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Abstract

Most current 13C-MFA approaches calculate labeling patterns on
metabolites of a reaction network at given fluxes and then adjust these
fluxes to match the corresponding measurements. Nonlinear opti-
mization or regression is used for fitting. We adapted the MFA to
a Bayesian analysis in our work by formulating the complete MFA-
EMU [1,2] approach in the Statistical Programming Language ‘Stan’
[3–5]. In contrast to MFA implementations using nonlinear regres-
sion, Bayesian analysis is inevitably more time intensive but provides
an exact distribution of the fluxes, their confidence regions, and their
correlations. In this supplement, we outline the implementation pro-
cess of the MFA in Stan. The cost of a numerical solution of equations
grows with the third power of the number of metabolites included in
the system. Therefore, there is an advantage to reducing the metabo-
lites included in the reaction network to a ‘core system’. Later, label-
ing patterns of non-included metabolites can be calculated from the
core metabolites patterns without sacrificing model correctness. In
a Bayesian approach, ranges and initial distributions (priors) can be
defined for individual fluxes but should be as non-informative as possi-
ble. This ensures that the distributions resulting from model structure
and the 13C distributions of metabolites are as independent from the
priors as possible. In our MFA approach, we utilized appropriate prior
values to prevent the sampled fluxes from becoming negative. How-
ever, self-developed programs may be erroneous. To minimize these
errors, we introduced a number of ‘self-consistency’ tests.

Abbreviations

� Hexoses : F6P: fructose-6-phosphate; G6P: glucose-6-phosphate; 6PG:
6-phosphogluconate; F-1,6-B: fructose-1,6-biphosphate
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� Trioses : GAP: glyceraldehyde-3-phosphate ; DHAP: dihydroxyacetone-
phosphate

� Pentoses : Ru5P: ribulose-5-phosphate ; R5P: ribose-5-phosphate ; X5P:
xylulose-5-phosphate

� Sedupheptulose: S7P: seduheptulose-7-phosphate

� Erythrose: E4P: erythrose-4-phosphate

� CMD : carbon mass distribution. We denote an element of this distribu-
tion as isotopomer, a superscript to a metabolite refers to the number
of simultaneously labeled carbons, i.e. G6P3.

� EMU: elementary metabolite unit

1 Bayesian parameter/flux estimation

For this multi-target optimization problem, we use a Bayesian analysis. With
this analysis, the probability that a measured data set can be explained with
a given model is optimized. To adapt this approach to our questions we
denoted the set of all measured CMDs as the data D and the set of all
unknown fluxes and other parameters is collected in the vector q. Bayesian
statistics defines this distribution as P (q|D), the distribution of q given the
data D, based on the relation [6]:

P (q|D) ∝ P (D|q)P (q). (1)

In terms of the current application, P (D|q) represents the probability that
the different predicted CMDs of each ion fragment for a given parameter/flux
set q match the corresponding measured distributions. P (q) expresses the
’prior’ knowledge about the parameter distributions.

The unknown parameters q are determined by optimizing the product of
likelihoods defined in eqn (3), ideally leading to optimal q values. Slightly
different parameters give a less optimal fit which in turn results in a dis-
tribution of parameter values whose shape depends on the prediction equa-
tion, measurement values and their error bounds The shape of their distri-
bution P (q|D) is generally unknown, though it can be estimated by using
a sampling-based Markov chain Monte Carlo (MCMC) algorithm [7]. For
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implementation, we use the software package and statistical programming
language ’Stan’ [6]. Key elements of such an implementation comprise firstly
the unknown parameters q, secondly equations using these parameters to pre-
dict values of interest, and lastly ’sampling statements’ that form the right
side of eqn (1). In the underlying MCMC algorithm [7,8], a parameter set is
randomly selected and used to generate predictions that correspond to mea-
sured data. If the resulting predictions come close to the measurements in the
frame of the measurement errors, then this sample is considered to be a valid
sample of the underlying distribution and is collected in a sampling chain,
otherwise it is disregarded. With this selection, the MCMC algorithm [7, 8]
ensures that the distribution of the sampled parameters converges to the
true underlying distribution with an increasing number of samples. There-
fore, with a sampling run, one obtains a distribution for each parameter.
The determination of an unknown parameter results in its distribution at
the same time. The shape of this distribution depends solely on the model
structure and the specification for the measurement error.

