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Abstract: Enzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and
synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing
the interaction experimentally is a slow and costly process, which is why this problem has been
addressed using computational methods such as molecular dynamics, molecular docking, and Monte
Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing
with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as
support vector machines, neural networks, or decision trees, have been implemented, significantly
reducing the computing time and covering vast search spaces. These methods significantly reduce the
computation time and cover broad search spaces, rapidly reducing the number of interacting candidates,
as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have
the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based
approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and
future perspectives.

Keywords: enzyme–substrate interaction; artificial intelligence; synthesis routes; enzyme classifica-
tion; molecular descriptors; training data; computational studies

1. Introduction

The elucidation of de novo biosynthetic pathways from existing metabolic pathways
for the production of high-value compounds is an important field of study for synthetic
biology and metabolic engineering [1,2]. For this elucidation, it is necessary to understand
enzyme–substrate interactions, which allows us to establish the specificity or promiscuity
of a reaction.

However, discovering enzyme–substrate interactions is a complex and costly process,
especially when there is no previous bibliographic information that establishes a relation-
ship [3]. Fortunately, artificial intelligence (AI) has proven to be a powerful tool in this
regard, as it allows for the establishment of relationships based on patterns. Through the
use of machine learning algorithms, there is the potential to predict enzyme–substrate
interactions and accelerate the elucidation process of the biosynthetic pathway [4–7].
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One of the most widely used approaches in the prediction of the enzyme–substrate
interactions is the use of discriminative machine learning models, such as models based
on support vector machines, neural networks, and decision trees [5]. These models are
trained using data sets of enzymes that have interactions with the substrate or that catalyze
identical reactions with other substrates; these contain information about the amino acid
sequences and/or three-dimensional structures of enzymes, and we can also add molecular
characteristics of the substrates. Through machine learning, these models can identify
patterns and relationships between features and predict enzyme–substrate interactions [7].
This provides a novel and promising perspective for the production of compounds of
interest, as it allows the exploration of enzyme–substrate combinations that might not have
been previously considered or have not been previously reported.

In this review, we delve into the essential procedures for discerning enzyme–substrate
interactions through discriminative machine learning models. The involved process
is outlined in the graphical abstract, and we will elaborate on each of the steps in the
following paragraphs.

2. Fundamentals of Artificial Intelligence

Artificial intelligence (AI) has become increasingly important in our current society as a
field of study and development [8] It has permeated nearly every field of human knowledge,
showing good performance. In the field of synthetic biology and metabolic engineering,
it has had a significant impact on the prediction of enzyme–substrate interactions for
pathway elucidation.

Machine learning is one of the fundamental elements of artificial intelligence [9]. Its
principle is that machines can learn from the data provided to develop models, policies, and
functions that improve their ability to process, analyze, and understand information [8,9].
A common machine learning technique is neural networks, which are composed of in-
terconnected layers of nodes and are applied to process and analyze large amounts of
data [10,11]. This ability to process, analyze, and understand large data sets is what makes
machine learning a technique used to predict enzyme–substrate interactions, as it allows
for the analysis of large chemical, physical, and topological data sets of substrates, as well
as the structural and sequential characteristics of enzymes.

Other fundamental elements of artificial intelligence are logic and reasoning, enabling
AI systems to make logical decisions and solve problems efficiently. Logic provides a
formal and mathematical framework for knowledge representation and manipulation,
enabling AI systems to make inferences and decisions based on rules and algorithms [9,12].
Reasoning refers to the mental process of inferring conclusions from premises or available
information [13]. In rule-based artificial intelligence, logical rules are used to represent
the knowledge of a system and guide its reasoning and decision-making process [14].
In addition to rule-based logic, there are other forms of reasoning, such as probabilistic
reasoning and constraint-based reasoning. Probabilistic reasoning uses probability theory
to make inferences and decisions in uncertain situations or with incomplete information,
while constraint-based reasoning focuses on problem solving by specifying constraints
and searching for solutions that satisfy those constraints [15,16]. A technique that uses this
principle is decision trees, which consist of a map of the possible outcomes of a series of
related decisions [17]. This approach allows for the addition of information provided by
an expert on the subject, thus narrowing the search space and reducing processing time.
In this way, the application of logic and reasoning will allow the addition of minimum AI
model characteristics that an enzyme or substrate should meet, which can come from our
knowledge of the reaction type, thus reducing the complexity of the problem.

Artificial intelligence (AI) models aimed at predicting enzyme–substrate interactions
have been applied to various classes of enzymes, including nitrilases, thioesterases, oxi-
doreductases, and dehydrogenases, among others [5,18,19]. In each instance, performance
exceeding 70% was achieved, which was also experimentally validated. These results
indicate that the algorithms maintain consistent performance across varied experimental
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conditions. It is essential to highlight that, in many cases, a significantly extensive search
space is efficiently reduced by the algorithm to a few candidates that can be subjected
to experimental tests. This ability of AI models to address specific enzymatic challenges
in diverse contexts underscores their general utility and potential impact on enzymatic
research and biotechnological applications.

In recent years, the development of general models for predicting enzyme–substrate
interactions has been investigated; however, it has been observed that these models exhibit
inferior performance compared to those designed for specific sets of enzymes. In particular,
Kroll et al. point out that their model shows deficiencies when faced with substrates that
were not included in the training phase [20]. These findings highlight the importance
of considering the experimental conditions of each enzymatic space during the training
process, as the generalization of models may be limited.

3. Training Data—Data Set

Training data play a fundamental role in the success of AI algorithms, as they provide
a set of cases or instances to the model to teach it to perform a specific task [21,22]. These
data consist of a combination of expected inputs and outputs, so that the model learns to
associate the inputs with their respective correct outputs from a training process through
functions that capture the dynamics of the system; this process is called training [22,23]. The
objective is to teach systems to recognize patterns, make predictions, and make decisions
based on real data. It is important to note that the quality and quantity of training data are
critical factors that can significantly influence the performance, selection, and accuracy of
AI models.

