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Abstract: Specialized metabolites are produced via discrete metabolic pathways. These small
molecules play significant roles in plant growth and development, as well as defense against en-
vironmental stresses. These include damping off or seedling blight at a post-emergence stage.
Targeted metabolomics was followed to gain insights into metabolome changes characteristic of
different developmental stages of sorghum seedlings. Metabolites were extracted from leaves at seven
time points post-germination and analyzed using ultra-high performance liquid chromatography
coupled to mass spectrometry. Multivariate statistical analysis combined with chemometric tools,
such as principal component analysis, hierarchical clustering analysis, and orthogonal partial least
squares–discriminant analysis, were applied for data exploration and to reduce data dimensionality
as well as for the selection of potential discriminant biomarkers. Changes in metabolome patterns of
the seedlings were analyzed in the early, middle, and late stages of growth (7, 14, and 29 days post-
germination). The metabolite classes were amino acids, organic acids, lipids, cyanogenic glycosides,
hormones, hydroxycinnamic acid derivatives, and flavonoids, with the latter representing the largest
class of metabolites. In general, the metabolite content showed an increase with the progression
of the plant growth stages. Most of the differential metabolites were derived from tryptophan and
phenylalanine, which contribute to innate immune defenses as well as growth. Quantitative analysis
identified a correlation of apigenin flavone derivatives with growth stage. Data-driven investigations
of these metabolomes provided new insights into the developmental dynamics that occur in seedlings
to limit post-germination mortality.

Keywords: developmental stage; metabolome; multivariate data analysis; specialized metabolite;
Sorghum bicolor

1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) is a food and staple crop that is indigenous to
the African continent, of particular use as a grain crop in arid areas. Sorghum is cultivated
for either the production of bioenergy, animal feed, and/or human consumption in over
30 countries; therefore, the production of this crop plays a significant role in the global econ-
omy, as well as in alleviating food insecurity and unemployment [1]. Sorghum seedlings
are very delicate during the emergence period and extremely vulnerable to soil-borne
pathogens under suboptimal growing conditions. Many fungal pathogens that are common
soil inhabitants (e.g., Rhizoctonia, Fusarium, Sclerotinia, Verticillium, and Pythium spp.) can
cause pre- and post-emergence damping-off or seedling blight. Affected seedlings may
show yellowing, wilting, and death of leaves, with the roots of diseased plants discol-
ored and rotten (https://infonet-biovision.org/plant_pests/damping-diseases, accessed
on 15 December 2023). Some soil-borne diseases have been a serious problem for many
decades and are responsible for restrictions on agricultural yield. Thus far, no biological
control strategies have been developed [2].
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The ability of a plant to overcome attempted pathogen attacks determines the level
of resistance thereof. Small-molecule metabolites are closely linked to the phenotypic
characteristics of a plant or cultivar. The phenotypically observable changes in the develop-
mental trajectory of sorghum seedlings reflect the underlying metabolomic reconfigura-
tions. Generally, the type and concentration(s) of specialized metabolites are determined
by the species, genotype, physiology, developmental stage, and environmental factors
during growth [3,4]. Sorghum contains various specialized phytochemicals that contribute
to the nutritional properties and the development of the crop. The most predominant
metabolites in sorghum plants are phenolic compounds, which include flavonoids, tan-
nins, anthocyanins, and cinnamic acids [5]. Flavonoids and phenolic acids support crop
growth in extreme environmental conditions and provide the plant with adaptive coping
mechanisms to deal with both abiotic and biotic stresses. These phenolic compounds
have associated antioxidant properties, known to reduce oxidative stress [6], as well as
antimicrobial properties [7–9].

To descriptively understand developmental changes of sorghum, ‘omics’ sciences,
such as metabolomics, have evolved to be indispensable in interrogating cellular bio-
chemistry. As such, it contributes to a comprehensive characterization of the metabolome
and cellular dynamics of the biological system under consideration [10,11]. Such stud-
ies contribute towards improving breeding strategies (correlating agronomical traits to
a metabolic phenotype), creating stress-resilient crops, and increasing crop quality and
yield [9,11]. Thus, reported herein is a liquid chromatography–mass spectrometry (LC-
MS)-based metabolomics study to elucidate metabolic changes of sorghum seedlings over
the early growth period following germination. Chemometrics methods, such as principal
component analysis (PCA) and orthogonal partial least squares–discriminant analysis
(OPLS-DA), were applied to mine and interpret the generated metabolomics datasets, elu-
cidating differential metabolic profiles at different stages, i.e., time points post-germination.
Such insights would point to the dynamics of seedling metabolism, also revealing possible
biochemical events that are involved in protection and adaptation at this early growth stage
of the plants.

2. Materials and Methods
2.1. Sorghum Seedling Cultivation

Seeds from the Sorghum bicolor cv. NS 5511, a red/bitter seed variety [9], were ob-
tained from a commercial seed supplier, (Agricol, Pretoria, South Africa), and cultivated
in germination mix soil (Culterra, Muldersdrift, South Africa). The seeds were sown
in trays (23 × 36 × 6 cm) under controlled greenhouse conditions: a light/dark cycle of
12 h/12 h, an average light intensity of 85 µmol/m2/s, and the temperature regulated to
between 22 and 24 ◦C. The seedlings were harvested at 7, 11, 14, 18, 22, 25, and 29 days post-
germination (d.p.g.). For data analysis, days 7, 14, and 29 were designated as corresponding
to ‘early’, ‘middle’, and ‘late’ developmental stages, respectively. The experimental de-
sign included three independent biological replicates of each time point. The harvested
leaves were weighed, snap-frozen to quench metabolic activity, and stored at −80 ◦C until
extraction (Supplementary Figure S1A,B).

2.2. Metabolite Extraction and Pre-Analytical Sample Preparation

Metabolites were extracted as previously described [9]. Briefly, frozen leaf tissue was
mixed with a cold extraction solvent (80% aqueous methanol) in a ratio of 1:15 (m/v).
The mixture was homogenized using an Ultra-Turrax homogenizer (CAT Scientific, Berlin,
Germany), followed by sonication for 15 s with a probe sonicator (Bandelin Sonopuls,
Berlin, Germany) set at 55% power. Homogenates were centrifuged at 5000× g and 4 ◦C
for 25 min. The supernatants of each sample were then concentrated by evaporation
under vacuum to 1 mL using a rotary evaporator set at 55 ◦C. The 1 mL extracts from each
sample were further evaporated to complete dryness with a speed vacuum concentrator
(Eppendorf, Merck, Johannesburg, South Africa) set at 45 ◦C. The final step of sample
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preparation consisted of resuspending the dried extracts in 50% LC-grade methanol (Romil,
Cambridge, UK) in a 1:10 m/v ratio. This was followed by filtering samples through
0.22 µm nylon syringe filters into glass chromatography vials fitted with 500 µL inserts.
The filtered extracts were capped and kept at −20 ◦C until analysis.