2 Measurement error handling

Metabolic fluxes are estimated by fitting model-calculated CMDs with corre-
sponding distributions derived from mass spectrometry. This fitting should
take the measurement error for the underlying signals into account. In the
simplest case, it can be assumed that measurement errors for individual dis-
tribution elements are independent and proportional to the current value
(about 5% of the nominal value). However, this simplification does not fully
capture the current situation: when calculating a CMD, the signal area for
a given isotopologue is divided by the sum of the areas of all isotopologues
relevant to the distribution. The measurement errors of all signal areas thus
have an influence on the denominator and induce a correlation between the
individual distribution elements. Furthermore, it is not certain that rela-
tively small distribution values have the same percent measurement error as
large ones. Some metabolites are measured with greater signal strength than
others and therefore with better precision. This dependence on the signal
strength should be taken into account. To reflect this state, we use a Dirichlet
distribution [9](Chp. 2.2.1). It describes the variation of a discrete distribu-
tion comprising of positive elements normalized to 1 that is often explained
with the example of an urn scenario. In the urn there is a large number of
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k different balls with the distribution [p1, p2, ..pk]. If n balls are drawn and
afterwards put back into the urn, then we are given the following variance
and covariance of elements of the distribution of collected balls:

diagonal element: vari =
pi(1− pi)

n+ 1

covariance element: covi,j =− pipj
n+ 1

(2)

As a result, one precision parameter is enough for a distribution. In the
statistical modeling language, the likelihood that a measured distribution
can be explained with the corresponding model calculation is:

measG6P [i] ∼ dirichlet(predG6P [i] ∗ precG6P ); (3)

with meas\_G6P[i] as the mass distribution of the complete G6P fragment
measured for the i-th tracer protocol, pred\_G6P[i] as the corresponding
model prediction, and prec_G6P as the appropriate precision. According
to eqn (2) the standard deviation of a distribution element with value 0.1
and a Dirichlet precision of 1000 is 0.0095. The log-likelihood of a Dirichlet
distribution captures the probability that the error in a measurement of a
distribution can be explained by a given precision. For a molecular fragment
with 6 carbons, the optimal log-likelihood would lie between 20 and 25. A
still acceptable congruence between measured and theoretical distribution
yields a log-likelihood value around 10. For a poor congruence it can become
negative. In this case, the precision must be reduced so that the Dirich-
let distribution can explain the large difference between the measured and
theoretical distributions.

The natural m+1 enrichment for a 6 carbon fragment is about 0.06. If we
used distributions corrected for natural 13C labeling, the value would become
essentially zero. In this case, the distribution error could not be defined.
We therefore decided to use CMDs that are not corrected for natural 13C
abundance for distribution fitting, which might be less conservative within
the metabolic community, but more useful for our precision estimation.

2.0.1 parameters of the model

2.0.2 posterior values

Each time a new parameter set is added to the chain, a routine is started
that uses the new, added parameter set to calculate other quantities, such as
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correction function values for fixed signal values. 13C enrichment values from
corrected MIDs are also possible. This creates a further sampling chain from
which statistical properties of the additionally calculated quantities can be
derived. This concept of ’posterior predictive sampling’ is described in detail
in the Stan user guide [10], chapter 28.1.

3 PPP-Modeling: The basic network

Figure 1 introduces the model used in the current project. The rudimentary
structure was based on the Katz et al. model [11]. We explored how pentose
moiety, generated by the oxidative part of the PPP, was either lost as R5P or
channeled back to the hexose and triose pools, from where it may leave the
system as pyruvate and lactate. The steps involved in this reaction sequence
were the reversible flows of the non-oxidative PPP, namely

transaldolase F6P+E4P
Q10−−⇀↽−−
Q9

S7P+GAP

transketolase I X5P+E4P
Q5−⇀↽−
Q6

F6P+GAP

transketolase 2 X5P+R5P
Q7−⇀↽−
Q8

S7P+GAP (4)

The model was expanded to allow a negative net flow for these reaction pairs,
such that i.e. Q10 can be larger than Q9. Moreover, by establishing QR we
considered a ’gluconeogenic’ backflow from the triose pools to the hexose
pool. The combined input into the G6P and F6P pools was set to 100,
such that Finput referred to the input into F6P and 100− Finput to the G6P
input. Both inputs can include unlabeled material. In addition, we allowed
an input of unlabeled material into the pentose pool (PInput), seduheptulose
pool (Sinput), and DHAP pool (Tinput).