The collection and preparation of training data can be a laborious and demanding pro-
cess. It is essential to ensure that the data are sufficient, representative, relevant, unrelated,
and diverse, as this will allow the model to capture the complexity (generalization) of the
scenarios in which AI will be used. Additionally, it is crucial to have the data correctly
labeled and annotated so that the models can learn effectively [21].

It is relevant to mention that the training data, in the vast majority of cases, must
be balanced, that is, the number of cases or instances of each class that we are going
to pass to the model to train it must be similar; if there is a significant disproportion in
the number of examples for each class or category, the model can be biased towards the
majority classes [21,23,24]. This means that the model may have difficulty recognizing and
learning patterns in minority classes, resulting in lower accuracy and performance for those
classes [25]. A balanced data set provides a fair and accurate representation for the model,
giving appropriate weight to each parameter, although it is not always possible to achieve
this representation due to limited data, or reality is not represented [26]. This allows the
model to learn and generalize better in new and unknown situations during training. In
cases where the data set cannot be symmetrical, data augmentation methods, resampling,
or specialized AI methods should be considered.

The availability of training data can vary depending on the domain and the specific
problem being addressed [27]. However, in the case of enzymes and substrates, they are
more specialized domains where data collection is expensive or complex, availability is
limited, the existence of curated data is low, and they have complex characteristics such as
the three-dimensional structure of an enzyme [6]. Data for enzymes and substrates are often
sparse due to difficulties in collection and experimentation. This can affect the ability of AI
models to learn and generalize correctly [4,6]. One possible strategy is to take advantage of
public databases containing information on enzymes and substrates, allowing us to create
our own training data set [28]. These public databases, such as UniProt, PubChem, KEGG,
and Protein Data Bank, can provide valuable data for training AI models [20,29].

The information provided by each database can vary significantly. For instance,
UniProt focuses on providing data about the amino acid sequences of enzymes and their
functions, while PDB and MetaCyc offer information on the three-dimensional structure
of biomolecules and metabolic pathways, respectively [30–33]. Some databases even
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encompass genomic information and provide software and tools for sequence analysis
and visualization of biological pathways and reactions. The availability and accuracy
of these tools can influence the utility of each database. Additionally, databases differ
in terms of their data sources and the formats in which data can be exported. Some
databases are specific to individual organisms or species, while others cover information
about multiple organisms. In addition, it is important to foster collaboration among the
scientific community and share data sets to boost research in the field of enzymes. Table 1
summarizes the characteristics of the information provided by each database.

Table 1. Summary of databases that have enzyme information.

Database Type of Information Quantity of Proteins Main Focus Strengths Weaknesses Ref.

UniProt Sequences, functions,
and structures

248,272,897 structures
(569,793 reviewed)

Proteins and their
attributes

Wide coverage and
comprehensive and

updated information

Redundant and
unreviewed data [30,31]

PDB Structural
information

208,066 PDB structures +
1,068,577 computerized

structure models

3D structures of
proteins and

enzymes

Revised and
non-redundant

database

Focus only on
structure [32]

BRENDA Functional and
metabolic information

32,832,265 sequences,
90,000 enzymes, and

13,000 organisms

Enzymes, their
reactions, and
biochemical
properties

Database specialized
in enzymes, their

function, biochemical
properties, and

reactions; revised
database

Slow updates;
requires prior
knowledge in

biochemistry and
molecular biology

[34]

KEGG

Information on
metabolic pathways

and gene/protein
functions

1,098,631 metabolic
pathways and

49,962,693 genes

Metabolic pathways
and gene functions

Interconnection with
other databases

Requires prior
knowledge in

biochemistry and
molecular biology

[35]

NCBI

Protein sequences,
structures, gene
sequences, and

annotations

40,000,000 Various protein
information

Interconnection with
other databases

Redundant
information [36]

MetaCyc Metabolic pathways
and enzymes >2749 pathways

Metabolic pathways
and enzymes from
different organisms

Revised and
non-redundant

database

It is limited to
metabolic pathways

and enzymes
[33,37]

We consider this step, the selection of training data for the use of AI in enzyme–substrate
prediction, to be the most important, as enzymes and substrates can exhibit a great variabil-
ity in terms of sequence, structure, and function. Additionally, enzymes can have subtle
similarities and differences, making it difficult to generalize and identify precise patterns.

4. Characterization of Enzyme–Substrate Interactions

Characteristics are distinctive qualities or traits that describe something, be it an object,
a set of objects, a place, or a situation, and distinguish it from a set of similar data [38,39].
Feature extraction is a crucial step in training artificial intelligence models [40,41]. It
consists of identifying and selecting the most relevant characteristics of a training data set
to effectively represent the patterns and relationships present in the data. These extracted
features are then used as inputs to the artificial intelligence model [24].

These characteristics can be grouped based on statistics, frequency, spatial, temporal,
and domain. The selection of the appropriate features depends on the problem being
addressed and the type of data available [40]. In the field of enzyme–substrate interactions,
these characteristics are known as descriptors, which can be related to both molecular
aspects and biochemistry, as well as the attributes used in learning.