2.3. Ultra-High Performance Liquid Chromatography (UHPLC) Coupled to High-Definition Mass
Spectrometry (MS) and Data Processing

Analyses were performed on a Waters Acquity UHPLC connected in tandem to a
SYNAPT G1 Q-TOF mass spectrometer via an electrospray ionization (ESI) interface and
operated with MassLynxTM software (ver. 4.1, Waters Corporation, Manchester, UK).
Sample extracts were chromatographically separated on a reverse-phase C18 column
(150 mm × 2.1 mm × 1.8 µm—HSS T3, Waters Corporation, Milford, MA, USA) at 60 ◦C.
The mobile phase consisted of 0.1% formic acid in MilliQ water (solvent A) and 0.1% formic
acid in acetonitrile (Romil, Cambridge, UK) (solvent B) with a flow rate of 0.4 mL/min.
Gradient elution was used, and the initial conditions were 2% B and maintained for 1 min.
The gradient was ramped up to 95% B at 15 min and maintained for 2 min, and then
changed to the initial conditions at 18 min, followed by a 2 min equilibration time of
the column. The total chromatographic run time was 20 min, and the injection volume
was 2 µL. Each sample, originating from three independent biological replicates, was
analyzed in triplicate (n = 9) in both positive and negative ESI modes. Sample acquisition
was randomized, and the quality control (QC) sample used to monitor the performance
and stability of the UHPLC-MS system was repeatedly injected to evaluate any analytical
variability. The conditions were set as follows: capillary voltage of 2.5 kV, sampling cone
at 30 V, extraction cone at 4 V, cone gas flow of 50 L/h, desolvation gas flow of 550 L/h,
source temperature at 120 ◦C, desolvation temperature at 450 ◦C, scan time of 0.1 s, and
mass range of 100–1000 Da. Leucine enkephalin (50 pg/mL, [M+H]+ = 556.2771 Da and
[M–H]− = 554.2615 Da) was used as a reference calibrant at a flow rate of 0.1 mL/min. It
was sampled every 15 s and produced an average intensity of 350 counts/scan in centroid
mode. The mass accuracy window was 0.5 Da, with a typical mass accuracy ranging from
1 to 3 mDa.

In addition, a data-independent acquisition (DIA) method, namely MSE, was applied;
the MS analyses were set to carry out non-fragmented as well as five fragmenting exper-
iments simultaneously by applying alternating collision energy of 0 eV (unfragmented)
and from 10 to 50 eV (fragmented). This was performed to generate molecular fragmen-
tation data for downstream structural elucidation required for compound annotation
or identification.

Pre-processing of raw MS data was performed using the MarkerLynxTM application
manager for MassLynxTM XS software version 4.1 (Waters Corporation, Manchester, UK),
for detection and alignment of peaks, as well as cleaning of data matrices for reduced noise
and redundancy.

2.4. Metabolite Annotation

Annotation of spectral features was based upon physicochemical properties and/or
spectral similarity with public/commercial spectral libraries and according to level 2
of the Metabolomics Standards Initiative [12]. Based on accurate mass determinations
from the UHPLC-MS analysis, a potential empirical formula was calculated for each peak
of interest using the m/z values and searched against the databases such as PubChem
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 30 June 2023), the Dictionary of Natural
Products (http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml, accessed
on 31 May 2023), MS-DIAL (Mass Spectrometry-Data Independent Analysis software,
http://prime.psc.riken.jp, accessed on 16 July 2023, version 4.9.221218) and ChemSpider
(http://www.chemspider.com/, accessed on 16 July 2023), also taking possible adduct
formation into account. The chemical structures were confirmed by inspecting the MSE
information derived from the MS analyses at the five different fragmentation conditions.

https://pubchem.ncbi.nlm.nih.gov/
http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml
http://prime.psc.riken.jp
http://www.chemspider.com/
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In addition, the generated data matrices were also processed using the Taverna work-
bench (www.taverna.org.uk, accessed on 5 January 2019) for PUTMEDID_LCMS identifi-
cation of metabolite workflows by correlation analysis, annotation of metabolic features,
and putative identification of metabolites, as previously described [10,13]. For the Taverna
workbench analysis, data matrices were formatted from MarkerLynx-based data processing.
The Taverna Metabolite ID procedure consists of three key workflows: (i) Pearson-based
correlation analysis (List CorrData), (ii) metabolic feature annotation (annotate Massmatch),
permitting the grouping of ion peaks with comparable properties like Rt, and annotating
features with the type of m/z ion (molecular ion, isotope, possible adducts, etc.) assumed
to be derived from the same metabolite. The elemental composition/molecular formula
(MF) of each m/z ion was then computed, and (iii) metabolite annotation (matchMF-MF) of
the computed MF was automatically compared and matched to the MF from a pre-defined
reference list of sorghum metabolites [9,10,14].

2.5. Visualization and Comparison of Annotated Metabolite Trends

A triangle/ternary plot, constructed with Microsoft Excel, was used for the overall
comparison of the annotated compounds in the analyzed samples [15]. Triangle plots are
graphical representations of variables that sum to a constant (100%), represented within a
two-dimensional triangle. The original data were normalized to 100% and transformed
into X and Y coordinates, which were then plotted on a scatter plot with coordinates for a
triangle. Heatmaps support the visualization of multidimensional datasets and identify
metabolic patterns under similar experimental conditions. In addition, heat maps can
be used to locate hidden groups among identified metabolites and associations between
experimental groups and metabolic changes [16]. Following annotation of the discriminant
features, heat maps were constructed for the corresponding metabolites using the Metabo-
Analyst bioinformatics tool suite (version 4.0; http://www.metaboanalyst.ca/, accessed
on 3 December 2022) [17]. Average peak intensities (n = 9) were used to construct heat
maps illustrating differences in the relative concentrations of the selected analytes from the
different groups.

