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Abstract: This paper aimed at devising an intelligence-based method to select compounds that can
distinguish between open-angle glaucoma patients, type 2 diabetes patients, and healthy controls.
Taking the concentration of 188 compounds measured in the aqueous humour (AH) of patients
and controls, linear discriminant analysis (LDA) was used to identify the right combination of
compounds that could lead to accurate diagnosis. All possibilities, using the leave-one-out approach,
were considered through ad hoc programming and in silico massive data production and statistical
analysis. Our proof of concept led to the selection of four molecules: acetyl-ornithine (Ac-Orn),
C3 acyl-carnitine (C3), diacyl C42:6 phosphatidylcholine (PC aa C42:6), and C3-DC (C4-OH) acyl-
carnitine (C3-DC (C4-OH)) that, taken in combination, would lead to a 95% discriminative success.
100% success was obtained with a non-linear combination of the concentration of three of these four
compounds. By discarding younger controls to adjust by age, results were similar although one
control was misclassified as a diabetes patient. Methods based on the consideration of individual
clinical chemical parameters have limitations in the ability to make a reliable diagnosis, stratify
patients, and assess disease progression. Leveraging human AH metabolomic data, we developed a
procedure that selects a minimal number of metabolites (3–5) and designs algorithms that maximize
the overall accuracy evaluating both positive predictive (PPV) and negative predictive (NPV) values.
Our approach of simultaneously considering the levels of a few metabolites can be extended to any
other body fluid and has potential to advance precision medicine. Artificial intelligence is expected
to use algorithms that use the concentration of three to five molecules to correctly diagnose diseases,
also allowing stratification of patients and evaluation of disease progression. In addition, this
significant advance shifts focus from a single-molecule biomarker approach to that of an appropriate
combination of metabolites.

Keywords: aqueous humour; diagnostic tools; Parkinson’s disease; metabolomic signatures; precision
medicine; advanced statistical; methods; bioanalysis; discrimination tools

1. Introduction

Biomarker discovery is a hot topic, both for acute and chronic diseases. Neurode-
generation is probably one of the most orphaned in terms of suitable biomarkers for
reliable patient stratification, assessment of disease progression, and evaluation of the
efficacy of new therapies [1,2]. Also relevant is the possibility of discovering biomarkers
of comorbidities.
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Proteomics and metabolomics are the two most common methods for routinely iden-
tifying molecules that could serve as biomarkers. One of the most recent developments
in metabolomics combines novel techniques for the derivatization of small compounds
with identification and quantification by mass spectrometry [3,4]. Hence, it is possible to
measure the concentration of hundreds of compounds using a few microliters of body fluids
regardless of their complexity, that is, being useful for serum, urine, sweat, cerebrospinal
fluid, saliva, urine, and aqueous humour.

In particular, the range of concentrations in metabolomics approaches using human
body fluids is very wide; that is, it is possible to reliably determine the concentration of
minor compounds, such as acyl-carnitines, which can be found at nM levels, as well as
those that are abundant, such as amino acids, which can reach mM levels. On the one
hand, metabolomics approaches can establish reference values for up to 500 parameters
(concentration of small compounds, MW < 1000 kDa) in serum. On the other hand, data
analysis is a major issue due to both the generation of large numbers of parameters, each
corresponding to a sample and a concentration of molecules, and the intrinsic variability
found in human samples [3,4].

Classically, clinical chemistry approaches were based on comparing one molecule
with one disease, for example, plasma glucose concentration with diabetes. In the case of
transcriptomic-based studies, data normalization is required. In contrast, in metabolomics,
there is no need to normalize metabolite concentrations even when hundreds of compounds
are determined in two conditions, for example, healthy control versus type 2 diabetes
patients or type 2 diabetes patients versus glaucoma patients.

In fact, we have recently identified new biomarkers after comparing the concentration
of small metabolites in the aqueous humour (AH) of healthy controls, patients with open-
angle glaucoma, and patients with type 2 diabetes. Instead of glucose, one molecule, acetyl-
ornithine, makes it possible to detect if a given AH is from a patient with type 2 diabetes or
a healthy control [5].