Molecular descriptors are numerical or symbolic representations of molecules that are
used to describe their structural, chemical, or physical characteristics [42,43]. In the context
of enzymes and substrates, molecular descriptors play a crucial role in predicting enzyme–
substrate interactions and in elucidating synthetic pathways by capturing different aspects
of enzymes and substrates, providing valuable information to understand their characteris-
tics and properties. The descriptors can be grouped into five types: molecular structure,
amino acid sequence, physicochemical, molecular topology, and similarity (Figure 1) [18].
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The sequence (amino acid) and structure descriptors are more commonly used in enzymes
because they provide genetic information and information about the tertiary structure
of these molecules. On the other hand, similarity and topology descriptors make little
sense for enzymes due to their large size. For example, the Tanimoto similarity between
two enzymes is a less relevant descriptor for machine learning, given the diversity of struc-
tures and functions they exhibit [5,18,19,44–48]. The similarity and topology descriptors
are more commonly used in substrates, as they allow us to obtain information about their
molecular shape, connectivity, and similarity to other compounds. In the case of substrates,
sequence and structure descriptors are less relevant because these are small molecules, so
it is more convenient to consider the SMILE [18,20,49–51]. Physicochemical descriptors
are employed for both enzymes and substrates, as they offer valuable information about
properties such as electric charges, solubility, and other characteristics relevant to machine
learning [5,18–20,44–51]. Table 2 presents an overview of the frequently used categories of
descriptors for enzymes and substrates, showcasing specific examples of approaches within
each category. This comprehensive display serves as a valuable reference for understanding
the diverse methodologies employed in enzyme and substrate analysis.
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Figure 1. Classification of molecular descriptors for enzymes and substrates. Some descriptors are
mentioned in each type and grouped by typical usage. From left to right, typical usage for enzymes;
from right to left, typical usage for substrates.

Table 2. Summary table of studies using different types of descriptors. The table shows which
descriptor categories are most commonly used for enzymes and substrates and highlights examples
of specific approaches.

Main Approach Type of Descriptors Data Used References

Prediction of range of substrates in
bacterial nitrilases

Sequence, physicochemical,
and structure

Experimental activity data,
alignments, electrostatic potential,
and 3D substrate structure

[18]

Detection of functional similarities Sequence and structure Alignments, sequences,
and structures [19]

Discrimination of substrate function Sequence and structure Alignments and fingerprints [45,46]
Approach based on fingerprints and
properties: Michaelis
constant prediction

Similarity and topology Fingerprints, molecular weight,
LogP, and others [49]

Comparison of results and
new approaches Similarity and topology Fingerprints and MPNN [29]

In a study to predict the substrate range of bacterial nitrilases, which catalyze the
hydrolysis of nitrile compounds to the corresponding carboxylic acids and ammonia,
sequence- and structure-based annotation approaches were used together with specific
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experimental activity data and physicochemical properties of proteins and ligands with
various machine learning models, obtaining performances around 82% [18]. Amin used
sequence- and structure-based descriptors to create structural motifs of a few evolutionarily
important residues in the training enzymes, and these motifs investigate local evolutionary
and geometric similarities in other protein structures to detect functional similarities,
testing the predictions experimentally and obtaining good precision [19]. Other articles
used sequence alignments and kernels to train intelligence models that discriminate the
function of a substrate [5,44,46].

When considering substrates, the approach used differs significantly from that em-
ployed for enzymes due to the disparity in size. However, common factors such as similarity,
compound topology, and properties remain crucial in the analysis. Kroll used a topological
approach based on fingerprints and properties to predict the value of the Michaelis constant
in enzyme–substrate pairs, testing it in 47 model organisms and obtaining values similar to
the original ones [49]. Yang compared the results achieved through similarity-based ap-
proaches and topology-based approaches, noting that they do not yet match experimental
standards but show promise [51]. Additionally, Yang introduced a novel topology-based
approach. Figure 2 shows graphically an example of each of the categories of molecular
descriptors mentioned above. If you want to delve deeper into molecular descriptors, the
Supplementary Material accompanying this article is available for your consultation.
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5. Artificial Intelligence Models

Artificial intelligence models are algorithms and structures that allow the simulation
of learning and performing specific tasks [8,12]. These are the basis of many machine
learning systems and can be applied in a wide variety of domains, such as image pattern
recognition, natural language processing, and decision making [52]. Often, these models
are represented by formulas and operations that capture the underlying relationships and
patterns in the data [9].

Artificial intelligence can be divided into two main areas: conventional artificial
intelligence, which refers to techniques used before their widespread adoption in computer
systems, and machine learning, which enables a system to learn from data rather than
relying on explicit programming. Machine learning is subdivided into three main branches:
supervised learning, unsupervised learning, and reinforcement learning, each with its own
distinctive characteristics. Reinforcement learning involves a system learning through trial
and error, where it is given a reward if it produces the correct result and a penalty if it does
not. Unsupervised learning refers to teaching a system when labeled data are not available,
and it is generally used to give a meaningful structure to the database. Lastly, supervised
learning involves using labeled data to train a system.
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The algorithms used in these three branches of machine learning can be classified as
discriminative and generative: discriminative methods focus on classifying data based
on category differences, while generative methods model the distribution of data and can
create new samples [52]. Figure 3 shows the division of artificial intelligence graphically. In
the prediction of enzyme–substrate interactions, the most used algorithms are discrimina-
tive, since there exist limited training data [5]. Among the discriminative methods most
used in the prediction of enzyme–substrate interactions, we find the algorithms based on
support vector machines, neural networks, and decision trees [53]. Table 3 shows some
enzyme-substrate interaction studies that have been conducted in recent years, specifying
the algorithm used, the application, and the performance obtained.
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Table 3. Machine learning algorithms in biological research. This table provides an overview of
machine learning algorithms used in various biological research applications. It includes the name of
the algorithm, its application, performance, and the relevant reference.

Algorithm Application Performance References

Support vector machines (SVMs) Enzymatic and substrate
classification and prediction 80% accuracy [5]

Support vector machines (SVMs) and
kernel techniques

Analysis and processing of complex
biological data 77–91.4% accuracy [44]

Decision trees Differentiation of metals in proteins 94.2% accuracy [6]

Neural networks Classification of enzymes, substrates,
and sequences >85% accuracy [4,54,55]

Neural networks Prediction of enzyme–substrate
interactions >73.2% [5,7,20]

Neural networks Prediction of enzyme specificity Complex relationship capture [56]

Neural networks Prediction of protein structures
and interactions Capture of complex features [57]

Convolutional neural networks Enzyme classification and redesign 80.72% accuracy [58]
Decision trees Protein classification and regression 62% [59,60]
Gradient augmentation trees Prediction of enzyme activity 79% [5,61]
Random forest, feedforward neural
network, and Naive Bayes

Prediction of OleA enzyme activity
and specificity 82.6%, 73.2%, 58.6% [7]

5.1. Support Vector Machine (SVM) Models

SVMs are algorithms widely used in artificial intelligence (AI) for classification. These
models are based on the idea of finding the optimal hyperplane that separates the data
into different classes or fits the best possible line for a separation of target (positive) and
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non-target (negative) class data [9]. Figure 4 graphically shows the separation of classes
in an SVM. SVMs have been proven to be effective in analyzing large amounts of data for
complex problem solving and decision making [8,17,44].
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is located.

