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Abstract: Uterine cancer is the most prevalent gynecologic malignancy in women worldwide. En-
dometrial cancer (EC) has an 81% five-year survival rate, depending on disease stage and time of
diagnosis. While endometrial cancer is largely treatable when detected early, no established screening
techniques are available in clinical practice. As a result, one of the most significant issues in the
medical field is the development of novel ways for early cancer identification, which could boost
treatment success rates. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS)-
based metabolomics was employed to explore the metabolomic markers and pathways unique to
this cancer type and link them to the benign endometrial hyperplasia that may progress to cancer in
5% to 25% of patients. The study involved 59 postmenopausal participants, 20 with EC type 1, 20
with benign hyperplasia, and 19 healthy participants. Metabolite distribution changes were analyzed,
and 338 of these features were dysregulated and significant. The first two main components, PC1
and PC2, were responsible for 11.5% and 12.2% of the total metabolites, respectively. Compared with
the control group (CO), EC samples had 203 differentially expressed metabolites (180 upregulated
and 23 downregulated); in hyperplasia (HP), 157 metabolites were dysregulated (127 upregulated
and 30 downregulated) compared to the CO group while 21 metabolites exhibited differential reg-
ulation (16 upregulated and 5 downregulated) in EC plasma samples compared to the HP group.
Hyperplasia samples exhibited similar metabolic changes to those reported in cancer, except for
alterations in triglyceride levels, 7a,12 b-dihydroxy-5b-Cholan-24-oic acid, and Hept-2-enedioyl
carnitine levels. The metabolites N-heptanoyl glycine and -(Methylthio)-2,3-isopentyl phosphate
and formimino glutamic acid can be specific markers for hyperplasia conditions and dimethyl
phosphatidyl ethanolamine and 8-isoprostaglandin E2 can be specific markers for EC conditions.
Metabolic activities rely on mitochondrial oxidative phosphorylation for energy generation. The
changes in metabolites identified in our study indicate that endometrial cancer cells adopt alternative
strategies to increase energy production to meet the energy demand, thereby supporting proliferation.
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1. Introduction

Endometrial cancer (EC) is commonly referred to as uterine cancer. It is the fifteenth
most common cancer worldwide and the sixth most prevalent cancer in women, according
to the World Cancer Research Fund International in 2020 [1]. EC is a disease in which
malignant cells form in the endometrium’s tissues and the uterus lining, and it is considered
the most common gynecologic cancer in females [2]. Uterine cancer diagnoses are increasing
by over 2% annually in women under the age of 49 and by 1% in women over the age of
49 in the United States [3]. There are two primary subtypes of endometrial tumor based
on clinical and endocrine features, I and II. Type I tumors represent the most frequent
subtype, typically include estrogen-related characteristics, are low grade, and have a fair
prognosis. Endometrial hyperplasia usually precedes the lesions, which are generally well-
differentiated. Type II tumors, in contrast, represent less than 15% of ECs, a heterogeneous,
poorly differentiated collection of high-grade festering tumors [4–6].

Based on histopathological characteristics, they are classified as endometrioid, serous,
or clear-cell adenocarcinoma and into different grades depending on how much tumor
cells resemble normal cells. Grade 1 (low-grade) cells resemble normal cells, exhibiting
slow growth and limited spread. Grade 2 (moderate-grade) cells appear more aberrant and
have higher metastatic potential. Grade 3 (high-grade) cells display extreme abnormalities,
rapid growth, and increased metastasis [5]. The American Cancer Society (ACS) estimates
that the 5-year relative survival rate for early-stage EC is 84% [7]. However, the clinical
grade determination is challenging due to histologic subtype overlap. A more detailed cat-
egorization integrating molecular criteria has been introduced to enhance clinical decisions,
optimize treatment plans, and elevate survival rates [8,9]. Irregular vaginal bleeding in
women before menopause and regular vaginal bleeding through menopause and pain in
the pelvic area, especially during urination or sexual intercourse, are signs and symptoms
of EC. Early identification increases the likelihood that a malignancy will be successfully
treated [10,11].