Artificial intelligence must be loaded with data and strategies that allow healthcare
providers to offer more personalized, precise, and effective treatments. Clinical chemistry
has been an ally of doctors for decades. The first advances were due to the determination
of small molecules in blood/plasma and urine and the establishment of biomarkers that
are still used today; the main example is the glucose level in plasma for the diagnosis
and management of diabetes. There is a need of novel biomarkers for, among others,
neurodegenerative diseases; in the last two decades translational research has focused more
on proteomics and transcriptomics than on metabolomics.

While metabolomics tools have demonstrated high sensitivity in detecting critical
metabolites involved in pathological conditions, the trends of many of these relevant
metabolites are similar among diseases, making the interpretation challenging. Computa-
tional tools developed and improved under the umbrella of advanced statistical methods,
machine learning, and/or artificial intelligence are needed to find the minimum number of
metabolites that allow distinguishing between different pathologies, even those with simi-
lar metabolic patterns [6–9]. However, the challenge is to design an intelligent technique
that unbiasedly converts a combination of parameters into a reliable diagnosis.

Importantly, advanced mathematical methods ranging from simple regression analyses
to complex deep learning architectures are becoming prevalent in healthcare. Apart from
early illness detection, intelligent techniques are explored in drug discovery and patient risk
assessment. Medical data from, among others, ultrasound, MRI, mammography, genomics,
or positron emission tomography would feed any approach aimed at benefiting patient
diagnosis and treatment [10–13].

The objective of this study was to verify whether it is possible to implement an
intelligent-based tool to select a limited number of compounds so that, together, their
concentration in a specific body fluid allows the unequivocal diagnosis of a particular
disease. The strategy has two components, one is the determination of compounds in
body fluids that have not been previously considered and the second is the notion that
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neurodegenerative disorders may not require either a single biomarker or two biomarkers
considered in isolation, but rather a combination of parameters. Our approach also aims to
achieve a robust method that can be used by artificial intelligence in an unbiased manner.
Artificial intelligence requires algorithms capable of analysing large amounts of patient
data from various sources, but also the ability to make predictions based on the integration
of data sets. Any advances in identifying integration patterns and correlating patient data
sets will be crucial for personalized diagnosis, prognosis, and treatment selection.

The analysis was performed using metabolomics data from the AH of healthy controls,
open-angle glaucoma patients, and type 2 diabetes patients. We implemented an intelligent-
based classifier using linear discriminant analysis (LDA) as the core technique as a proof
of concept to implement more advanced methods to increase the discrimination power,
if necessary, in forthcoming studies. Using the leave-one-out approach, we evaluated
the overall accuracy, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) of this novel approach that provides a tool to move towards truly
personalized medicine.

2. Materials and Methods
2.1. Subjects

A total of 46 samples of AH were collected; 31 samples from healthy controls (15 men
and 16 women, mean age 56, range 24–76), 8 samples from open-angle glaucoma patients
(4 men and 4 women, mean age 67.5, range 51–81), and 7 samples from type 2 diabetes
patients (4 men and 3 women, mean age 72, range 65–76). None of the individuals had
previously undergone eye surgery. By the characteristics of people undergoing refractive
surgery, from which AH can be obtained, controls are, in proportion, higher in number
than patients with open-angle glaucoma or type 2 diabetes; they are also younger.

We compared groups in terms of age. The F index value is 6.708 and the p value is
0.002913, so the result is significant at p < 0.05, which means that there are age differences
between the groups. For this reason, we repeated the analysis excluding younger controls,
with similar results as detailed in Section 3. Regarding other characteristics, none of the
individuals reported any kidney disease, and creatinine and urea plasma levels were within
reference values. None of the diabetic patients showed any sign of diabetic retinopathy.

The study was evaluated by the “Comitè d’Ètica de la Investigació de les Illes Balears (CEI-
IB)” and deemed not to require ethics approval. Samples are considered waste and no data on
patient identification (neither name, address nor ID numbers) are available to experimenters.