SVMs can address the inherent complexity of molecular data, making it possible to
work with high-dimensional and non-linear data sets. This is crucial, as the relationships
between chemical compounds can be intricate and difficult to capture with simpler methods.
By being able to map the data to a higher dimensional feature space using kernel functions,
SVMs can capture non-linear patterns and improve the accuracy of predictions [44,62,63].

The main advantage of these models is that they offer a clear visual representation of
the separating hyperplane and support vectors, which makes it easier to interpret the results
and understand the relationships between variables and classes. This interpretability is fun-
damental for the elucidation of synthesis routes, since it allows us to identify relevant molec-
ular characteristics and understand how they influence enzyme-substrate interacti-ons.

This type of model has been used in the prediction of thioesterase enzymes with
acyl-ACP substrates, having mean accuracy rates of 80% with a deviation of 0.09, finding
that the most relevant characteristics were Spectrum, Gappy, CKSAAP, KSCTriad, Moran,
and similarity [5].

In their article, Ben-Hur et al. highlight the value of support vector machines and
kernel techniques in the analysis and processing of complex biological data, proving their
importance in predicting computational structures, proteins, the classification of genetic
sequences, and the identification of functional regions in genomes, obtaining accuracies
greater than 77% in the three cases [44].

In another study, two-layer SVM classifiers were used to improve remote protein
homology detection and fold recognition. This work has had a considerable impact on the
understanding of protein evolution and function [64].

Machine learning, particularly the SVM algorithm, has shown the capability to dis-
tinguish enzymatic and non-enzymatic metals in proteins with high precision [62]. This
method offers a valuable tool for identifying and characterizing metals in proteins, po-
tentially contributing significantly to the understanding of biological mechanisms and
designing new therapies and enzymes.

These studies highlight how the use of SVMs in biology is driving significant advances
in our understanding and ability to address complex challenges. If you wish to delve deeper
into support vector machine algorithms, the Supplementary Material accompanying this
article is available for your consultation.
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5.2. Neural Network Models

Neural network models are one of the fundamental pillars of modern artificial intel-
ligence (AI). These models are inspired by the structure and functioning of the human
brain and are used to solve a wide range of problems, from image recognition to natural
language processing [8]. Neural networks are made up of multiple layers of interconnected
artificial neurons, which work together to process information and perform machine learn-
ing tasks [65,66]. Figure 5 shows a neural network model that uses molecular descriptors
as inputs and has as output the presence or absence of interaction between an enzyme and
a substrate.
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The use of neural networks to elucidate synthetic pathways is highly beneficial due
to their ability to learn complex and non-linear patterns in molecular data sets, handling
high-dimensional data [8]. Neural networks offer a powerful tool for the prediction and
optimization of synthesis pathways and have numerous advantages in this context.

One of the main advantages of neural networks is their ability to model non-linear
relationships between molecular features and properties of interest. Synthesis pathways in-
volve a series of complex molecular interactions and transformations, and neural networks
are capable of capturing and learning these subtle and non-linear patterns [26,54]. This
allows them to discover hidden connections and relationships that might go unnoticed
with simpler or linear approaches; a major drawback is that we lose data interpretability.

These approaches have been primarily utilized for the classification of enzymes,
substrates, and sequences, delivering results with accuracies exceeding 85%. Furthermore,
they have been employed in the prediction of enzyme–substrate interactions [4,5,7,20,54,55].

Goldman et al. employed neural networks in their approach to model the specificity of
enzymes and substrates at the family level. This involved capturing complex relationships
between the characteristics of enzymes and substrates and assessing their impact on
specificity [56]. Additionally, Li et al. utilized a multi-objective network-based approach
to predict interactions, resulting in more accurate and comprehensive predictions [67].
These efforts showcase the diverse applications of neural networks in the study of enzyme–
substrate specificity and interaction prediction.

Another application of neural networks in proteins is the prediction of structures and
their interactions. Baek et al. developed neural networks with three tracks: amino acid
sequence, conserved evolutionary information, and interaction profiles. This approach
allows for the use of multiple sources of information and the capture of complex protein
features [57].

Convolutional networks are also used for the prediction of enzyme–substrate interac-
tions, as shown by Upadhyay et al. [64]. In their article, they focused on the use of convolu-
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tional neural networks to classify and re-engineer known enzymes in order to achieve new
substrate activities [64]. If you wish to delve deeper into neural network algorithms, the
Supplementary Material accompanying this article is available for your consultation.

5.3. Decision Tree Models

Decision tree models are a powerful technique used in AI to make decisions and per-
form classification and regression tasks. These models are based on the idea of constructing
a decision tree that represents a series of questions and conditions about the input data’s
characteristics. The tree uses these questions to arrive at a conclusion or prediction, making
it a technique rooted in logic and reasoning [9,17].

Decision trees are a promising option for the elucidation of synthesis routes due to
their clear and understandable interpretation, their ability to handle different types of data,
their efficiency in handling large data sets, their ability to capture non-linear relationships,
and their adaptability to imbalanced data situations [17].

These types of models have been used to predict properties of substrates and classify
proteins; it is worth mentioning that there are more specialized methods such as gradient
augmentation trees, these use several decision trees in sequence, where each one tries to
minimize the prediction error of the previous one. [5,59–61]. Figure 6 shows a gradient
boosting tree made up of four trees.
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Figure 6. Gradient boosting tree built from four decision trees. Each tree tries to minimize the
prediction error of the previous one. The circles symbolize the questions asked in the tree, the black
arrows indicate how the information is propagated according to the response, the red and blue boxes
indicate the classes to which they are classified according to the responses. The horizontal blue
arrows represent the seriality of the trees, and the vertical ones the combination of all to achieve a
more robust model. In this model, the aim is discriminate between the blue and red data.