Metabolomics has emerged as a transformative force in biomarker discovery, sig-
nificantly mitigating the morbidity and mortality associated with a broad spectrum of
disorders and diseases. Its impact, notably in the context of cancer, as elucidated by the
comprehensive study conducted by Jacob et al., cannot be overstated [12]. This study delves
into the critical endeavor of identifying distinct metabolic markers and pathways inher-
ently tied to various cancer types and their stages, representing a linchpin in contemporary
cancer research. Within this context, cancer metabolomics holds vast potential, spanning
risk assessment, early detection, the refinement of disease staging, the implementation
of personalized prognostic and diagnostic modalities, and the vigilance in monitoring
the efficacy of therapeutic interventions, all while considering the emergence of potential
resistance mechanisms [13,14]. Strong evidence that cancer develops in the context of se-
vere metabolic dysfunction is provided by significant risk factors for EC, including obesity,
diabetes mellitus, hypertension, and estrogen exposure. For example, in large cohort re-
search, a metabolomic approach was studied and validated for the screening of endometrial
cancer using serum samples acquired from women scheduled for gynecological surgery.
The study findings revealed that EC patients’ serum metabolomes were characterized by
reduced levels of serine, glutamic acid, phenylalanine, and glyceraldehyde 3-phosphate,
suggesting that these metabolites could be utilized as a low-cost, non-invasive, and accu-
rate preliminary screening test for EC [15]. Another study discovered that sphingomyelin
and glycine were statistically linked to an increased risk of endometrial cancer [16]. In
another study, researchers were able to discriminate between recurrent and non-recurrent
cases following surgery in postmenopausal women by combining 2-oleoylglycerol and
TAG 42:2-FA12:0. This could be used to define clinically relevant risk categories following
surgery [17]. Therefore, metabolomics research on EC is expected to provide insightful
data regarding the condition [12,18,19].
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The investigation at hand hinged upon using a label-free liquid chromatography–
mass spectrometry (LC-MS)-based untargeted metabolomics approach. The principal
objective was to discern whether a discernible aberration existed in the serum metabolite
profiles among preoperative endometrial cancer (EC) cases when juxtaposed with patients
diagnosed with uterine hyperplasia and individuals of sound health. This pursuit holds the
promise of shedding light on distinctive metabolic signatures that serve as diagnostically
and prognostically pertinent indicators in EC management and, potentially, in the broader
context of oncology.

2. Materials and Methods
2.1. Population and Study Design

The King Saud University College of Medicine’s institutional review board examined
and approved the study’s methods and procedures (IRB number: E-193622). The study’s
participants provided their written, informed consent. This study was conducted from May
2012 to November 2022 at King Khalid University Hospital (KKUH) in Saudi Arabia. This
study comprised patients with EC (n = 20, mean age is 62 ± 9), hyperplasia (n = 20, mean age
is 61 ± 5), and healthy controls (n = 19, mean age is 59 ± 4) (Supplementary Table data S1).
EC and hyperplasia diagnoses were confirmed based on histological examination. At the
same time, the control participants were healthy women who were receiving a routine
checkup at a gynecological clinic. Women who were fertile and those with a history of a
prior cancer diagnosis in any other place were excluded from the study. Participants’ blood
samples were drawn using EDTA-coated tubes and centrifuged, and the produced plasma
samples were stored at −80 ◦C until analysis.

2.2. Metabolite Extraction

Metabolites were extracted using the protein precipitation reported previously [20,21].
In brief, 100 µL of plasma was mixed with 900 µL of 50% extraction solvent (acetonitrile:
methanol). The samples were vortexed in a Thermomixer (Eppendorf, Hamburg, Germany)
at 600 rpm, 4 ◦C for one hour. Then, samples were centrifuged at 16,000 rpm for 10 min at
4 ◦C (Eppendorf, SE, Germany), and supernatants were placed into Eppendorf tubes and
evaporated using a vacuum evaporator (SpeedVac; Christ, Germany). To re-suspend the
dried samples, 100 µL of a 1:1 ratio of mobile phase A: B (A: 0.1% formic acid in dH2O and
B: 0.1% formic acid in 50% MeOH and ACN) was used.