2.6. Data Mining, Multivariate Data Analysis, and Statistical Modeling

For data mining and multivariate data statistical analysis (MVDA), annotated metabo-
lites (43) were further analyzed using SIMCA 15 (Soft Independent Modelling of Class
Analogy, including the ‘omics’ skin) (Sartorius, Stedim Data Analytics AB, Umeå, Sweden)
and MetaboAnalyst 4.0 (http://www.metaboanalyst.ca/, accessed on 23 March 2022). Such
analyses included data exploration and clustering. Before MVDA and computation of
chemometric models, log transformation and Pareto scaling were performed on the data
for variable normalization. As unsupervised methods, principal component analysis (PCA)
was applied to reduce the dimensionality of the data and to obtain an overview of the
metabolic data, general clustering, and trends. Hierarchical cluster analysis (HiCA) was
used to analyze the natural structure and patterns within the datasets. The information
derived from these unsupervised methods was used to obtain more insights by applying a
supervised method, orthogonal partial least squares–discriminant analysis (OPLS-DA), as a
binary classification method within a reduced dimensional space. OPLS-DA also identifies
discriminant molecules specific to the different sample group classifications. Here, the
comparisons included the 7 vs. 14 d, 7 vs. 29 d, and 14 vs. 29 d groups. OPLS-DA models
were validated using various multivariate statistical tools and included explained variation
(R2) and predictive ability (Q2) metrics, the analysis of variance testing of cross-validated
predictive residuals (CV-ANOVA, p-value < 0.05 as a cut-off), and response permutation
tests (with n = 100) [18], as described in the legends to the figures. These MVDA models
were constructed for comparison of the seedling sample datasets for all the time points
post-germination. OPLS-DA S (loadings/scatter) plots were used to identify m/z features
or variables with both high correlation and covariation, [p(corr) ≥ 0.5, ≤−0.5 and (p1) ≥ 0.1,
≤−0.1]. From the OPLS-DA analyses, variable importance in projection (VIP) plots were

www.taverna.org.uk
http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
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used to identify the most significantly altered metabolites extracted from the OPLS-DA
models to explore their potential biological significance. VIP values > 1 were used as the
cut-off for statistical significance and to avoid possible bias in feature selection.

2.7. Metabolomics Pathway Analysis and Network Correlation Analyses

The identified significant metabolites (with their respective Kyoto Encyclopedia of
Genes and Genomes (KEGG; https://www.genome.jp/kegg/, accessed on 23 May 2022)
identifiers) were uploaded into the MetPA tool for identification, analysis, and visualization
of the affected metabolic pathways (MetaboAnalyst 4.0 (http://www.metaboanalyst.ca/,
accessed on 10 October 2022). MetPA performs pathway topological analysis, and the
possible biological roles can be inferred/evaluated through enrichment analysis [14,18].
The pathway analysis algorithms specified for over-representation analysis were the hyper-
geometric test, and for pathway topology analysis, it was the relative betweenness central-
ity [10]. The global significance of a pathway enrichment is estimated by ranking the p-value
from real data among the p-values from permutation data to adjust for type I error [18].
MetPA-computed metabolic pathway analysis generates a visual representation of infor-
mation showing all matched pathways according to the log p-values and impact scores, as
shown in Table S2. As a complementary approach, the interconnectedness of the active path-
ways was modeled using KEGG MAPPER (https://www.genome.jp/kegg/mapper.html,
accessed on 24 May 2022) by uploading KEGG identifiers of the annotated metabolites
via a searcher pathway option, where compounds are searched against KEGG pathway
maps. Statistical analyses are also used to describe these pathways by the p-values and
false discovery rate (FDR) of the individual metabolites [19]. The p-value was set at <0.1
and the FDR cut-off was <0.5.

Network correlation analyses were developed to examine direct biochemical associa-
tions. Here, assigned KEGG identifiers of each annotated metabolite were uploaded on the
KEGG mapping tool (https://www.genome.jp/kegg/tool/map_pathway1.html, accessed
on 24 May 2022), using the organism-specific search mode for Arabidopsis thaliana. The
network was visualized using the Cytoscape version 2.8.2 tool (https://cytoscape.org/,
accessed on 28 May 2022), and network characteristic mapping reflected chemometric
modeling information via network edge (or link) and node (or vertex) features [20]. The
centrality parameter is a quantitative measure of the position of a node relative to the other
nodes, commonly applied in the estimation of a node’s relative significance in network
organization. Considering that metabolic networks are directed graphs, the significance
role played by a compound is determined using ‘relative betweenness centrality’ and
‘out degree centrality’ in MetPA. The pathway impact is measured as the collection of
the significance measures of the corresponding metabolites normalized by the sum of the
significance measures of the total metabolites in each pathway.

2.8. Multiple Reaction Monitoring (MRM) UHPLC-MS/MS Method for the Quantification of
Targeted Defense-Related Flavonoids

Pure, authentic standards were obtained from Chengdu Biopurify Phytochemicals
(Chengdu, Sichuan, China), while D-fluorophenylalanine was obtained from Sigma-Aldrich
Merck (Johannesburg, South Africa). To determine the selectivity of the method in the sepa-
ration of the targeted flavonoids, 100 ppm stock solutions of the pure standards (apigenin,
apigetrin, luteolin, luteoloside, naringenin, vicenin-2, vicenin-3, vitexin, isovitexin, and
internal standard D-fluorophenylalanine (Table S3)) were separated using reverse phase
chromatography followed by multiple reaction monitoring (MRM) quantification [21]. The
prepared stock standard solutions were analyzed using a C18 reverse phase chromatogra-
phy column (Restek AQ, 100 mm × 2.1 mm × 3 µm) on a Shimadzu Nexera 20A UHPLC
system connected to a Shimadzu 8050 triple quadrupole mass spectrometer with an ESI
interface switching between both positive and negative ionization modes (Shimadzu, Ky-
oto, Japan). The standards were injected in triplicate and separated using a binary gradient
(Solvent A: Pure MilliQ Water/ 0.1% (v/v) formic acid, Solvent B: UHPLC grade methanol/

https://www.genome.jp/kegg/
http://www.metaboanalyst.ca/
https://www.genome.jp/kegg/mapper.html
https://www.genome.jp/kegg/tool/map_pathway1.html
https://cytoscape.org/
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0.1% (v/v) formic acid) at a 0.40 mL/min flow rate. In the binary gradient, the concentration
of solvent B was increased in 5% (v/v) increments to 25% (v/v) at 2–18 min and 95% (v/v)
at 25–30 min before reducing the concentration to 2% at 31 min.

The instrumental conditions for MS/MS detection performed in positive and negative
ion modes with MRM scanning were set as follows: 3 L/min nebulizing gas flow, 15 L/min
drying gas flow, 4.5 kV interface voltage, 400 ◦C heat block temperature, 250 ◦C desolvation
temperature, 1.6 × 10−3 Pa ion gauge vacuum. The precursor ions were directly infused
into the triple quadrupole MS in the multiple reaction monitoring mode to determine the
optimum conditions for generating product ions to be used for quantification. Briefly, the
individual precursor ions were selected in the first quadrupole (Q1), followed by collision-
induced dissociation (Q2) with nitrogen gas at 230 kPa, and transitioned into product
ions, which were detected in the third quadrupole (Q3). The built-in (vendor specific)
LabSolutions optimization software (Shimadzu, Kyoto, Japan) optimized the individual col-
lision energies (CEs) for the authentic standard compounds. The most favorable ESI mode
was determined from the peaks with the highest intensity. The optimized CE, precursor-
to-product ion transitions, and product ions of the individual standard compounds are
summarized in Table S3.