Costa et al., in their research, used decision trees to compare different approaches in
hierarchical protein classification [59]. Also, in their research, Ebrahimi et al. focused on
the use of decision trees to predict the thermostability of enzymes based on the amino acid
sequence [60].

Banerjee et al. introduced a tool called “EnZymClass” which uses gradient boosting
decision tree learning to predict the substrate specificity of acyl-ACP thioesterases in
plants [5]. This tool demonstrates high prediction accuracy and has the potential to be a
valuable contribution to plant enzyme research and design.

Additionally, the same author makes use of decision trees, neural networks, and
support vector machines to predict the activity and substrate specificity of OleA enzymes,
providing a valuable tool for engineering enzymes in the β-pathway oxidation of fatty
acids [7].
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If you wish to delve deeper into decision tree models, the Supplementary Material
accompanying this article is available for your consultation.

5.4. Other Models

In addition to discriminative models of supervised learning, more complex artificial
intelligence models have been used for predicting enzyme–substrate interactions, such as
convolutional networks and deep learning, showing performances exceeding 70%, even
with substrates dissimilar to those in training (similarity <40%) [20,58]. These methods
have been employed in general models to predict enzyme–substrate activity, leveraging
larger data sets compared to the approach of modeling a single reaction.

Machine learning diffusion models have been recently used alongside generative
models of deep learning to explore the latent space of a set of enzymes or substrates
with a common function, thus creating new enzymes with higher affinity to a substrate
or generating ligands with high specificity and affinity for target proteins [68–71]. This
novel approach has been gaining prominence among supervised learning methods, as it
theoretically allows us to find the useful space of the complex without the use of descriptors,
providing a better understanding of the system to the model.

6. Model Validation

The validation of artificial intelligence models is a crucial process to evaluate the
performance and predictive capacity of a model [8]. This process involves measuring how
the model performs on unseen data, i.e., data that were not used during the model training.
The goal is to determine if the model is capable of generalizing well to new data and is
not overfitting or underfitting [9]. Overfitting refers to when a model does not fit the
generality of the training data but instead memorizes or learns them in a very specific way.
Underfitting refers to when a model fails to learn important relationships and features from
the training data.

There are different model validation techniques used in machine learning. The most
common one is cross-validation, where the data are split into training (which includes both
training and validation) and testing sets.

6.1. Cross-Validation

Cross-validation is a technique that allows for the estimation of model performance
using the entire available data set. In this technique, the data set is divided into two sets:
one for model training and the other for model evaluation or testing. Typically, a ratio of
70–80% for training and 20–30% for testing is used, although this can vary depending on
the size of the available data set [9,13]. The training data are divided into k subsets or folds
of approximately the same size. Then, an iterative process is performed where the model is
trained on k-1 folds and evaluated on the remaining fold (usually called validation). This
process is repeated k times, ensuring that each fold is used as a validation set once.

6.2. Out-of-Sample Validation

Out-of-sample validation is a fundamental technique in the evaluation of ML models
that facilitates the assessment of their performance with data not seen during training and
validation. In this methodology, the data set is divided into two parts: one is used for
training and validation, and the other is reserved for testing. This practice ensures that
the model has not been previously exposed to the test data, allowing it to confront new
information and evaluating its ability to generalize [72].

The typical data split is 80–90% for training and validation and 10–20% for testing.
This is a sufficient amount of data for learning and validation without compromising the
model’s ability to generalize to new instances.

Additionally, the technique can be complemented with cross-validation in the training
and validation set. This provides a more robust evaluation and reduces the impact of the
initial data split choice.
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6.3. Experimental Validation

Experimental validation involves the laboratory confirmation of predicted enzyme–
substrate activities, as exemplified Banerjee et al. [5]. This process entails inducing the
protein and measuring its activity in the presence of the substrate. Although it is a robust
validation, it is inefficient when dealing with extensive validation data sets due to the high
costs, intensive labor, and time required.

Amin et al. made predictions regarding three oxidoreductase enzymes with the
capacity to convert myo-inositol to scyllo-inosose by reducing NAD+. Subsequently, one of
these enzymes, dhaf_2064, was experimentally evaluated, demonstrating activity towards
the substrate and validating the initial prediction [19].

Repečka et al. used generative adversarial networks to generate sequences of malate
dehydrogenases, successfully obtaining 60 artificial proteins. These proteins were experi-
mentally tested, revealing that 13 of them exhibited activity similar to natural variants [73].

On the other hand, Banerjee et al. used EnZymClass to predict three enzyme se-
quences encoding medium-chain thioesterases of the TE14 family. These predictions
underwent experimental testing, confirming that two of the sequences exhibit activity with
the substrate [5].

In these cases, the combination of computational predictions and experimental valida-
tion demonstrates the usefulness of these tools in the identification and characterization of
enzymes with specific activities, significantly contributing to the advancement in under-
standing metabolic pathways and molecular biology.

To measure how a discriminative algorithm behaves with the training data, there
are different metrics such as accuracy, sensitivity, specificity, precision, F1 score, AUROC,
and AUPR.

Accuracy refers to the number of successes that the model had when classifying a piece
of data. The basic formula for calculating precision in cross-validation is as follows:

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

In this formula, TP represents true positives, TN true negatives, FP false positives,
and FN false negatives. Accuracy is a measure of how well the model can correctly predict
positive and negative instances.