2.3. Metabolite Analysis

Metabolomics profiling was performed using untargeted metabolomics analyses by
LC-HRMS, as previously reported [22]. Metabolites were acquired by a Waters ACQUITY
ultrahigh-pressure liquid chromatography (UPLC) system coupled with a Xevo G2-S QTOF
mass spectrometer equipped with an electrospray ionization source (ESI) in positive and
negative modes (ESI+, ESI−). The metabolites were chromatographed using an ACQUITY
UPLC XSelect (100 × 2.1 mm 2.5 µm) column (Waters Ltd., Elstree, UK). The mobile phases
A and B were pumped to the column in a gradient mode (0–16 min 95–5% A, 16–19 min 5%
A, 19–20 min 5–95% A, 20–22 min 5–95% A) at a 300 µL/min flow rate. MS conditions were
as follows: the source temperature was 150 ◦C, the desolvation temperature was 500 ◦C
(ESI+) or 140 ◦C (ESI−), capillary voltages were 3.20 kV (ESI+) or 3 kV (ESI−), cone voltage
was 40 V, desolvation gas flow was 800.0 L/h, and cone gas flow was 50 L/h. The collision
energy of low and high functions was set off at 10–50 V, respectively, in MSE mode. The
mass spectrometer was calibrated, as recommended by the vendor, with sodium formate in
the range of 100–1200 Da in both ionization modes. Data-independent acquisition (DIA)
was carried out in continuum mode with a Masslynx™ V4.1 workstation (Waters Inc.,
Milford, MA, USA).
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2.4. Data Handling and Processing

The raw MS data were processed following a standard pipeline starting from alignment
based on the m/z value and the ion signals’ retention time, peak picking, and signal filtering
based on the peak quality using the Progenesis QI v.3.0 software from Waters (Waters
Technologies, Milford, MA, USA).

Multivariate statistical analysis was evaluated using MetaboAnalyst v. 5.0 (McGill
University, Montreal, QC, Canada) (http://www.metaboanalyst.ca, accessed on 30 July
2023) [23]. The imported datasets were normalized by median, Pareto-scaled, and log-
transformed to maintain their normal distribution and then used to generate partial least
squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant
analysis (OPLS-DA) models. The OPLS-DA models created were evaluated using the
fitness of the model (R2Y) and predictive ability (Q2) values [23]. Univariate analysis was
performed using Mass Profiler Professional software (Agilent, Santa Clara, CA, USA). One-
way ANOVA (Tukey’s post hoc test, no correction p ≤ 0.05) was performed among groups.
Venn diagrams were developed using MPP software (Agilent Inc., Santa Clara, CA, USA),
and heatmap analysis for altered features was performed using Pearson’s distance measure.

The significant features obtained were annotated using the Human Metabolome
Database (HMDB) based on the accurate precursor mass, the fragmentation pattern, and
the isotopic distribution [24]. Exogenous compounds, such as drugs and food additives,
were eliminated manually from the final list.

2.5. Bioinformatic Analysis

The functions of the identified metabolites differently expressed in EC vs. control
and HP vs. control samples, as well as their interactions, were examined using Ingenuity
Pathway Analysis (IPA). The software maps the IDs into the manually curated Intelligence
Knowledge Base, containing information from all published scientific publications. By
comparing the experimental expression of the data to known biological networks, this
software identifies the activities and pathways that are substantially associated with the
metabolite list.

3. Results
3.1. Mass Ion Detection and Metabolite Identification

A total of 9882 mass ion features were detected, with 6892 positive and 2990 nega-
tive ionization modes. After several filtration processes such as alignment, peak picking,
missing value removal, and applying a filter by the frequency with a cutoff percentage
of 80 of all samples, 6722 features remained. The 6722 ions were evaluated statistically,
revealing that 338 metabolites were significantly dysregulated among all three groups. To
confirm that all depicted data have a Gaussian distribution, the data were normalized
by the median, log-transformed, and Pareto-scaled to eliminate systemic variances. Out
of 338, only 102 metabolites were annotated using the Human Metabolome Database
(HMDB). The exogenous metabolites (i.e., drugs, drug metabolites, environmental expo-
sures) were excluded, and 33 endogenous metabolites were identified in all three groups.
Out of 33 endogenous metabolites, 7 metabolites were common among both EC and HP
(Supplementary data S2).

3.2. Overview of the Three Study Groups (Ctrl, HP, and EC)

A Venn diagram was used to obtain an overview of the significantly altered ions
between the groups. Venn diagram revealed that 338 metabolites were dysregulated in the
three datasets (Figure 1A). Additionally, the PLS-DA model was generated to examine any
sample clustering and group separation in the datasets and identify any possible outliers
(Figure 1B).

http://www.metaboanalyst.ca
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ration of the EC group from Ctrl suggests that plasma metabolites may be useful for iden-
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significantly different between the Ctrl (yellow) and EC (red) groups. The metabolites 
with a substantial difference between the EC and Ctrl groups are represented on the heat 
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downregulated in the EC and Ctrl groups, respectively. A total of 15 metabolites were 
identified as human endogenous metabolites. 