2.2. Metabolomics

The AbsoluteIDQ™ p180 Kit (Biocrates Life Sciences, Innsbruck, Austria), which can
determine 188 metabolites, from biogenic amines, amino acids, hexoses, phospho- and sphin-
golipids to acyl-carnitines was used. Individual metabolites may be found in www.biocrates.
com/products/research-products/absoluteidq-p180-kit (Accessed on 1 July 2022). Up to
30 µL of AH were plated in each well. The initial sample processing was as indicated by the
manufacturer. Afterwards, derivatized samples were analysed in the AB Sciex 6500 QTRAP
MS/MS mass spectrometer (AB Sciex LLC, Framingham, MA, USA) coupled to an Agilent
1290 Infinity UHPLC system (Agilent, Santa Clara, CA, USA). Data analysis was performed
using Analyst (v. 1.7.3) and the MetIDQ™ (v. 5.5.4-DB100 Boron-2623) software.

2.3. Data Compilation and Computational Analyses

Data (concentration of every metabolite in each sample) used in the present study are
available in previously published papers [5,14]. We used R 4.3.0 software to conduct linear
discriminant analysis (LDA) with leave-one-out cross-validation to control for overfitting.
We used the CAR and MASS libraries as R scripts programmed by the authors, details
can be provided by request to the first author (DBC). In addition, further details of the
implementation and specific analyses are provided in the Section 3.

www.biocrates.com/products/research-products/absoluteidq-p180-kit
www.biocrates.com/products/research-products/absoluteidq-p180-kit
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3. Results

The main objective of this study was to test whether the combination of metabolomics
and advanced computational tools comprising statistical methods, machine learning,
and/or artificial intelligence approaches can lead to the development of novel diagnostic
tools for various diseases. The standard pipeline of an intelligent-based classifier consists
of three well-differentiated layers: the input layer, the hidden layer, and the output layer.
The input layer depends on the data and consists of 188 metabolites. The hidden layer may
include one or several methods ranging from simple regression models to more complex
deep learning methods. To this end, we designed a novel pipeline using LDA as a core tech-
nique in the hidden layer, a layer that, in turn, consisted of two learning steps. The output
layer corresponds to the different classes, in our case, the three groups: glaucoma, (type 2)
diabetes, and control. Figure 1 illustrates a generic diagram and the scheme implemented
in this article.

Metabolites 2024, 14, x FOR PEER REVIEW  4  of  15 

2.3. Data Compilation and Computational Analyses

Data (concentration of every metabolite in each sample) used in the present study are 

available in previously published papers [5,14].We used R 4.3.0 software to conduct linear 

discriminant analysis (LDA) with leave‐one‐out cross‐validation to control for overfitting. 

We used the CAR and MASS libraries as R scripts programmed by the authors, details can 

be provided by request to the first author (DBC). In addition, further details of the imple‐

mentation and specific analyses are provided in the following section. 

3. Results

The main objective of this study was to test whether the combination of metabolom‐

ics and advanced computational tools comprising statistical methods, machine learning,

and/or artificial intelligence approaches can lead to the development of novel diagnostic 

tools for various diseases. The standard pipeline of an intelligent‐based classifier consists 

of three well‐differentiated layers: the input layer, the hidden layer, and the output layer. 

The  input layer depends on the data and consists of 188 metabolites. The hidden layer 

may include one or several methods ranging from simple regression models to more com‐

plex deep learning methods. To this end, we designed a novel pipeline using LDA as a 

core technique in the hidden layer, a layer that, in turn, consisted of two learning steps. 

The output layer corresponds to the different classes, in our case, the three groups: glau‐

coma, (type 2) diabetes, and control. Figure 1 illustrates a generic diagram and the scheme 

implemented in this article.

Figure 1. Standard pipeline of an intelligent-based classifier (top) and our intelligent-based classifier
using LDA as a core platform (bottom).