Sensitivity measures how well the model can identify cases labeled as positive. It is
calculated using the following formula:

Sensitivity = (TP) / (TP + FN) (2)

Specificity measures how well the model can identify cases labeled as negative. It is
calculated using the following formula:

Speci f icity = (TN) / (TN + FP) (3)

Precision measures the proportion of positive predictions delivered by the model. It is
calculated using the following formula:

precision =
TP

TP + FP
(4)

The F1 score combines sensitivity or recall and precision through a harmonic mean [74].
It is calculated using the following formula:

F1 score = 2
sensitivity × precision
sensitivity + precision

(5)
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The AUROC, the area under the ROC (Receiver Operating Characteristic) curve, allows
us to observe the false positive rate and the false negative rate, providing a general measure
of the model’s performance [74].

The AUPR (Area Under the Precision–Recall Curve) allows us to observe precision
and recall (sensitivity) in a 2D graph, offering a better overall view than the AUROC when
the data set is unbalanced.

This is the most commonly used technique among the many model validation methods
used in artificial intelligence. It is important to select the appropriate technique based on
the type of problem and the available data. Additionally, it is recommended to perform
multiple validation iterations using different techniques or data splits to obtain a more
robust evaluation of the model.

7. Limitations, Challenges, and Conclusions

Although the application of AI in the prediction of enzyme–substrate interactions for
the elucidation of synthesis pathways has shown promising results, there are certain limita-
tions and challenges that need to be addressed to ensure the reliability and applicability
of AI models, such as the availability of reliable data, the interpretability of the results,
generalization of the AI models, the complexity of the interaction, the few experimental
data, and the low capacity for experimental validation of results.

To train accurate AI models, a large, well-annotated, high-quality data set is required
that contains information about enzyme amino acid sequences, three-dimensional struc-
tures, and the properties of substrates. The availability of this data can be challenging,
as collecting and curating complete and reliable data sets can be expensive and time-
consuming. In addition, the lack of uniformity in data annotation and standardization in
databases complicates the comparison and integration of different data sets, increasing
development time due to data curation, validation, and homogenization and limiting the
development of general models.

Another limitation is that AI models, such as neural networks, are often considered
“black boxes” due to the complexity of their algorithms. This makes it difficult to interpret
the results and understand the factors that influence the predictions. Interpreting the results
of AI models and explaining how a certain prediction was arrived at are major challenges
in the field. The ability to understand and explain AI predictions is crucial to gain the
trust of the scientific community and facilitate informed decision making in elucidating
synthetic pathways.

AI models may show optimal performance on training data but may have difficulty
generalizing and adapting to new situations or unseen data. The ability to transfer learned
insights from one data set to another is a major challenge in the field of AI. The lack of
generalization may limit the applicability of the models in the prediction of the enzyme–
substrate interaction in different contexts and biological systems.

Enzyme–substrate interactions can be influenced by a variety of factors, such as pH,
temperature, and the presence of cofactors. However, the data sets used to train AI models
often do not fully capture this variability, which can affect the models’ ability to predict
interactions under different experimental conditions.

Although experimental data are essential for training and validating AI models,
sometimes the availability of this data is limited. This can make it difficult to develop
accurate and reliable models, especially in cases where enzyme–substrate interactions
are poorly studied or understood. Increasing the availability of experimental data in
databases is necessary to improve the quality and quantity of data sets used in AI models.
Additionally, the experimental validation of predictions will help focus AI algorithms on
the problem, allowing them to better capture the system’s dynamics. However, this is a
slow and costly process, limiting progress.

As for future prospects, it is crucial to continue researching and developing new AI
techniques and approaches to improve the prediction of enzyme–substrate interactions
in pathway elucidation. Game theory, natural language processing, deep learning, and



Metabolites 2024, 14, 154 14 of 17

reinforcement learning perspectives can be applied. This requires collaboration among
researchers in different disciplines, such as biology, bioinformatics, and artificial intelligence,
to address existing challenges and overcome current limitations.

In conclusion, AI offers great potential for accelerating and improving the elucidation
of synthetic pathways through the prediction of enzyme–substrate interactions. Although
there are limitations and challenges, the use of AI in this field remains promising. With
proper attention to these challenges and continuous research, AI has the potential to revo-
lutionize the way we understand and manipulate metabolic pathways for the production
of industrial, pharmaceutical, and agricultural compounds of interest.
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represents equation 4; Figure S2: Graph of equations 2, 3 and 4 next to the training data; Figure S3:
neural network with n inputs, one neuron, one layer and a single output; Figure S4: neural network
with n inputs, m neurons, two layers (one input and one output) and a single output; Figure S5:
neural network with n inputs, m+l+. . .+i neurons, k+1 layers and a single output; Figure S6: neural
network with n inputs, m+l+. . .+i+j neurons, k+1 layers and j outputs; Figure S7: left, decision tree of
three conditions and two possible outputs (red or blue). Right, clustering performed by the decision
tree from the training data.

Author Contributions: Conceptualization, L.F.S.-N., M.F.V.-T. and A.F.G.B.; methodology, L.F.S.-N.,
M.F.V.-T. and A.F.G.B.; formal analysis, L.F.S.-N.; writing—original draft preparation, L.F.S.-N.;
writing—review and editing, N.C., M.F.V.-T. and A.F.G.B.; supervision, A.B.-O., P.A.C., N.C., E.H.O.,
M.F.V.-T. and A.F.G.B.; funding acquisition, A.B.-O., P.A.C., N.C., E.H.O., M.F.V.-T. and A.F.G.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Ministerio de Ciencia, Tecnología e Innovación, grant No. 86978,
and the Assistant Professorship Funds from Universidad de los Andes cod. INV-2023-158-2701.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were used for the research described in this article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of this study; in the collection, analyses, or interpretation of data; in the writing of this
manuscript; or in the decision to publish the results.