Figure 1. Comparison of identified metabolite features between the groups. (A) Venn diagram
showing significant differences using one-way ANOVA (Tukey’s Post-hoc, no correction p < 0.05) of
3 groups (Endometrial cancer vs. Hyperplasia, Endometrial cancer vs. Ctrl, and Hyperplasia vs. Ctrl).
(B) Partial least squares discriminant analysis (PLS-DA) displays semi-separation between groups. n
is the number of metabolite features identified with a significant p-value (p < 0.05).

3.3. Metabolomic Profiling between EC and Ctrl

The metabolites that distinguished between EC and Ctrl are displayed in Figure 2.
OPLS-DA, a supervised multivariate approach, is shown in Figure 2A. The distinct sep-
aration of the EC group from Ctrl suggests that plasma metabolites may be useful for
identifying EC. According to the heat map analysis, Figure 2B shows the metabolites that
were significantly different between the Ctrl (yellow) and EC (red) groups. The metabolites
with a substantial difference between the EC and Ctrl groups are represented on the heat
map. As a result, they might be considered prospective metabolite biomarkers for EC
detection. A moderate t-test (p-value < 0.05) and fold change (FC cutoff of 1.5) were used to
analyze the volcano plot between the EC and Ctrl groups. The results showed that from
203 dysregulated metabolites, 180 (red) and 23 (blue) metabolites were upregulated and
downregulated in the EC and Ctrl groups, respectively. A total of 15 metabolites were
identified as human endogenous metabolites.
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lites that were significantly altered between control (yellow) and EC (red) groups. The color range 
bar indicates downregulated metabolites as red and upregulated metabolites as green between EC 
and Ctrl groups. (C) The volcano plot shows a significant change in the levels of several metabolites. 
Red represents upregulated and blue describes downregulated plasma metabolites in EC compared 
with the control group (FDR p-value ≤ 0.05, fold change ≥ 1.5). 
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Figure 3 illustrates the metabolite biomarkers that distinguish the HP and Ctrl sam-

ples. In Figure 3A shows an OPLS-DA model score plot. The ability of plasma metabolites 
to differentiate HP from Ctrl samples is demonstrated by the distinct separation of the HP 
group from the Ctrl group. The heat map analysis found metabolites showing notable 
variations between the Ctrl and HP groups (Figure 3B). The metabolites with a notewor-
thy difference between the HP and Ctrl groups are well-represented by the heat map. 
Thus, they might be considered possible metabolite biomarkers in identifying HP. A mod-
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lated metabolites, 127 (red) and 30 (blue) metabolites were upregulated and 

Figure 2. Metabolite profiling between endometrial cancer (EC) and control (Ctrl) patients. (A) Or-
thogonal partial least squares discriminant analysis (OPLS-DA) score plot showing evident separation
between two groups (EC and Ctrl). The robustness of the created models was evaluated by the fitness
of the model (R2Y = 0.976) and predictive ability (Q2 = 0.412) values. The EC and Ctrl samples are
represented as red and green circles, respectively. (B) Heat map analysis of identified metabolites that
were significantly altered between control (yellow) and EC (red) groups. The color range bar indicates
downregulated metabolites as red and upregulated metabolites as green between EC and Ctrl groups.
(C) The volcano plot shows a significant change in the levels of several metabolites. Red represents
upregulated and blue describes downregulated plasma metabolites in EC compared with the control
group (FDR p-value ≤ 0.05, fold change ≥ 1.5). The grey dots represent unsignificant metabolites.