For the preparation of calibration curves, standard stock solutions of 100 ppm were
prepared from the pure standard compounds dissolved in a 50% (v/v) UHPLC Grade
Methanol/MilliQ Water solvent. Serial dilutions were prepared to 5, 1, 0.5, 0.25, 0.1, and
0.05 parts per million (ppm, 1 ppm = 1 mg/L). The standards were prepared in triplicate
and analyzed as mentioned above, with each sample injected in triplicate. The standard
curves were constructed by plotting the acquired integrated peak area against the standard
concentration. The standard curve equations and R2 values are summarized in Table S4.
The obtained values in ppm were converted to ng/g plant leaf material (wet weight).

The limit of detection (LOD), the lowest analyte concentration that can be detected
with a 1:10 signal-to-noise (S/N) ratio, and the limit of quantification (LOQ), the lowest
level at which the analyte can be quantified with a 1:3 signal-to-noise (S/N) ratio [21], were
determined by the preparation of serial dilutions (0.00025–5 ppm) of the pure standard
solutions to determine the lowest detectable concentrations, as analyzed on the UHPLC-
3Q-MS system. The LOD and LOQ of all the standard compounds and internal standard
were determined at 0.025 ppm and 0.05 ppm, respectively.

SPSS software (IBM SPSS Statistics, version 29 (IBM Corp., Armonk, NY, USA) was
used for descriptive statistics. Here, one-way analysis of variance (ANOVA) was performed
to compare the mean values of individual metabolites at different time points. ANOVA was
followed by the Tukey post hoc test, where differences between the means were considered
significant at p < 0.05, indicated in graphs with an asterisk.

3. Results and Discussion

Early development is a perilous stage in the life of seedlings, as the plant must es-
tablish itself in the environment during this time. As a strategy to contribute to survival,
plants utilize the synthesis of specialized metabolites during this phase [22], which involves
interactions with beneficial or pathogenic microorganisms and the deployment of possible
defense mechanisms [23,24]. Thus, the focus was to interrogate the metabolomic repro-
gramming of sorghum seedlings over the early growth period following germination to
identify key metabolite markers that define the early development of the plant.

3.1. UHPLC-MS Analyses of Sorghum Leaf Extracts and Initial Data Analysis

The methanolic extracts from different developmental stages displayed inherent multi-
dimensionality due to the complex physicochemical characteristics (e.g., polar vs. nonpolar;
aglycone vs. glycosides) of the sample constituents. The UHPLC-MS chromatograms
revealed differential profiles, which included variation in peak intensities and pres-
ence/absence of peaks. This indicates differential metabolite composition and content and
is indicative of time-related changes to the metabolomic architecture (Figure S2A,B).
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Untargeted metabolomics generates very large datasets that can be approached using
two methods: (i) the traditional route, whereby the initial steps entail the application of
chemometrics methods, followed by the annotation of the selected discriminant variables,
and (ii) targeted profiling, whereby metabolite annotation is initially performed, then
followed by the application of chemometrics methods [25–27]. The latter route was followed
in this study, with the focus on previously identified key metabolites in the defense response
of sorghum seedlings [9,10,14].

The metabolites are of different chemical classes, including amino acids, cyanogenic
glycosides, flavonoids, hydroxycinnamic acid (HCA) derivatives, hormones, lipids, organic
acids, and other phenolics (Table S1). As shown in Figure 1, the flavonoid class of phy-
tochemicals forms the largest group of metabolites, while the cyanogenic glucoside class
forms the smallest group compared to all of the other classes of metabolites.
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Figure 1. Classes of annotated metabolites present in hydromethanolic extracts of developing
Sorghum bicolor seedlings. Of all the annotated metabolites (Table S1), the flavonoids, derivatives
of hydroxycinnamic acids, and lipids were the major classes associated with early growth and
development across all time points, days 7–29.

A ternary plot (Figure 2) was generated to depict the global relative quantification
levels of different classes of metabolites across the early, middle, and late seedling de-
velopmental stages (corresponding to days 7, 14, and 29 post-germination, respectively).
This plot shows the relative quantification of members of each metabolite class at each
of the three stages, as represented on the ternary at each point. At each apex of the plot
is the maximum relative quantification of the metabolites at that particular growth stage
(i.e., 100%), which then decreases along the axes towards the next apex. It allows us to see
how the points cover the space and to detect potential zones that should be explored in
further experiments. From a global point of view, a larger content of metabolites is observed
at the late stage as compared to the middle and early stages. It can also be deduced that
the phenylpropanoid-derived phenolic compounds (HCA derivatives and flavonoids) are
more prevalent in the late stage compared to early and middle stages, whereas lipids are
more concentrated in the early and middle stages compared to the late stage. Other classes,
such as amino acids and hormones, are clustered between the early and late stages.
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Figure 2. Ternary plot showing all classes of annotated metabolites present in hydromethanolic
extracts of developing Sorghum bicolor seedlings. Seedlings were harvested at early (7 d), middle
(14 d), and late (29 d) growth stages. The plot was constructed based on annotated metabolites across
all time points, as listed in Table S1.

3.2. Multivariate Data Analysis and Chemometric Modelling

Chemometric modelling was applied to 46 annotated metabolites that exhibited varia-
tion in peak intensities (Table S1) to understand and describe the developmental changes
through the lenses of the annotated metabolic profiles. PCA modelling was performed to
observe the natural structures in the dataset. PCA is an unsupervised method that depicts
similarities and differences (intrinsic interconnectedness) between samples within a dataset
by reducing the dimension or complexity of the data, thus allowing for an interpretable
visualization and analysis. As such, the PCA methods provide a qualitative representation
of the similarities and differences (variation) between and within the samples [28]. The
first two principal components (PC1 and PC2) of the generated PCA model explained
47.7% of the total variation and revealed a time-related trend, which reflects the differential
metabolome changes across the developmental stages (7, 11, 14, 18, 22, 25, and 29 d) of the
seedlings (Figure 3).