3.1. Linear Discrimination Analysis (LDA) Considering All Metabolites

The first objective was to describe the results obtained by implementing the hidden
layer with LDA as a core platform, a layer consisting of two steps (Figure 1). Subsequently,
the descriptive statistics and correlations needed to validate the approach are described
and evaluated.

To begin with, we ran an LDA for every metabolite and computed the overall accuracy,
sensitivity, specificity, PPV, and NPV considering all subjects using a leave-one-out cross-
validation strategy to control for overfitting. Phosphatidylcholine diacyl C42:6 (PC aa
C42:6) was the metabolite with the best discriminatory power (Figures 2 and 3). Then, we
ran LDAs with a combination of two, three, four, five, six, seven, and eight metabolites,
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which were randomly selected from the original pool of 188 metabolites. Looking for
the maximum leave-one-out accuracy we found that the pair of metabolites with the
best performance were acetyl-ornithine (Ac-Orn) and PC aa C42:6. In fact, the maximum
discrimination accuracy was obtained with four metabolites, but addition of a fifth or a
sixth, etc., did not lead to better results. In other words, adding more compounds would
not provide superior results. The four metabolites were C3 acyl-carnitine (C3), C3-DC
(C4-OH) acyl-carnitine (C3-DC (C4-OH)), Ac-Orn, and PC aa C42:6, for which the peak
performance is around 95% (Figure 2). In subsequent computations, we only considered
these four metabolites.
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3.1.1. Descriptive Statistics: Boxplots

We then evaluated descriptive statistics for each of the selected metabolites. Boxplots
showing the concentration of the four selected metabolites (C3, C3-DC (C4-OH), Ac-Orn,
and PC aa C42:6) provide information as to why these metabolites are the most discrimina-
tive. The four boxplots for each of the selected metabolites showing the differences among
groups are depicted in Figure 3. While the metabolite PC aa C42:6 allows discrimination
for glaucoma, Ac-Orn superbly discriminates diabetes from controls. These two patterns
and the discriminative power of C3 and C3-DC (C4-OH), allow for a 95% discrimination
accuracy among groups.

3.1.2. Correlation Analysis

In addition, relevant information can be obtained by evaluating whether the four
metabolites: C3, C3-DC (C4-OH), Ac-Orn, and PC aa C42:6 are correlated (Table 1). The
16 scatterplots showing the relationship between each pair of metabolites is depicted in
Supplementary Figure S1, which shows the values corresponding to one metabolite of
a given pair of metabolites on the horizontal axis, and the values corresponding to the
second metabolite on the vertical axis. In each graph every point corresponds to data from
a sample (control, glaucoma, or diabetes).

Table 1. Correlation between the four selected metabolites. The Pearson coefficient is shown for
pair-wise correlations. A total correlation would be defined by coefficient = 1. The asterisk denotes
p-value < 0.05.

C3 0.4921 * 0.3685 * 0.5109 *

C3-DC (C4-OH) 0.3018 * 0.4539 *

Ac-Orn 0.3703 *

PC aa C42:6

One important component of this type of scatterplots in Supplementary Figure S1 is the
direction of the relationship between the two variables. We observe a positive association
between each pair of metabolites with no exception. In other words, above-average values
of one metabolite tend to accompany above-average values of the other metabolite, and
below-average values also tend to occur together. We conclude that this general trend
constitutes a pattern that allows an adequate classification of everyone in their respective
group. Another important component is the geometric form of the relationship between
two metabolites. In general, the points on the scatterplots can fit on a straight line with a
few exceptions. For example, the relation between C3 and C3-DC (C4-OH) seems to be
quadratic. Finally, another critical component is the strength of the relationship between
two variables. The slope provides information on the strength in such a way that measures
the degree of variation of one variable when the second increases. Thus, we observe a strong
linear relationship between metabolites C3 and PC aa C42:6, which is very relevant as the
product of the two metabolites will be selected in the second step to achieve 100% accuracy.

We observed a high degree of correlation among the metabolites with all pair-wise
correlations being significant. The statistical significance and high degree of correlation
within the four selected metabolites suggests a metabolic signature (Figure 3 and Table 1).