3.4. Metabolomics Profiling between HP and Ctrl

Figure 3 illustrates the metabolite biomarkers that distinguish the HP and Ctrl samples.
In Figure 3A shows an OPLS-DA model score plot. The ability of plasma metabolites to
differentiate HP from Ctrl samples is demonstrated by the distinct separation of the HP
group from the Ctrl group. The heat map analysis found metabolites showing notable
variations between the Ctrl and HP groups (Figure 3B). The metabolites with a noteworthy
difference between the HP and Ctrl groups are well-represented by the heat map. Thus,
they might be considered possible metabolite biomarkers in identifying HP. A moderate
t-test (p-value < 0.05) and fold change (FC cutoff of 1.5) were used to analyze the volcano
plot between the HP and Ctrl groups. The results showed that from 157 dysregulated
metabolites, 127 (red) and 30 (blue) metabolites were upregulated and downregulated in
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the HP and Ctrl group, respectively. A total of 15 metabolites were identified as human
endogenous metabolites (Figure 3C).
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in the EC group are distinct from those in HP, suggesting that plasma metabolomics may 
be an effective method for distinguishing EC from HP. Between EC and HP, a cross-vali-
dated R2Y and Q2 coefficient was noted. Metabolites that were significantly different be-
tween the HP (yellow) and EC (red) groups were found using the heat map analysis (Fig-
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Figure 3. Metabolomics profiling between hyperplasia (HP) and control (Ctrl) groups. (A) Orthogonal
partial least squares discriminant analysis (OPLS-DA) score plot showing evident separation between
HP and Ctrl groups. The robustness of the created models was evaluated by the fitness of the model
(R2Y = 0.992) and predictive ability (Q2 = 0.274) values. The HP and Ctrl samples are represented
as green and red circles, respectively. (B) Heat map analysis of identified metabolites that were
significantly altered between control (red) and HP (yellow) groups. The color range bar indicates
downregulated metabolites as red and upregulated metabolites as green. (C) The volcano plot shows
a significant change in the levels of several metabolites, of which red represents upregulated and
blue describes downregulated plasma metabolites in HP and Ctrl groups (FDR p-value ≤ 0.05, fold
change ≥ 1.5). The grey dots represent unsignificant metabolites.

3.5. Metabolomics Profiling between EC and HP

The possible biomarkers that changed between EC and HP are displayed in Figure 4.
OPLS-DA, a multivariate supervised approach, is shown in Figure 4A. A few metabolites
in the EC group are distinct from those in HP, suggesting that plasma metabolomics may be
an effective method for distinguishing EC from HP. Between EC and HP, a cross-validated
R2Y and Q2 coefficient was noted. Metabolites that were significantly different between
the HP (yellow) and EC (red) groups were found using the heat map analysis (Figure 4B).
The metabolites that significantly differ between the EC and HP groups are displayed on
the heat map. As a result, these metabolites show promise as potential biomarkers for EC
detection. A volcano plot analysis was conducted to compare the EC and HP groups using
a fold change criterion of 1.5 and a moderate t-test (p-value < 0.05). The results showed
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that from a total of 21 dysregulated metabolites, 16 (red) and 5 (blue) metabolites were
upregulated and downregulated in the EC and HP groups, respectively. A total of three
metabolites were identified as human endogenous metabolites (Figure 4C).
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Figure 4. Metabolomics profiling between endometrial cancer (EC) and hyperplasia (HP) patients.
(A) Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot showing evident
separation between two EC and HP patient groups. The robustness of the created models was
evaluated by the fitness of the model (R2Y = 0.983) and predictive ability (Q2 = 0.206) values. The
EC and HP samples are represented as green and red circles, respectively. (B) Hierarchal clustering
and heat map analysis of identified metabolites that were significantly altered between EC (red)
and HP (yellow) groups. The color range bar indicates downregulated metabolites as red and
upregulated metabolites as green. (C) The volcano plot shows a significant change in the levels of
several metabolites, of which red represents upregulated and blue describes downregulated plasma
metabolites in EC and HP groups (FDR p-value ≤ 0.05, fold change ≥ 1.5). The grey dots represent
unsignificant metabolites.

3.6. Evaluation of Metabolite Biomarkers between EC and Ctrl Groups and Network Pathway

A multivariate exploratory ROC analysis was conducted using OPLS-DA as a feature-
ranking and classification approach based on the identified common and significantly
dysregulated metabolites between the EC and Ctrl groups. For the top 15 variations
(metabolites) (Figure 5A), the exploratory ROC curve’s area under the curve (AUC) was
0.821 (Figure 5B). For two metabolites’ AUCs from the top 15 variations, Figure 5C,D show
box and whisker plots where red represents EC and green indicates Ctrl (FDR p ≤ 0.05
and fold change ≥ 1.5). Additionally, the IPA identified nucleic acid metabolism, small-
molecule biochemistry, and carbohydrate metabolism as the network pathways affected
with the highest score between EC and control groups (score of 6) (Figure 6A,B). The
top 5 canonical pathways included histidine degradation III (1.36 × 103 5.6%), histidine
catabolism (1.96 × 103 3.8%), histidine degradation VI (2.49 × 103 3.0%), synthesis of
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prostaglandins (PGs) and thromboxanes (TXs) (3.47 × 103 2.2% 1/46), and transport of
vitamins, nucleosides, and related molecules (7.68 × 103 1.0%).
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3.7. Evaluation of Metabolite Biomarkers between HP and Ctrl Groups and Network Pathway