While the ternary plot and PCA provided a global view of the metabolome changes
in terms of metabolite classes at different developmental stages, orthogonal projection to
latent structures discriminant analysis (OPLS-DA) was applied to 43 annotated metabolites
for the binary classification of samples to further investigate these changes. OPLS-DA
performs sample classification based on linear regression, where differences among groups
are modelled; it also identifies discriminant molecules specific to those groups. Supervised
methods use predictive models to identify biological responses relating to certain variables,
thereby identifying independent and dependent variables in a dataset. The calculated
OPLS-DA models were thus computed to separate multivariate relationships into predictive
variation and orthogonal variation. The binary classification of the seedlings at the 14 d
stage and the 29 d stage, showing the clear separation of the two groups, is represented
by the OPLS-DA scores plot in Figure 4A (14 d vs. 29 d). The corresponding figures for
7 d vs. 14 d and 7 d vs. 29 d are presented as Figure S3A,B, respectively.
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Figure 3. Unsupervised chemometric analysis of annotated metabolites present in extracts from
Sorghum bicolor seedlings at different developmental stages. Principal component analysis (PCA) plots
were constructed using MetaboAnalyst: A scores scatter PCA plot (PC1 vs. PC2) of log-transformed
and Pareto-scaled MS data from seedlings on days 11, 14, 18, 22, 25, and 29 post-germination. The
clusters are colored based on the different developmental stages (purple = 7 d, red = 11 d, green = 14 d,
blue = 18 d, turquoise = 22 d, pink = 25 d, and yellow = 29 d). The PC analysis generated 9 principal
components, of which 64.9% of the total component variation was captured.

The OPLS-DA models were validated by diagnostic statistics to ensure the reliability
of the models and to prevent the over-fitting of the models to the data. As indicated in
the experimental section, the cross-validation (CV) method and permutation tests were
used in this research [15]. The permutation test performed was with 100 iterations (n = 100).
Permutation tests, as shown in Figure 4B, are randomization-based validation methods
that are employed to validate the predictive power of OPLS-DA models, comparing the R2

and the Q2 of both the permuted and original models.
The significant metabolites characterizing the early, middle, and late (corresponding

to days 7, 14, and 29) development stages were then selected using OPLS-DA S-plots in
Figures 4C and S4A,B. These loading S-plots identify the variables that contribute the
most to the pattern changes observed on the OPLS-DA scores plots. The variables with
the highest absolute values of p[1] and p(corr)[1] are those identified as the discriminant
markers and these express/represent the differences between the different groups [29].

The p-value obtained from the OPLS-DA model in Figure 4A was 0.0000, determined
by the CV-ANOVA (analysis of variance of cross-validated parameters) test, which indicates
that there is a statistically significant difference between the two groups and that the null
hypothesis (that there are no differences between the groups) can be rejected. In addition,
a VIP plot metric was used for validation of selected metabolites from the S-plots. With
VIP, metabolites are scored as a measure of how much they contribute to the model, and
the variables that are of significance are those with a VIP score > 1. A higher VIP score is
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directly related to the significance of a variable. The VIP plot in Figure 4D shows the top
18 most significant metabolites, differentially expressed in the metabolomes of the 14 d and
29 d stages of seedling growth. The metabolites highlighted in red are those correlating to
the late (29 d) stage, while the rest are those corresponding to the mid (14 d) stage.
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Figure 4. Supervised multivariate data analysis of annotated metabolites in Sorghum bicolor seedlings
following UHPLC-MS analysis of the 14 d vs. 29 d group samples. (A) An OPLS-DA scores plot of
the predictive component t[1] and the first orthogonal component t0[1], R2(cum): 0.989; Q2(cum):
0.980; R2 permutation: 0.259; Q2 permutation: −0.541; p-value: 0.0000; and components: (1 + 1 + 0).
The ellipse indicates the 95% limit of the Hotelling T2 distribution for the model. (B) Permutation
analysis plotting R2 and Q2 (black and blue dots, respectively) from n = 100 permutation tests in the
OPLS-DA model. The y-axis shows R2 and Q2, whereas the x-axis shows the correlation coefficient
of permuted and observed data. The cluster of points on the left represents 100 permuted R2s and
Q2s, and the two points on the right represent the observed R2(cum) and Q2(cum). Dashed lines
denote corresponding fitted regression lines for observed and permutated R2 and Q2. (C) OPLS-DA
S plot with discriminant biomarkers at each end of the S-plot. The covariance (variable magnitude)
and correlation (reliability) of the variables in the model (indicated with black dots) are represented
on the axes as p[1] and p(corr)[1], respectively. The features located at the extreme ends of the
plot show a positive association (high magnitude and high reliability) to the respective conditions
being compared, while those in the middle can be regarded as shared features. (D) A VIP plot
where the metabolites of a VIP score of >1 is significant to metabolomic differences corresponding to
developmental changes. (Metabolite abbreviations: ODA-3OH(II) = trihydroxy-octadecadienoic acid;
ODA-3OH(IV) = 9,12,13-trihydroxy-10-octadecenoic acid; IAA = indole-3-acrylic acid; coumaroyl-glu
II = coumaroyl glucose; SA = salicylic acid; sin-glu = sinapaldehyde glucoside I; sinapald-glu II = sina-
paldehyde glucoside II; S-flavanone = sophoraflavanone; trp = tryptophan; coniferyl-Ac = coniferyl
acetate; sinapoyl-OH = sinapoyl-alcohol; phe = phenylalanine; nar-glu = naringenin 7-O-beta-D-
glucoside; IA-L = indole-3-acetyl-leucine; ODA-2OH (II) = 9,10-dihydroxy-12-octadecenoic acid).
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3.3. Deriving Biochemical Insights from Metabolomics Data

Hierarchical cluster analysis (HiCA) was applied to further explore the time-related
trends and groupings revealed by the PC analysis. The HiCA shows the statistical correla-
tion amongst all the samples analyzed and then builds a hierarchy from them. Consequently,
similar samples consisting of similar metabolomes form clusters together, generating groups
formed on the basis of cluster similarity [30]. Furthermore, the HiCA heatmap also shows
the relative abundance of the identified metabolites, thereby displaying the variation of
metabolic features present at the different developmental stages of the seedlings.

This HiCA heatmap (Figure 5) shows the average levels of each of the top 25 metabo-
lites at each developmental stage. These patterns suggest that differential reprogramming
has occurred over time. This can take the form of high or low accumulation at specified time
points, indicating early, late, or oscillatory responses. Where molecules show increasing
or decreasing trend patterns, it could be suggestive of increased biosynthesis followed by
interconversion, conjugation, degradation, or incorporation into insoluble polymers such
as lignin [23,31].
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Figure 5. Hierarchical cluster analysis (HiCA) heat map of the top 25 metabolites present in the
averaged extracts (n = 9) showing the most and least abundant metabolites at each developmental
stage (red/blue = high/low concentrations, respectively). The metabolites listed are as follows, respec-
tively: 9,12,13-trihydroxy-10-octadecenoic acid (ODA-3OH(IV)), sinapoyl alcohol (sinapoyl-OH), 9,14-
dihydroxy-10,12-octadecadienoic acid (ODA-2OH(II)), phenylalanine, trihydroxy-octadecadienoic
acid (ODA-3OH(II)), riboflavin, octadecatetraenoic acid (OTA), tryptophan, traumatic acid, indole-3-
acrylic acid, tyrosine, apigenin 7-O-neohesperidoside (rhoifolin) (apig-n), apigenin 6-C-xyloside-8-C-
glucoside (vicenin-1), coumaroyl glucose (coumaroyl-glu II), sinapaldehyde glucoside II (sinapald-glu
II), sinapaldehyde glucoside I (sin-glu), naringenin 7-O-neohesperidoside (naringin), hesperidin, indole-3
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-acetyl-leucine (IA-L), abscisic acid (ABA), naringenin 7-O-beta-D-glucoside (nar-glu), 1,3-O-
coumaroyl-feruloylglycerol (CFG), luteolin 7-O-glucoside (Lut-glu), sophoraflavanone G (S-
flavanone), coniferyl acetate (coniferyl-Ac).