References
1. Stephanopoulos, G. Synthetic Biology and Metabolic Engineering. ACS Synth. Biol. 2012, 1, 514–525. [CrossRef]
2. García-Granados, R.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. Metabolic Engineering and Synthetic Biology: Synergies,

Future, and Challenges. Front. Bioeng. Biotechnol. 2019, 7, 36. [CrossRef]
3. Choi, K.R.; Jang, W.D.; Yang, D.; Cho, J.S.; Park, D.; Lee, S.Y. Systems Metabolic Engineering Strategies: Integrating Systems and

Synthetic Biology with Metabolic Engineering. Trends Biotechnol. 2019, 37, 817–837. [CrossRef]
4. Mazurenko, S.; Prokop, Z.; Damborsky, J. Machine Learning in Enzyme Engineering. ACS Catal. 2020, 10, 1210–1223. [CrossRef]
5. Banerjee, D.; Jindra, M.A.; Linot, A.J.; Pfleger, B.F.; Maranas, C.D. EnZymClass: Substrate Specificity Prediction Tool of Plant

Acyl-ACP Thioesterases Based on Ensemble Learning. Curr. Res. Biotechnol. 2022, 4, 1–9. [CrossRef]
6. Feehan, R.; Montezano, D.; Slusky, J.S.G. Machine Learning for Enzyme Engineering, Selection and Design. Protein Eng. Des. Sel.

2021, 34, gzab019. [CrossRef] [PubMed]
7. Robinson, S.L.; Smith, M.D.; Richman, J.E.; Aukema, K.G.; Wackett, L.P. Machine Learning-Based Prediction of Activity and

Substrate Specificity for OleA Enzymes in the Thiolase Superfamily. Synth. Biol. 2020, 5, ysaa004. [CrossRef]
8. Du, K.-L.; Swamy, M.N.S. Fundamentals of Machine Learning. In Neural Networks and Statistical Learning; Du, K.-L., Swamy, M.N.S., Eds.;

Springer: London, UK, 2014; pp. 15–65; ISBN 978-1-4471-5571-3.
9. Trappenberg, T. Fundamentals of Machine Learning; Oxford University Press: Oxford, UK, 2019; ISBN 9780198828044.
10. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
11. Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [CrossRef]
12. Pereira, F.C.; Borysov, S.S. Chapter 2—Machine Learning Fundamentals. In Mobility Patterns, Big Data and Transport Analytics;

Antoniou, C., Dimitriou, L., Pereira, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 9–29; ISBN 978-0-12-812970-8.

https://www.mdpi.com/article/10.3390/metabo14030154/s1
https://doi.org/10.1021/sb300094q
https://doi.org/10.3389/fbioe.2019.00036
https://doi.org/10.1016/j.tibtech.2019.01.003
https://doi.org/10.1021/acscatal.9b04321
https://doi.org/10.1016/j.crbiot.2021.12.002
https://doi.org/10.1093/protein/gzab019
https://www.ncbi.nlm.nih.gov/pubmed/34296736
https://doi.org/10.1093/synbio/ysaa004
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1007/s12525-021-00475-2


Metabolites 2024, 14, 154 15 of 17

13. Chowdhary, P. Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020; ISBN 978-81-322-3970-3.
14. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010.
15. Darwiche, A. Modeling and Reasoning with Bayesian Networks; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521884389.
16. Ramos, F.T.; Cozman, F.G. Anytime Anyspace Probabilistic Inference. Int. J. Approx. Reason. 2005, 38, 53–80. [CrossRef]
17. Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S.V. A Review of Machine Learning Techniques Using Decision Tree and Support

Vector Machine. In Proceedings of the 2016 International Conference on Computing Communication Control and Automation
(ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–7.

18. Mou, Z.; Eakes, J.; Cooper, C.J.; Foster, C.M.; Standaert, R.F.; Podar, M.; Doktycz, M.J.; Parks, J.M. Machine Learning-Based
Prediction of Enzyme Substrate Scope: Application to Bacterial Nitrilases. Proteins Struct. Funct. Bioinform. 2021, 89, 336–347.
[CrossRef]

19. Amin, S.R.; Erdin, S.; Ward, R.M.; Lua, R.C.; Lichtarge, O. Prediction and Experimental Validation of Enzyme Substrate Specificity
in Protein Structures. Proc. Natl. Acad. Sci. USA 2013, 110, E4195–E4202. [CrossRef] [PubMed]

20. Kroll, A.; Ranjan, S.; Engqvist, M.K.M.; Lercher, M.J. A General Model to Predict Small Molecule Substrates of Enzymes Based on
Machine and Deep Learning. Nat. Commun. 2023, 14, 2787. [CrossRef] [PubMed]

21. Hammoudeh, Z.; Lowd, D. Training Data Influence Analysis and Estimation: A Survey. arXiv 2023, arXiv:2212.04612.
22. Paullada, A.; Raji, I.D.; Bender, E.M.; Denton, E.; Hanna, A. Data and Its (Dis)Contents: A Survey of Dataset Development and

Use in Machine Learning Research. Patterns 2021, 2, 100336. [CrossRef]
23. Gudivada, V.N.; Irfan, M.T.; Fathi, E.; Rao, D.L. Chapter 5—Cognitive Analytics: Going Beyond Big Data Analytics and Machine

Learning. In Handbook of Statistics; Gudivada, V.N., Raghavan, V.V., Govindaraju, V., Rao, C.R., Eds.; Elsevier: Amsterdam,
The Netherlands, 2016; Volume 35, pp. 169–205; ISBN 0169-7161.

24. Chen, H.; Li, T.; Fan, X.; Luo, C. Feature Selection for Imbalanced Data Based on Neighborhood Rough Sets. Inf. Sci. 2019,
483, 1–20. [CrossRef]

25. Kim, J.; Kim, J. The Impact of Imbalanced Training Data on Machine Learning for Author Name Disambiguation. Scientometrics
2018, 117, 511–526. [CrossRef]

26. Narwane, S.; Sawarkar, S. Machine Learning and Class Imbalance: A Literature Survey. Ind. Eng. J. 2019, 12. [CrossRef]
27. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; et al. Large

Scale Distributed Deep Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J., Bottou, L.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25.