OPLS-DA was used as a classification and feature-ranking approach for a multivariate
exploratory ROC analysis based on common and significantly dysregulated metabolites
found between the HP and Ctrl groups (Figure 7A). Figure 7B shows that the AUC of
the exploratory ROC curve for the top 15 variations (metabolites) was 0.821. For two
metabolites’ AUCs from the top 15 variations, box and whisker plots (Figure 7C,D) show
green denoting HP and red denoting Ctrl, with FDR p ≤ 0.05 and fold change ≥ 1.5.
The pathway analysis showed that metabolites within this group related to changes in
lipid metabolism, molecular transport, and small-molecule biochemistry (score of 4) (Fig-
ure 8A,B). The top 5 canonical pathways included synthesis of prostaglandins (PGs) and
thromboxanes (TXs) (3.47 × 10−3 2.2%), transport of vitamins, nucleosides, and related
molecules (7.68 × 10−3 1.0%), G alpha (q) signaling events (1.69 × 10−2 0.4%), oxytocin
signaling pathway (2.18 × 10−2 0.3%), and eicosanoid signaling (2.32 × 10−2 0.3%).
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Furthermore, metabolic pathway analysis revealed that the most relevant metabolic
pathways related to the dysregulation of the identified 33 metabolites included histidine
metabolism, linoleic acid metabolism, and cysteine and methionine metabolism (Figure 9).
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Figure 8. Schematic representation of the highest-scoring network pathways depicting the involve-
ment of the differentially regulated metabolites. Nodes colored blue represent downregulation and
orange represents upregulation. (A) In patients with Hyperplasia and Controls, (B) 9 top canonical
pathways ranked by the p-values obtained by the IPA. The interaction networks were generated
through IPA (QIAGEN Inc.).
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4. Discussion

Cancer cells are fast-growing cells with a high demand for energy to maintain their
survival and growth. In this regard, several metabolic alterations have been documented in
many cancers supporting cancer cells’ ability to proliferate, mutate, metastasize, and defy
treatment. One of the reported characteristics of cancer is an altered energy metabolism [25]
including the mitochondrial oxidative phosphorylation pathway that is either defective
or insufficient in cancer cells. This forces cancer cells to create the energy they require
using alternate pathways, including aerobic glycolysis [26], lactate utilization [27], folate
metabolism [28], or complete glutaminolysis through the TCA cycle under oxidative condi-
tions [29]. In our present study, we identified alterations in the levels of these metabolites
in the metabolic profiling of women with EC and hyperplasia compared to controls.

The levels of N-heptanoyl glycine were found to be significantly downregulated in
hyperplasia in comparison with controls. N-heptanoyl glycine is an acylglycine, a minor
metabolite of dietary fatty acids, accumulated due to defective lipolysis [30]. Therefore,
the downregulation of these acylglycines can indicate fatty acid oxidation disorders in
hyperplasia. This, along with the drop in 5-(Methylthio)-2,3-isopentyl phosphate levels
and methionine, points to a multiple-step interruption in the methionine salvage process.
The methionine consumption by cancer cells also leads to defects in the methionine cy-
cle in T cells, affecting the adenosine-monophosphate-activated protein kinase (AMPK)
activity. Defects in the activity of AMPK ultimately lead to upregulation of several immune-
suppressive proteins like programmed cell death 1 (PD-1), which restricts immunological
responses, upholds peripheral tolerance, and aids in tumor growth [31].

Among all amino acids circulating in human blood, glutamine is the most prevalent.
Cancer cells exhibit markedly elevated glutamine uptake compared to their normal human
tissue counterparts [32,33]. Cancer cells have also shown a proclivity for glutamate utiliza-
tion. Research has demonstrated that glutamate plays a role in glutaminolysis and GSH
synthesis within various cancer types [34]. Glutamine and glutamate metabolism are signif-
icantly upregulated in cancer cells, particularly breast cancer. In breast-invasive carcinoma,
glutamine is pivotal in purine synthesis, providing the necessary building blocks for DNA
and RNA production. This metabolic shift fuels the rapid proliferation and growth of cancer
cells [34]. In addition, formimino-glutamic acid is significantly upregulated in hyperplasia
compared to controls. Formimino-glutamic acid, also known as N-formimino-L-glutamate,
belongs to the class of organic compounds known as glutamic acid and derivatives. The
breakdown of histidine, an essential amino acid, involves a series of steps that rely on the
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presence of folic acid. Subsequently, formimino-glutamate is formed, which plays a crucial
role in producing glutamate [35]. IPA identified a dysregulation in histidine metabolism in
the top 3 canonical pathways between hyperplasia and controls. As these metabolites did
not show any significant difference between control and EC subjects, N-heptanol glycine
and -(Methylthio)-2,3-isopentyl phosphate and formimino-glutamic acid may be specific
markers for hyperplasia conditions.