Two significant groups (1 and 2) are observed in the map that display different patterns
of metabolite abundance at each of the time points. The metabolites in group 1 show
increased levels in the early stages of development (days 7 to 14) compared to the late
stages (days 18 to 29), where the levels of these metabolites decreased. Conversely, the
metabolites in group 2 show a linear increase in their levels as the seedlings progress in
growth from the early stages to the late stages of development, i.e., from days 7 to 29.
The metabolites of group 1 are mostly lipids (ODA-2OH II, ODA-3OH, ODA-3OH IV,
and OTA; abbreviations are defined in Figure 5). The other metabolites in this group are
phenylalanine, sinapoyl alcohol, and riboflavin, which are from the amino acid, HCA, and
vitamin classes, respectively. Significant amounts of lipids are stored in the seeds of plants,
that are activated after seed germination. This aids in the growth and development of the
seedlings before photosynthesis is initiated. Most of these lipids, such as octadecatetraenoic
acid (OTA), act as signalling molecules in plant defense systems [32]; therefore, they are
at high levels in the early stages of plant growth, as shown in Figure 5. In contrast, group
2 contains mostly flavonoids. These are not essential for the early survival of seedlings,
but more important for the phototrophic response of the seedlings when photosynthesis is
initiated; therefore, these metabolites are at low levels in the early growth stages and at
high levels in the late stages [33].

The discriminant metabolites identified by the OPLS-DA S-plots that were positively
correlated with the 14 d stage were phenylalanine, sinapoyl alcohol, 9,14-dihydroxy-10,12-
octadecadienoic acid (ODA-2OH(II)), trihydroxy-octadecadienoic acid (ODA-3OH(II)), and
9,12,13-trihydroxy-10-octadecenoic acid (ODA-3OH(IV)). From the same OPLS-DA S-plot,
coniferyl-acetate, 1-O-coumaroyl-beta-D-glucose, sinapaldehyde glucoside, sophorafla-
vanone G, naringenin 7-O-neohesperidoside, an uncharacterized flavonoid, hesperidin,
indole-3-acrylic acid, and tryptophan showed a positive correlation with the 29 d stage. In
the growth condition of 7 d vs. 14 d, as shown in Figure S4A, isocitric acid, 15-hydroxylinoleic
acid, 9,12,13-trihydroxy-10-octadecenoic acid, and riboflavin showed a positive correla-
tion with the 7 d stage. In the 7 d vs. 29 d growth stage condition, depicted in Figure
S4B, the metabolites that were positively correlated to the 7 d stage were trihydroxy-
octadecadienoic acid, 15-hydroxylinoleic acid, 9,12,13-trihydroxy-10-octadecenoic acid, and
riboflavin, which is similar for the 7 d vs. 14 d condition.

3.4. Pathway Enrichment Analysis Indicates Importance of the Phenylpropanoid Pathway

Analysis of metabolic pathways potentially provides insight into the most significant
biochemical and physiological processes occurring in the developing seedlings. These
pathways are recognized by identifying groups of metabolites belonging to the same
metabolic network.

The KEGG IDs of each compound were used to map these metabolites into principal
metabolic pathways. The most significant primary pathways identified by this approach,
(listed in Table S2) include phenylalanine, tyrosine, and tryptophan biosynthesis, riboflavin
metabolism, and glyoxylate and dicarboxylate metabolism. The most significant path-
ways identified from the analysis include isoquinoline alkaloid biosynthesis, phenylala-
nine metabolism, phenylpropanoid biosynthesis, and flavone and flavonoid biosynthesis.
Flavone and flavonol biosynthesis had the most hits when arranged by the pathway impact
(≥0.1) and when arranged by FDR (≤0.5); phenylpropanoid biosynthesis had the most hits.
This was followed by aromatic amino acid biosynthesis (Trp, Tyr, and Phe, with Phe feeding
into the phenylpropanoid pathway). Some of the most abundant specialized metabolites in
plants originate from these aromatic amino acids.

Biosynthesis of specialized metabolites is based on the formation of precursors of
specialized metabolites produced by primary metabolism [34]. These precursors are mostly
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produced from glycolysis, the tricarboxylic acid (TCA) cycle, etc. Isoquinoline alkaloid
biosynthesis produces precursors of alkaloids by decarboxylation of tyrosine. Similarly, they
can also be derived from the amino acids Phe, Lys, Trp, and Tyr. The precursor compound,
4-coumaroyl CoA, which supports the production of flavonoids, is itself produced in the
phenylpropanoid pathway. Intermediates emerging from the shikimate pathway act as
precursors for the phenylpropanoid pathway. Together, most of the sorghum specialized
metabolites are derived from these two pathways [35].

Pathway enrichment analysis is based on the quantitative information of the statisti-
cally significant compounds and contributes to reducing the complexity of the metabolomes.
Its application identified enriched pathways in the developing seedlings and compared
pathway functionalities at the different stages when growth is rapid and associated with
dynamic changes. Furthermore, pathway topology analysis was applied to identify the
connections between the metabolites within the metabolic pathways [19].

The most significant metabolic pathways are represented by the pathway analysis
in Figure 6A. Topologically, the phenylpropanoid biosynthesis metabolic pathway is rep-
resented in Figure 6B, where four of the metabolites annotated from the OPLS-DA data
and matched to the pathway are found. These are phenylalanine, 4-coumarate, sinapoyl
alcohol, and sinapaldehyde glucoside.
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increasing pathway impact, which represents differential significance, on the x-axis and by increasing
p-value on the y-axis. Each pathway is represented by a circle in which size/radius increases with
increasing impact, and the color of the circle also becomes more red as the p-value increases. 1, Biosyn-
thesis of specialized metabolites. 2, Isoquinoline alkaloid biosynthesis. 3, Phenylalanine metabolism.
4, Flavone and flavonoid biosynthesis. 5, Phenylpropanoid biosynthesis. (B) A representation of the
topological properties of the phenylpropanoid pathway. The changes in the four matched metabolites
in their early, middle, and late seedling growth stages are represented by pie charts, indicating
stage-specific quantitative variation.
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In the early stage of sorghum seedlings (day 7), phenylalanine is present at low levels.
This could be due to the amino acid being converted to 4-coumarate at the start of the
pathway. However, phenylalanine accumulates over the period of investigation to day
29, reflecting the increase in flavonoid synthesis and the demand for lignin precursors
associated with cell wall synthesis. Coumarate then gives rise to sinapoyl alcohol and
sinapaldehyde glucoside further down the metabolic pathway. Sinapoyl alcohol is highly
abundant in the middle 14 d stage of seedling growth and is at its lowest level in the late
stage. However, sinapylaldehyde glucoside is at its highest level in the late growth stage
and is lowest in the early stage, indicative of the glycosylation of the former to the latter.