3.2. Linear Discrimination Analysis (LDA) Considering the Most Discriminative Metabolites and
Selecting an Optimal Non-Linear Combination

In a second step, high-order terms were searched using the concentration of the
previously selected four metabolites: C3, C3-DC (C4-OH), Ac-Orn, and PC aa C42:6. We
went up to third-order terms. In other words, we considered linear, quadratic, and cubic
terms plus double and triple interactions. We proceed in the same way as in the previous
LDA step, i.e., the number of variables was increased until achieving the maximum leave-
one-out accuracy. The maximum leave-one-out accuracy was reached with six variables
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and including more variables did not change the accuracy. We found significantly relevant
the level of Ac-Orn and the squared concentration of acyl ornithine: Ac-Orn2 (Figure 4).
The other two relevant parameters were the levels of C3 and PC aa C42:6. More specifically,
we found that C3*Ac-Orn, C3*PC aa C42:6, C32*Ac-Orn, and C3*Ac-Orn2 parameters
are relevant (Figure 3) and that the level of C3-DC (C4-OH) can be omitted. With these
six variables resulting from knowing the levels of three metabolites, we achieved a 100%
leave-one-out accuracy. Including more variables could not increase the accuracy, which
was already 100% with the ones selected.
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3.2.1. Descriptive Statistics: Boxplots

We can use boxplots as before to illustrate the discriminative power of each of the
selected variables. Indeed, we can reasonably interpret the behaviour of all the six vari-
ables. They offer different patterns of discrimination that, when combined, allow for 100%
classification accuracy (Figure 5).
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Thus, the variable C3*PC aa C42:6 allows for discriminating glaucoma from the rest.
The variable Ac-Orn and the variable Ac-Orn2 allow for differentiating diabetes from
controls. The variable C3*Ac-Orn and the variable C3*Ac-Orn2 seem also to contribute to
this classification but also helps to distinguish controls from the rest. Finally, the variable
C32*Ac-Orn aims substantially to discriminate controls from the rest.

Importantly, by using all variables together and not just one, we can classify all subjects
into their groups, motivating the use of multivariate techniques in metabolomics.

3.2.2. Correlation Analysis

As in the data earlier presented, a positive association between each pair of variables
was noted. In general, the points on the scatterplots can fit on a straight line with a few
exceptions (Supplementary Figure S2). For example, a curvilinear relationship is observed
between the variable C3*PC aa C42:6 and the variable C3*Ac-Orn. Importantly, regarding
the strength of the relationship between variables, we observe strong linear relationships
between variables that increase the classification performance. Thus, we observe the
strongest linear relationship between the variable C3∗Ac-Orn and the variable C32*Ac-Orn
(Pearson coefficient = 0.8972, p-value < 0.00001). It is worthwhile to stress that C3*Ac-Orn
is a selected variable of the model, and C32*Ac-Orn is the same variable multiplied by C3;
if C3 was a constant, the correlation would be exactly 1.

Relevant information can be obtained by evaluating whether the six selected variables,
which allowed a 100% discrimination power, were correlated (Table 2). We observe a
high degree of correlation among variables, with almost all pair-wise correlations being
significant. The statistical significance and high degree of correlation within the six selected
variables suggests a more accurate (non-linear) metabolic signature (Figure 5 and Table 2).

Table 2. Correlation between the six selected variables. The Pearson coefficient is shown for
pair-wise correlations. A total correlation would be defined by coefficient = 1. The asterisk denotes
uncorrected p-value < 0.05.

Ac-Orn 0.8575 * 0.3760 * 0.2715 0.1843 0.1986

Ac-Orn2 0.3719 * 0.1813 0.1710 0.3177 *

C3*Ac-Orn 0.7258 * 0.8972 * 0.7186 *

C3*PC aa
C42:6 0.7808 * 0.4784 *

C32*Ac-Orn 0.7293 *

C3*Ac-Orn2

The 36 scatterplots showing the relationship between each pair of variables is depicted
in Supplementary Figure S2. The six variables are: Ac-Orn, Ac-Orn2, C3*Ac-Orn, C3*PC
aa C42:6, C32*Ac-Orn, and C3*Ac-Orn2. In each scatterplot in Figure S2, the values corre-
sponding to one variable of a given pair of variables appear on the horizontal axis, and the
values corresponding to the second appear on the vertical axis. In each graph every point
corresponds to data from a sample (control, glaucoma, or diabetes).