In EC, PE-NMe2(18:1/24:0) is significantly elevated compared to controls.
PE-NMe2(18:1/24:0), also known as dimethyl phosphatidyl ethanolamine, is a type of
phospholipid that belongs to the glycerol phospholipid class. It is a crucial intermediate in
phosphatidylcholine (PC) biosynthesis, a major component of cell membranes. PC is vital in
maintaining membrane structure, fluidity, and signaling functions. Dimethyl phosphatidyl
ethanolamine interacts with signaling proteins, modulating their activity and influencing
various cellular processes, including cell growth, differentiation, and apoptosis. It also reg-
ulates the trafficking of proteins and lipids within the cell, which is crucial for cell signaling,
protein sorting, and organelle biogenesis [36,37]. Decreased levels of this phospholipid are
observed in the brains of Alzheimer’s disease and Parkinson’s disease patients, suggesting
its potential involvement in the pathogenesis of these neurodegenerative disorders [38,39].
Conversely, elevated PE-NMe2(18:1/24:0) levels are found in some types of cancer, such as
esophageal tumors, implying its potential role in cancer development and progression [37].

8-iso prostaglandin E2 was significantly downregulated in EC compared to controls.
8-isoprostaglandin E2 is a prostaglandin-like compound produced from an intermediate
molecule called 8-iso-PGH2. Isoprostanes, a family of prostaglandin-like compounds,
are formed in the body through a free-radical-driven peroxidation process involving
arachidonic acid, a fatty acid [40]. Isoprostanes, generated within the body through non-
enzymatic free-radical-mediated lipid peroxidation, are indicative of oxidative stress and
elevated isoprostane levels may exhibit antiangiogenic properties [41]. The isoprostane
8-iso-PGE2 blocked the migration and tube formation of endothelial cells induced by vas-
cular endothelial growth factor (VEGF) both in vitro and in vivo [42]. They have been
demonstrated to activate signaling pathways involving inositol phospholipids and protein
kinase C, which are known to play a significant role in cancer development. Therefore,
isoprostanes could represent a new category of naturally occurring tumor promoters. In
experiments involving male B6C3F1 mice, the absence of any observable effect of 8-iso-
PGE2 alone suggests that its combined effect with epidermal growth factor (EGF) on cell
proliferation may be synergistic [43]. Similar to our findings with EC patients, a lower level
of 8-iso-PGE2 was observed in colorectal cancer patients [44]. As the metabolites dimethyl
phosphatidyl ethanolamine and 8-isoprostaglandin E2 did not show any significant dif-
ference between control and HP subjects, they may be specific markers for EC conditions.
Network pathway analyses, using IPA, also demonstrated metabolite 8-iso-PGE2 to be
connected with the other identified metabolites in the dataset, including PGF2 α, via the
TBXA2R node.

Low levels of PGF2 and its metabolites were seen in HP and EC samples, and according
to others, this is a poor prognostic indicator [45]. Cyclooxygenases (COXs) are enzymes that
oxidize arachidonic acid (AA) to produce a family of lipids known as prostaglandins (PGs).
While prostaglandin D2 (PGD2) is said to impede tumor advancement, prostaglandin F2
alpha (PGF2α) and prostaglandin E2 (PGE2) appear to promote tumor aggressiveness and
progression [46]. The decrease in PGD2 prevents the growth of new blood vessels, while
its decrease promotes the neovascularization required to advance tumors. Compared to
healthy persons, melanoma tumor cells and other cancer types have been reported to have
higher amounts of PGF2α, which promotes tumor development and decreases apoptosis in
cancer cells [47]. This might be true at an early stage of cancer [48]. PGF2α was also identi-
fied as the central node in the IPA network pathway that influenced metabolic pathways in
EC and HP. The decreased levels of PGF2α in the EC patients was found to increase the
activity of arachidonic acid, luteinizing hormone, and choriogonadotropin receptor on the
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network map. Among the canonical pathways, prostaglandin and thromboxane synthesis
and eicosanoid signaling were among the top 5 pathways identified by the software.