3.5. Relative Quantification of Selected Discriminant Metabolites

In order to gain insights into the dynamics of the changes occurring during the inves-
tigated growth period, relative quantification was performed on the selected discriminant
metabolites. The bar graphs in Figure 7 show the changes in the levels of the different
metabolites in the seedlings, as determined at the 7 d, 14 d, and 29 d stages.
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The levels of tryptophan increase from the early 7 d stage, through to the middle
14 d stage, and finally to the late 29 d growth stage (Figure 7A). Important specialized
plant metabolites are derived from tryptophan [36], such as alkaloids and indole-3-acetic
acid (IAA), which contribute to plant defense. Therefore, as the seedlings grow, defensive
metabolites also increase in concentration [36]. Phenylalanine, on the other hand, increased
from the 7 d stage and was at its highest concentration at the 14 d stage, followed by a
decrease at the 29 d stage (Figure 7B).

Phenylalanine connects primary and secondary metabolism in plants through the
induced action of phenylalanine ammonia lyase (PAL), in response to developmental
cues and stress triggers. PAL generates trans-cinnamic acid, which feeds into the early
phenylpropanoid pathway, which functions in plant defense and structural support through
the synthesis of lignin precursors [37]. In turn, phytohormones, such as abscisic acid and
zeatin riboside function in plant growth and plant responses to environmental stress [38].
It was observed that the concentrations of both of these compounds increased from the
early 7 d stage to the late 29 d stage of the seedlings (Figure 7C,D).

Plant phenolic compounds (e.g., HCAs, hydroxybenzoic acids, and flavonoids) of-
ten exhibit antioxidant properties that allow for adaptation to changing environmental
conditions [39]. However, compounds that contain phenolic groups might be active as an-
timicrobial agents as well, causing a notable correlation between the total phenolic content
and antioxidant activity [6,40]. Moreover, some overlap/correlation between antioxidant
activity and antimicrobial activity might be found [6,39]. These effects might act syner-
gistically to create an enhanced antimicrobial environment in planta. Unfortunately, little
information is available regarding sorghum seedlings [7].

Two important sub-classes of phenolics are the flavonoids and the HCA derivatives.
Flavonoids form the largest class of specialized metabolites in most plants and perform
several critical functions related to development and environmental adaptation, including
plant–microbe interactions [41,42]. Both naringenin 7-O-neohesperidoside (naringin) and
hesperidin increased as the seedling progressed in growth from the 7 d stage to the 29 d
stage (Figure 7E,F). HCA derivatives and conjugates are compounds derived from core
phenylpropanoids that act as antioxidants [43]. In addition, members of this class display
antimicrobial activity. In plants, their major role is to provide a measure of defense and
thus resistance against pathogens. This property is essential to vulnerable plants to allow
seedlings to adapt to the environment in their early stages of growth and development.
The HCA derivatives, coumaroyl glucose, and sinapylaldehyde glucoside (Figure 7G,H)
similarly display the same pattern of increasing concentrations from the early to the
late growth stages. These increases are due to the biosynthesis of HCAs in the early
phenylpropanoid pathway, which are precursors for various mono-lignols. The compounds
contribute to the lignification of cell walls of newly formed cells, thereby supporting the
progressive growth and development of plants and strengthening the cell walls, providing
plant defense [44].

Fatty acids are essential members of the lipidome and lipid metabolism and contribute
to the synthesis of cell membranes with the associated structural and functional proper-
ties. Moreover, they can act as signalling molecules or lipid mediators in plants [32,45].
The oxygenated fatty acids, trihydroxy-octadecadienoic acid and octadecatetraenoic acid
in Figure 7I,J, mostly act as signalling molecules [46]. The concentration of trihydroxy-
octadecadienoic acid increases from 7 d to 14 d, then decreases at the 29 d growth stage.
Octadecatetraenoic acid decreases in its concentration from the 7 d stage to the 29 d stage.

Organic acids contribute to carbon metabolism in plants and take part in the biochem-
ical pathways in plant cells, such as the TCA cycle [47]. Isocitric acid decreases in its levels
from the early growth stage to the late growth stage, as depicted by Figure 7K,L, with 14 d
having the lowest level of isocitric acid metabolites. Together with the amino acid data,
these changes might reflect C and N metabolism and link the related metabolic cycles of
anaplerotic reactions to counteract depletion of the TCA cycle by biosynthetic demands.
Relatedly, shifts in carboxylic acids levels were reported to be perceived in plants during



Metabolites 2024, 14, 112 16 of 21

stress and it was proposed that the tricarboxylates could modulate signal transduction
events linked to plant defense [48].

The benzoic acid levels are almost absent at the 14 d stage but are at their highest
level at the 7 d stage, decreasing at the 29 d stage. The metabolic changes for the phenolic
metabolites 7-hydroxycoumarin and coniferyl acetate are depicted in Figure 7M,N. Accord-
ing to the figures, 7-hydroxycoumarin (umbelliferone) shows minor fluctuations around
the middle growth stage. In contrast, coniferyl acetate is at extremely low levels at the 7 d
stage but increases at the late 29 d growth stage.

The lowest abundant metabolites are riboflavin and dhurrin, a cyanogenic acid, shown
in Figure 7O,P. Riboflavin, a cofactor for diverse metabolic processes and inducer of plant
resistance, decreases from the 7 d stage to the 29 d stage. Conversely, durrhin, which is a
wound metabolite and source of resistance of sorghum seedlings to fungal infection [49], is
already present at the 7 d stage and increased in concentration at the 29 d stage.

3.6. Quantitative Determination of Flavones

As a phytochemical class, flavonoids are composed of flavonols, flavanones, flavanols,
flavones, isoflavones, and their respective derivatives [42]. Flavone O-conjugates and
their aglycones, (e.g., apigenin and luteolin) are constitutive metabolites in stem and leaf
tissues of grasses. Apigenin and luteolin are generally O-glycosylated; however, flavone
C-glycosides, which contain sugar residues covalently linked to C-6 and/or C-8 in the
flavonoid A-ring, co-exist with flavone O-conjugates as predominant flavonoids [33,50].