Taken together, it appears that the non-linear pooling of the concentration of these
metabolites allows all the individuals to be correctly classified. In future studies, we
anticipate that the non-linear pooling feature will be of extreme importance for optimal
performance of AI-based diagnostic tools.

3.2.3. Non-Linear Method to Achieve 100% Accuracy

Intelligent techniques hold promise for disease diagnosis, but the underlying substrate
is currently missing [15]. Intelligent methods use learning algorithms ranging from very
simple linear regression to LDA approaches and complex deep learning tools. They work
on training and testing data sets so that the system can “detect” a disease to make an early
diagnosis. Our intelligent-based method uses LDA as a core algorithm and consists of
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considering the metabolites useful for discrimination among the two diseases and healthy
controls and providing a diagnosis. As expected, the method applied to all samples, cases,
and controls, led to the confusion matrix in Table 3, which shows full success in stratification.
In fact, the overall accuracy, sensitivity, specificity, PPV, and NPV are 100%.

Table 3. Confusion matrix. Real means the diagnostic received by the clinician and test means the
result of the stratification made upon applying the equations here devised.

Test

Real
Control Glaucoma Diabetes

Control 31 0 0

Glaucoma 0 8 0

Diabetes 0 0 7

As reported in the Section 2, there was a statistical difference between the groups
in terms of age, so we reran the analyses excluding the younger controls. The reduced
data set consisted of 20 controls, 8 glaucoma and 7 diabetes. Importantly, the analysis,
after excluding the younger controls, yielded similar results (Table 4). Essentially, after
excluding the young control cases, what happens is that one control is misplaced as
glaucoma; none of the cases, neither glaucoma nor diabetes, appear as controls using the
new equations obtained.

Table 4. Confusion matrix for the analysis resulting from excluding the youngest within the
control group. Real means the diagnostic received by the clinician and test means the result of the
stratification made upon applying the equations here devised.

Test

Real
Control Glaucoma Diabetes

Control 19 0 1

Glaucoma 0 8 0

Diabetes 0 0 7

We also computed the a posteriori probability for each subject. A posteriori probability
is a probability obtained from Bayesian reasoning. We can initially assign a probability
that an individual belongs to a group based on vague initial information. For example,
if there are three possibilities, we can consider the probability of a subject belonging to
a group. This allows us to ‘assume’ or ‘suppose’ a prior probability and then obtain a
posteriori probability from handling the data using the developed algorithm. Such “a
posteriori” probability, if the algorithm works, should be close to one. Figure 6 illustrates
the a posteriori probability calculated for each subject.

Figure 6. Cont.
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Figure 6. A posteriori probability for each subject. Posterior probabilities of individuals being
classified into the control, glaucoma, and diabetes groups, respectively, using the LDA learned with
leave-one-out cross-validation. Each bar represents a subject, depicted with a different colour. The
overall performance of the LDA is 100% (data of members in a given group have a greater posterior
probability of 0.5 for the graph in the corresponding group).

3.2.4. 2D Map Space Reflecting Position of Controls, Glaucoma Patients, and Type 2
Diabetes Patients

To allow a graphical depiction of the regions occupied by the three groups: control,
glaucoma, and diabetes, two discriminant functions are required, i.e., total number of
groups minus 1. For the underlying geometry the Mahalanobis distance was considered.

The two discriminant functions LD1 and LD2 are:

LD1 = 10.221 × Ac-Orn − 6.133 × Ac-Orn2 − 63.218 × C3*Ac-Orn + 345.456 ×
C3*PC aa C42:6 + 30.440 × C32*Ac-Orn + 27.188 × C3*Ac-Orn2.

