,
clustering performed by the decision tree from the training data

Decision trees are built using algorithms that seek to divide the data set into more homogeneous subsets
in terms of the target variable to be predicted. One of the most widely used techniques for constructing
decision trees is the classification and regression tree (CART) algorithm. The CART algorithm uses
Gini impurity or entropy as measures to evaluate the quality of a split and choose the best question or
condition at each step.

The Gini impurity can be calculated with the following formula:

𝐺𝑖𝑛𝑖 𝑝 1 𝛴 𝑝

In this formula, p is a vector that represents the proportion of each class in a subset of data. The term
𝛴 𝑝 represents the sum of the squares of those proportions. A low Gini impurity value indicates
that a subset is purer and contains a single class.

Entropy is calculated using the formula:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝 𝛴 𝑝 ∗ log 𝑝

Here, 𝑝 represents the proportion of each class in the data subset. Entropy measures the uncertainty in
the data set. A low entropy value indicates that a subset is more homogeneous and contains a single
class.

Once the decision tree is built, it is used to make predictions on new data by following the path from
the root to the leaves of the tree, answering the questions at each node and making the corresponding

 9

decisions. Depending on the task, decision trees can also be used to calculate probabilities or perform
regressions.

One of the challenges of decision trees is the tendency to overfit the training data and not generalize
well to new data. To mitigate this problem, techniques such as tree pruning are used, which simplifies
the tree by removing nodes and reducing its complexity.

References

1. Parthasarathi, R.; Dhawan, A. Chapter 5 - In Silico Approaches for Predictive Toxicology. In In
Vitro Toxicology; Dhawan, A., Kwon, S., Eds.; Academic Press, 2018; pp. 91–109 ISBN 978-
0-12-804667-8.

2. Chandrasekaran, B.; Abed, S.N.; Al-Attraqchi, O.; Kuche, K.; Tekade, R.K. Chapter 21 -
Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. In Dosage Form Design
Parameters; Tekade, R.K., Ed.; Academic Press, 2018; pp. 731–755 ISBN 978-0-12-814421-3.

3. Mou, Z.; Eakes, J.; Cooper, C.J.; Foster, C.M.; Standaert, R.F.; Podar, M.; Doktycz, M.J.; Parks,
J.M. Machine Learning-Based Prediction of Enzyme Substrate Scope: Application to Bacterial
Nitrilases. Proteins: Structure, Function, and Bioinformatics 2021, 89, 336–347,
doi:https://doi.org/10.1002/prot.26019.

4. Ben-Hur, A.; Ong, C.S.; Sonnenburg, S.; Schölkopf, B.; Rätsch, G. Support Vector Machines
and Kernels for Computational Biology. PLoS Comput Biol 2008, 4, e1000173-.

5. Yu, C.-Y.; Chou, L.-C.; Chang, D.T.-H. Predicting Protein-Protein Interactions in Unbalanced
Data Using the Primary Structure of Proteins. BMC Bioinformatics 2010, 11, 167,
doi:10.1186/1471-2105-11-167.

6. Saigo, H.; Vert, J.-P.; Ueda, N.; Akutsu, T. Protein Homology Detection Using String
Alignment Kernels. Bioinformatics 2004, 20, 1682–1689, doi:10.1093/bioinformatics/bth141.

7. Amin, S.R.; Erdin, S.; Ward, R.M.; Lua, R.C.; Lichtarge, O. Prediction and Experimental
Validation of Enzyme Substrate Specificity in Protein Structures. Proceedings of the National
Academy of Sciences 2013, 110, E4195–E4202, doi:10.1073/pnas.1305162110.

8. Yang, K.K.; Wu, Z.; Arnold, F.H. Machine-Learning-Guided Directed Evolution for Protein
Engineering. Nat Methods 2019, 16, 687–694, doi:10.1038/s41592-019-0496-6.

9. Çamoǧlu, O.; Can, T.; Singh, A.K.; Wang, Y.-F. Decision Tree Based Information Integration
for Automated Protein Classification. J Bioinform Comput Biol 2005, 3, 717–742,
doi:10.1142/S0219720005001259.

10. Banerjee, D.; Jindra, M.A.; Linot, A.J.; Pfleger, B.F.; Maranas, C.D. EnZymClass: Substrate
Specificity Prediction Tool of Plant Acyl-ACP Thioesterases Based on Ensemble Learning.
Curr Res Biotechnol 2022, 4, 1–9, doi:https://doi.org/10.1016/j.crbiot.2021.12.002.

 Supplementary Material

 10

11. Kroll, A.; Ranjan, S.; Engqvist, M.K.M.; Lercher, M.J. A General Model to Predict Small
Molecule Substrates of Enzymes Based on Machine and Deep Learning. Nat Commun 2023, 14,
2787, doi:10.1038/s41467-023-38347-2.

12. Kroll A.; Engqvist M.; Heckmann D.; Lercher M. Deep Learning Allows Genome-Scale
Prediction of Michaelis Constants from Structural Features. PLoS Biol 2021, 19, 1–21,
doi:10.1371/journal.pbio.3001402.

13. Prince, S.J.D. Understanding Deep Learning; The MIT Press, 2023; ISBN 9780262048644.

14. Taheri, K.; Moradi, H.; Tavassolipour, M. Collaboration Graph for Feature Set Partitioning in
Data Classification. Expert Syst Appl 2023, 213, 118988,
doi:https://doi.org/10.1016/j.eswa.2022.118988.

15. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural
Networks: A Review of Methods and Applications. AI Open 2020, 1, 57–81,
doi:https://doi.org/10.1016/j.aiopen.2021.01.001.

16. Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electronic
Markets 2021, 31, 685–695, doi:10.1007/s12525-021-00475-2.

17. Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S. V A Review of Machine Learning
Techniques Using Decision Tree and Support Vector Machine. In Proceedings of the 2016
International Conference on Computing Communication Control and automation (ICCUBEA);
2016; pp. 1–7.

18. Si, S.; Zhang, H.; Keerthi, S.S.; Mahajan, D.; Dhillon, I.S.; Hsieh, C.-J. Gradient Boosted
Decision Trees for High Dimensional Sparse Output. In Proceedings of the Proceedings of the
34th International Conference on Machine Learning; Precup, D., Teh, Y.W., Eds.; PMLR, July
2017; Vol. 70, pp. 3182–3190.

19. Costa, E.P.; Lorena, A.C.; Carvalho, A.C.P.L.F.; Freitas, A.A.; Holden, N. Comparing Several
Approaches for Hierarchical Classification of Proteins with Decision Trees. In Proceedings of
the Advances in Bioinformatics and Computational Biology; Sagot, M.-F., Walter, M.E.M.T.,
Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp. 126–137.