In particular, flavonoids are considered as plant UV protectants due to their epidermal
accumulation and radical scavenging properties [35,42]. In grasses, accumulation of flavone
aglycones and their O-conjugates in grasses can be triggered by biotic stresses. For example,
apigenin and luteolin are defense-related metabolites in sorghum infected by the anthrac-
nose fungus Colletotrichum sublineola [10,51]. These pathogen-inducible flavones inhibit
the in vitro spore germination of C. sublineola, implicating a functional role in chemical
defense [51]. In addition, apigenin and luteolin and their O- and C-glycosylated derivatives
have been reported to possess direct antimicrobial activity [8,52] and were also found as
discriminant metabolites in sorghum seedlings responding to Burkholderia andropogonis [9]
and C. sublineola [10].

In addition to other flavonoids, Table S1 lists the following derivatives of two flavones,
apigenin and luteolin (3′-hydroxyapigenin), as discriminant metabolites: apigenin 8-C-
glucoside (vitexin), apigenin 7-O-glucoside (apigetrin), apigenin 6-C-glucosyl-8-xyloside
(vicenin-3), apigenin 6-C-xylosyl-8-C-glucoside (vicenin-1), apigenin 7-O-neohesperidoside
(rhoifolin), luteolin 7-O-glucoside (luteoloside), luteolin 7-O-neohesperidoside (lonicerin),
with the flavanone naringenin as precursor (naringenin 7-O-beta-D-glucoside and narin-
genin 7-O-neohesperidoside or naringin) (Figure S5). Quantitative studies of selected
flavonoids can play a significant role in deciphering data acquired from untargeted and
targeted metabolomic studies. Their concentrations were thus further investigated using
quantitative MRM analysis during the same time periods as used for the metabolomics
analysis [9]. The mean peak areas from the UHPLC-MS/MS data along with the respec-
tive standard curve equations were used to determine the concentration values in ng/g
(Figure 8).

The flavones luteolin, luteoloside, vicenin-2, vicenin-3, and vitexin were detected at
varying concentrations at different d.p.g., but apigetrin and isovitexin were below the LOD.
From day 11, the dominant flavones were vicenin-2, vicenin-3 (with apigenin as aglycone),
and to a lesser extent, luteoside (with luteolin as aglycone). Vicenin-2 and vicenin-3 were the
most abundant at all stages of development, which may suggest that they play a significant
role in the preparation of the plants’ defense against stresses during early development. Of
interest is the profile of vitexin, which is initially relatively high (day 7, decreasing to day
11), followed by its apparent disappearance from the samples (day 14 onwards). Vitexin is
known to occur in sorghum seeds [53] and it is possible that some of the metabolite could
have originated from the germinating seed. Vitexin is an 8-C-mono-glycosylated form of
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apigenin that is metabolized to the diglycosylated vicenins (Figure S5). The consistent low
level of apigenin can be explained in view of its role as precursor compound (aglycone) of
the vicenins, thus expanding the multi-metabolite apigenin-based chemical space in the
seedlings. A similar situation my apply in the case of luteolin and luteoloside.
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Figure 8. The varying concentrations of flavones apigenin and luteolin and the glycosylated deriva-
tives vitexin, vicenin-2, and vicenin-3 and luteoside in developing seedlings of the sorghum cultivar
NS5511 at 7, 11, 14, 18, 22, 25, and 29 days post-germination, as determined by UHPLC-3Q-MS/MS
using optimized MRM conditions. All concentrations (y-axis, ng/g fresh weight) are mean concentra-
tion values with n = 9, and error bars indicate the standard error. Isovitexin and apigetrin were below
the limit of detection. An asterisk (*) indicates the statistical significance (ANOVA followed by Tukey
post hoc test at a p-value < 0.05 when comparing mean values to that of day 7).

Previous investigations on metabolomic profiling of the response of sorghum seedlings
to pathogen attack have revealed the reprogramming of pathways that synthesize flavonoids
(especially flavones) in the sorghum metabolome post-infection with B. andropogonis and
C. sublineola, respectively [9,10]. The flavones upregulated in both pathogen responses
were identified as apigetrin, apigenin, vitexin, isovitexin, luteolin, luteoloside, vicenin-2,
and vicenin-3, indicating a positive correlation of the glycosylated derivatives of apigenin
and luteolin with the defense response of sorghum seedlings [54]. Although glycosylated
flavonoids appear to have a reduced antimicrobial effect compared to the respective agly-
cones [55], they can serve as storage forms of constitutive anti-microbial metabolites for the
rapid release of the aglycones upon pathogen attack.

4. Conclusions

The seedling stage of plant development is the most crucial and vulnerable to varying
environmental conditions. Various metabolic pathways occur within sorghum seedlings
to support biological functions essential to the growth and development of the plants
as well as to support innate immune responses in defense against attempted pathogen
attacks. The study of the development-related metabolomes provided superior insights
into these processes as the seedlings progressed in their initial post-germination growth.
Changes in the metabolomes, as evident from PCA plots, showed distinct clustering.
Significant changes in the metabolic patterns of these metabolomes were focused in the
early, middle, and late growth stages of the seedlings. In turn, OPLS-DA was utilized to
identify discriminatory markers associated with specific developmental stages. Nine classes
of specialized metabolites associated with the changing metabolomes were identified from
the annotated UHPLC-MS datasets.
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Pathway analysis revealed five metabolic pathways, with the phenylpropanoid path-
way being the most pronounced and flavonoids the most abundant class of metabolites
present in the samples. Flavonoids and HCA derivatives allow the seedlings to survive
post-germination, enabling them to be established in the environment and overcome future
obstacles during the growth and development of the plant. This offers an explanation as
to why these phenylpropanoids are important/at high levels during the early stages of
seedling growth, i.e., to act as antimicrobial phytoanticipins. Site-specific hydroxylation,
methylation, and glycosylation reactions not only lead to structural diversification within a
class of specialized metabolites (and thus increase the ‘chemical space’ thereof) but may also
broaden the functional diversification of the molecules. In the later stages, when the plants
are more developed and less vulnerable to detrimental environmental conditions, the same
metabolic pathways can be (re)activated as part of inducible immunity to provide plant
defense responses when needed. Profiling of flavone-based phytoanticipins in juvenile
plants may thus be developed as a potential tool for the identification of host resistance.

Overall, the metabolomics investigation substantially extends the knowledge of the
metabolite dynamics of early seedling development in sorghum. This affords new insights
into the involved metabolic pathways and their regulation through mechanisms not yet
documented in the literature that require further investigation.
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