(1)

LD2 = 4.512 × Ac-Orn − 3.491 × Ac-Orn2 − 47.064 × C3*Ac-Orn − 28.857 ×
C3*PC aa C42:6 + 45.883054 × C32* Ac-Orn + 16.104838 × C3*Ac-Orn2.

(2)

These equations come from applying the LDA in the space generated by the six
variables considered.

The discriminant regions constrained by the LDA are illustrated in Figure 7; essentially,
they are the cake-like pieces that delimit each group. Each region is determined by the
closest points to the centre of mass of each group. The criterion is purely geometric,
coincident with the maximum likelihood, under the hypothesis of multivariate normality.
The three boundaries among the three groups are optimal and guarantee 100% success in
diagnosis using the above-described protocol. Each dot in Figure 7 corresponds to the data,
LD1 and LD2, from the sample of an individual.
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4. Discussion

Historically, biomarkers still in use today were developed using clinical chemistry ap-
proaches and determining the concentration of small compounds in urine and serum/plasma.
The search for valuable biomarkers to detect disease and assess therapy or disease pro-
gression has recently relied more on genomic and proteomic techniques than metabolomic
approaches. However, this trend may soon change in favour of metabolomics due to the
recent possibility of determining hundreds of compounds with high precision using a few
microliters of sample. This opens a new window of opportunity to identify small-molecule
biomarkers for virtually any disease.

Almost any critical metabolite that is overrepresented or underrepresented in dis-
ease conditions may be among those 200–500 small molecules whose determination in
body fluids is now possible via high-throughput metabolomics. Due to the potency of
newly developed mass spectrometry-based methodology, it is possible to simultaneously
measure, in microliters of samples placed in 96-well plates, a variety of lipophilic and
hydrophilic compounds, including amino acids, biogenic amines, glycerophospholipids,
sphingomyelins, and acyl-carnitines. Indeed, with the advent of metabolomics, the lit-
erature concerning studies carried out using samples of patients with different diseases
ranging from cardiovascular to neurological disorders is growing exponentially [16–19].

The altered concentration of some metabolites found in the AH of patients in com-
parison to healthy individuals is providing valuable insights into the pathophysiological
mechanisms of multiple diseases, including, but not limited to, open-angle glaucoma and
type 2 diabetes [5,14], but a diagnostic tool is missing. Our laboratory has recently pro-
vided metabolomics-based evidence of altered arginine metabolism as a principal factor
in Parkinson’s disease [20]. Usually, the studies give insight into the pathophysiological
mechanisms while being unable to propose useful/promising biomarkers. Diagnostic tools
are lacking because a significant drawback is the procedure for selecting disease-specific
biomarkers capable of addressing disease progression, which is specifically challenging in
chronic disease.

The present study moves towards combining metabolomics data with intelligent
algorithms to improve the discrimination power of modern, i.e., metabolomics-based
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techniques in clinical chemistry research. The paradigm supported here demonstrates the
utility of combining metabolomics with advanced computational approaches to distinguish
between patients with open-angle glaucoma, type 2 diabetes, and healthy controls. The
novel method uses LDA as the learning algorithm. The scheme is based on the standard
intelligent-based pipeline, and the hidden layer consists of two learning steps. First, we
select the most discriminative metabolites among them. Then, we combine the significant
ones to mathematically generate higher-order terms to classify people into glaucoma,
diabetes, and control with 100% accuracy.

After executing the full protocol, the final three selected metabolites are Ac-Orn amino
acid, C3 acyl-carnitine, and PC aa C42:6 phosphatidylcholine. The resulting six classification
variables are Ac-Orn, Ac-Orn2, C3*Ac-Orn, C3*PC aa C42:6, C32*Ac-Orn, and C3*Ac-Orn2.
Interestingly, the “intelligent” algorithm selects metabolites from different biochemical
families resulting in a method that fits all subjects regardless of their pathological condition.
Very relevant is that 100% success is achieved with only three metabolite concentrations
resulting into 6 variables consisting of non-linear combinations.