28. Li, F.; Yuan, L.; Lu, H.; Li, G.; Chen, Y.; Engqvist, M.K.M.; Kerkhoven, E.J.; Nielsen, J. Deep Learning-Based Kcat Prediction
Enables Improved Enzyme-Constrained Model Reconstruction. Nat. Catal. 2022, 5, 662–672. [CrossRef]

29. Koutsandreas, T.; Pilalis, E.; Chatziioannou, A. A Machine-Learning Approach for Theof Enzymatic Activity of Proteins in
Metagenomic Samples. In Artificial Intelligence Applications and Innovations, Proceedings of the IFIP International Conference on
Artificial Intelligence Applications and Innovations, Paphos, Cyprus, 30 September–2 October 2013; Papadopoulos, H., Andreou, A.S.,
Iliadis, L., Maglogiannis, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 81–87.

30. Apweiler, R.; Bairoch, A.; Wu, C.H. Protein Sequence Databases. Curr. Opin. Chem. Biol. 2004, 8, 76–80. [CrossRef]
31. Consortium, T.U. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [CrossRef]
32. wwPDB consortium. Protein Data Bank: The Single Global Archive for 3D Macromolecular Structure Data. Nucleic Acids Res.

2019, 47, D520–D528. [CrossRef]
33. Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D.

The MetaCyc Database of Metabolic Pathways and Enzymes—A 2019 Update. Nucleic Acids Res. 2020, 48, D445–D453. [CrossRef]
34. Chang, A.; Jeske, L.; Ulbrich, S.; Hofmann, J.; Koblitz, J.; Schomburg, I.; Neumann-Schaal, M.; Jahn, D.; Schomburg, D. BRENDA,

the ELIXIR Core Data Resource in 2021: New Developments and Updates. Nucleic Acids Res. 2021, 49, D498–D508. [CrossRef]
35. Kanehisa, M.; Sato, Y.; Kawashima, M. KEGG Mapping Tools for Uncovering Hidden Features in Biological Data. Protein Sci.

2022, 31, 47–53. [CrossRef]
36. Pruitt, K.D.; Tatusova, T.; Brown, G.R.; Maglott, D.R. NCBI Reference Sequences (RefSeq): Current Status, New Features and

Genome Annotation Policy. Nucleic Acids Res. 2012, 40, D130–D135. [CrossRef]
37. Karp, P.D.; Riley, M.; Saier, M.; Paulsen, I.T.; Paley, S.M.; Pellegrini-Toole, A. The EcoCyc and MetaCyc Databases. Nucleic Acids

Res. 2000, 28, 56–59. [CrossRef]
38. Taheri, K.; Moradi, H.; Tavassolipour, M. Collaboration Graph for Feature Set Partitioning in Data Classification. Expert Syst.

Appl. 2023, 213, 118988. [CrossRef]
39. Cordeiro de Amorim, R. Unsupervised Feature Selection for Large Data Sets. Pattern Recognit. Lett. 2019, 128, 183–189. [CrossRef]
40. Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T.T.; Webb, G.; Song, J.; Chou, K.-C.; Lithgow, T. POSSUM: A Bioinformatics

Toolkit for Generating Numerical Sequence Feature Descriptors Based on PSSM Profiles. Bioinformatics 2017, 33, 2756–2758.
[CrossRef]

41. Dong, L.; Wang, R.; Chen, D. Incremental Feature Selection with Fuzzy Rough Sets for Dynamic Data Sets. Fuzzy Sets Syst. 2023,
467, 108503. [CrossRef]

42. Parthasarathi, R.; Dhawan, A. Chapter 5—In Silico Approaches for Predictive Toxicology. In In Vitro Toxicology; Dhawan, A.,
Kwon, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 91–109; ISBN 978-0-12-804667-8.

https://doi.org/10.1016/j.ijar.2004.04.001
https://doi.org/10.1002/prot.26019
https://doi.org/10.1073/pnas.1305162110
https://www.ncbi.nlm.nih.gov/pubmed/24145433
https://doi.org/10.1038/s41467-023-38347-2
https://www.ncbi.nlm.nih.gov/pubmed/37188731
https://doi.org/10.1016/j.patter.2021.100336
https://doi.org/10.1016/j.ins.2019.01.041
https://doi.org/10.1007/s11192-018-2865-9
https://doi.org/10.26488/IEJ.12.10.1202
https://doi.org/10.1038/s41929-022-00798-z
https://doi.org/10.1016/j.cbpa.2003.12.004
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gky949
https://doi.org/10.1093/nar/gkz862
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1002/pro.4172
https://doi.org/10.1093/nar/gkr1079
https://doi.org/10.1093/nar/28.1.56
https://doi.org/10.1016/j.eswa.2022.118988
https://doi.org/10.1016/j.patrec.2019.08.017
https://doi.org/10.1093/bioinformatics/btx302
https://doi.org/10.1016/j.fss.2023.03.006


Metabolites 2024, 14, 154 16 of 17

43. Chandrasekaran, B.; Abed, S.N.; Al-Attraqchi, O.; Kuche, K.; Tekade, R.K. Chapter 21—Computer-Aided Prediction of Pharma-
cokinetic (ADMET) Properties. In Dosage Form Design Parameters; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2018;
pp. 731–755; ISBN 978-0-12-814421-3.

44. Ben-Hur, A.; Ong, C.S.; Sonnenburg, S.; Schölkopf, B.; Rätsch, G. Support Vector Machines and Kernels for Computational Biology.
PLoS Comput. Biol. 2008, 4, e1000173. [CrossRef]

45. Yu, C.-Y.; Chou, L.-C.; Chang, D.T.-H. Predicting Protein-Protein Interactions in Unbalanced Data Using the Primary Structure of
Proteins. BMC Bioinform. 2010, 11, 167. [CrossRef]

46. Saigo, H.; Vert, J.-P.; Ueda, N.; Akutsu, T. Protein Homology Detection Using String Alignment Kernels. Bioinformatics 2004, 20,
1682–1689. [CrossRef]

47. Yang, K.K.; Wu, Z.; Arnold, F.H. Machine-Learning-Guided Directed Evolution for Protein Engineering. Nat. Methods 2019,
16, 687–694. [CrossRef]
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