The overactivation of fatty acid oxidation in mitochondria in response to the elevated
energy demand in cancer cells is linked to the decrease in acylcarnitine in HP and EC
samples. Previous research shows that acetyl-CoA carboxylase 2 (ACC2) expression is
lowered in cancer cells due to the deacetylation of histones to adapt to the acidic pH in
the tumor microenvironment. This enzyme catalyzes the irreversible carboxylation of
acetyl-CoA to produce malonyl-CoA that, in turn, inhibits the rate-limiting step in beta-
oxidation of fatty acids. By controlling the enzyme carnitine acyltransferase, malonyl-CoA
prevents fatty acids from binding to carnitine and prevents them from getting into the
mitochondria, which is where fatty acid oxidation and breakdown take place. By decreasing
the expression of ACC2, this feedback inhibition is stopped, and the fatty acid oxidation
cycle could be irregularly activated in a known phenomenon called the “Corbet–Feron”
effect [49,50]. This agrees with the Tuncer et al. study, where women with EC had far lower
serum total L-carnitine levels than healthy individuals, and this difference was related to
the disease’s stage. Therefore, the deficiency in L-carnitine could contribute to the etiology
of endometrial cancer independent of obesity or an increase in body fat and could serve
as an early diagnostic indicator for EC [51]. Our IPA also showed that the pathway most
affected between hyperplasia and controls was the one involving lipid metabolism.

In addition, many gynecologic malignancies have a significant impact on lipid
metabolism. According to a study, ovarian cancer patients’ plasma lipid profiles were
lower than healthy individuals, consistent with our results [52]. Lipids are essential com-
ponents of the cell’s plasma membrane, which preserves the enclosure’s integrity. They
are also crucial signaling molecules and energy sources, and it is widely known that they
are linked to cancer [53]. The observed reduced lipids might be due to their increased
utilization by cancerous cells during proliferation. However, whether hypolipidemia at
the time of diagnosis contributes to cancer’s development or its effect is still unresolved.
Although study results had inconsistent findings, monitoring plasma lipid status may be a
useful indicator of the early changes [54].

In this study, we observed that low prediction rate (Q2) prompts a comprehensive
examination of several crucial aspects to elucidate the underlying factors contributing to
this outcome. First and foremost, a rigorous evaluation of data quality was undertaken,
ensuring the reliability of raw data while meticulously scrutinizing sample preparation,
instrument calibration, and data acquisition. An in-depth analysis of the preprocessing
steps was conducted, focusing on normalization, scaling, and transformation techniques
to ensure their appropriateness for our dataset. An OPLS-DA selection was pivotal in our
investigation, with multiple algorithms explored to identify the most fitting one for our
data. Feature selection and dimensionality reduction techniques were also implemented to
refine the variables used in this model. The cross-validation strategy was carefully revisited,
optimizing the number of folds and randomization procedures. Considering the intrinsic
biological variability in metabolomics studies, we acknowledge the presence of natural
variations that may influence the predictability of our model. A validation step using an
independent dataset was incorporated to bolster the robustness of our findings.

Furthermore, the limitations of the small sample size and potential external factors
such as lifestyle and diet were acknowledged. Statistical significance was rigorously
assessed, and sensitivity analyses were performed to discern the impact of various param-
eters on model performance. Considering these factors, we propose avenues for future
research and experimentation to address the identified limitations and refine our model’s
predictive capabilities.

5. Conclusions

EC is linked to severe metabolic dysfunction through altering ratios between glucose,
glutamine, and fatty acid use to increase the total yield of cellular ATP. This continu-
ous reprogramming gives cancer cells a selective advantage for growth. The changes in
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metabolites identified in our study indicate that endometrial cancer cells adopt alternative
strategies to increase energy production to meet the energy demand, thereby supporting
proliferation.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/metabo14020109/s1, Supplementary data Table S1: Char-
acteristics of study subjects; Supplementary data Table S2: Mass spectrometry list of significant
differentially abundant metabolites and identified metabolites, with changes in abundance of sig-
nificantly differentially abundant metabolites between cancer, hyperplasia, and control states in
plasma samples.
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