In our previous publications concerning the composition of AH, we were interested
in looking for differentially concentrated metabolites and why they could give insight
into disease mechanism. We discovered that glutamine, kynurenine, acyl-carnitine and
lysophosphatidylcholine levels are altered in the AH of glaucoma patients [14], that bio-
genic amines are differentially concentrated in the AH of type 2 diabetes patients [5] and
that the metabolism of arginine is altered as deduced from the composition of the AH
of Parkinson’s disease patients [20]. In the present study, we use the data from previous
studies to develop a novel methodology for disease diagnosis and management considering
the perspective of personalized medicine. Accordingly, the selected metabolites may not
have any relevant function at the level of either pathophysiology or recovery from disease.
This lack of concern for the causes of altered metabolite levels may seem limiting, but it
leads to unbiased analysis. The enormous task of considering all possibilities is necessary
to select the simplest but most successful (linear or non-linear) combination of metabolites,
but once the final algorithm is obtained, the diagnostic/prognostic tools are ready to use.
Furthermore, since only 3–5 metabolites are required, the robustness of the method is not
linked to enormous costs when translated to the clinical practice, but to the determination
of the level of those 3–5 molecules in the ad hoc body fluid.

The main limitation of the study is the impossibility of external validation of the
approach. This is due to the uniqueness of the samples, constituted by AH, which in
fact cannot be used for routine diagnosis/prognosis. The method consists of a proof-
of-concept on whether the linear and/or non-linear combination of the level of a few
metabolites can serve for diagnosis/prognosis using body fluids such as plasma, urine,
sweat, or cerebrospinal fluid. Another limitation is the reduced sample size and the unequal
distribution of ages between the control group and the two patient groups. However, by
implementing cross-validation with a leave-one-out strategy, we demonstrate that the
method is robust, that is, that, despite all limitations, it provides excellent discriminative
power. Reducing the control group to cancel out differences between groups in terms of
age leads to “almost” the same classification accuracy, except for one control. Following
the use of, for example, serum and external validation using enough patients and age-
matched controls, our method will hopefully be translatable to clinical practice in a precision
medicine context.

In line with this study, a few papers have recently been divulged on implementing
tools for diagnosing glaucoma [21,22] and type 2 diabetes [23,24]. In addition, two patent
applications have recently been filed by colleagues from France [25] and Spain [26] to reveal
metabolomic signatures for glaucoma; the latter application seems ready for commercial-
ization. However, to date, we have not found any report of classifying diseases together or
in conjunction with intelligent-based methods.

It is imperative to implement clinical tools that help doctors in their practice with a
special focus on precision diagnosis and personalized medicine. Our results are auspicious,
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and the procedure we present may pave the way for building an intelligent-based diagnostic
and assessment tool with algorithms that can be further used in clinical research. The
possibility of using the tool to evaluate the progression of the disease and/or evaluate the
efficacy of new therapeutic routes is also relevant. The success of this project will foster
the integration of two emerging technologies, metabolomics, and advanced computational
methods, which have yet to be fully harnessed together.

5. Conclusions

Our results open the possibility to devise a method to identify a number of clinical
chemistry parameters in human body fluid, that in combination could lead to the ability
to differentiate between diseases. Equations such as those here presented to differentiate
between open-angle glaucoma and type 2 diabetes using samples from AH of the eye, can
be implemented using any fluid for which reliable levels of metabolites can be obtained.
By analysing such levels in samples from individuals with different diseases, it would be
possible to select a few of them and devise an equation that would lead to unbiased and
reliable diagnosis. Once the 3–5 parameters are selected, the method would be cost-effective
because it would consist of the determination the level of those 3–5 molecules in the ad hoc
body fluid. Hence, the method here proposed can be scaled up using data from several
diseases with the goal of building a “digital assistant” capable of diagnosing, from serum,
urine, sweat, and/or cerebrospinal fluid, any disease, with high precision and allowing
patient stratification, and assessment of therapy efficacy and disease progression. The
strategy here put forward, in our opinion, would be valuable in a personalized/precision
medicine context.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14030149/s1, Figure S1: Correlations between pairs of the
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