4 The EMU approach

In this work, we applied the EMU approach [1] to 13C mass distributions
of metabolites. The EMU approach works with different levels, where each
level considers labeling over neighboring carbons on metabolites of a reac-
tion network. Level 1 works with abundance on isolated carbons, level 2 on
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Figure 1: Flows of the glycolytic and PPP reaction network as implemented
in the model. The color code for flows is as follows: oxidative PPP: orange;
glycolysis: violet; non-oxidative PPP: transketolase reactions: blue and red;
transaldolase reaction: green.

mass distributions over two adjacent carbons, and level n refers to n-adjacent
carbons. Labeling patterns of each level are calculated in order from level
1 to level n. For each level there is a linear system describing the relations
of patterns and their loss from the network (input-output equations). An
input can either consist of an input from outside of the network or of newly
formed patterns calculated from the condensation of two different fragments,
each of which originates from results of lower levels. With this strategy, mass
distributions over complete molecules of a complex reaction network can be
calculated via a series of linear equations without resorting to expensive iter-
ative approximation methods. The data table Matrix_for_EMU_Level.xlsx
in the supplement contains the system of equations from level 1 to level 4 for
our PPP model. It is noticeable that the size of the systems decreases with
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higher levels.

5 PPP model reduction to a core system

With the linearity of the equations for each EMU level, labeling patterns of a
particular metabolite can be calculated from a superposition of the patterns
on the supplying fluxes. Thus, some metabolites of the network, such as G6P
or Ru5P, can be omitted, while metabolites representing central nodes are
retained. The latter then form a core system. Given a solution of the core
system, labeling patterns of an omitted metabolite can be calculated from a
superposition of patterns of the core system.

Omitting some metabolites can significantly increase the efficiency in cal-
culating the labeling patterns. For the PPP model shown in Fig.1, the num-
ber of isolated carbons in the system that can be labeled amounts to 34. In
consequence, a 34 x 34 matrix must be inverted to calculate their enrich-
ments. The number of elementary multiplication and addition steps required
for the inversion of a matrix is proportional to the third power of the edge
length of the matrix. In our case this would account to about 40000 elemen-
tary steps and therefore impose a large computational load, given the fact
that the inversion step must be repeated thousands of times in the context
of a Bayesian analysis. It is possible to deduct 11 carbons if the patterns of
G6P and Ru5P are expressed by other patterns. Because of the dependence
on the third power, the associated computational effort is reduced to about
12000 steps, which equals about one third of the total effort. This showcases
why it is desirable to reduce the complete PPP system to a minimal PPP
core that retains all essential information about flows and labeling patterns.
Hence, we introduce details of this reduction of considered metabolites in the
next section. In Fig. 1, flows which are to be replaced start with upper case
Z, while the new, merged fluxes of the reduced system are denoted Qx like
other fluxes of the core system.

To define the core system, the F6P and G6P pools are condensed to one
hexose compartment. Furthermore, in the pathway from G6P to R5P and
X5P the intermediate step through Ru5P will be omitted. The mass balances
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for the to be simplified subsystem are:

Input = Output

G6P :Ginput + Z13 = Z12 + Z3 (5a)

F6P :Finput + Z12 +Q5 +Q9 +QR = Z13 +Q6 +Q10 +Q2 (5b)

Ru5P :Z3 + Z43 + Z53 = Z35 + Z34 (5c)

R5P :Z34 +Q8 = Q4 +Q7 + Z43 (5d)

X5P :Z35 +Q8 +Q6 = Q5 +Q7 + Z53 (5e)

The left side of the equations lists all fluxes entering, and the right the ones
leaving a compartment. Combined these fluxes represent the total through-
put of the compartment. For the following we define:

FInput +GInput =Z1 = 100

Q5 +Q9 +QR = Qinp; Q6 +Q10 +Q2 = Qloss

fluxf = Z13 +Qloss; fluxg = Z12 + Z3

fluxRu5 =Z35 + Z34 (6)

Firstly, we consider the mass balances of carbon isotopomers with the
mass offset m for 6-carbon metabolites of this subsystem. Their mole frac-
tions are denoted as Tm

G6P and Tm
F6P for the tracer input, Qm

inp for the transfer
of label on the combined input Qinp from the non-oxidative PPP, and Gm

and Fm for the G6P and F6P metabolites. During the decarboxylation of
G6P to Ru5P one labeling position is lost. To indicate that the exchange
of isotopomers on a 5 carbon fragment between the Ru5P, R5P and X5P
pools cannot be easily linked with isotopomers on a 6 carbon fragment, we
use the mass offset p for the pentose subsystem. The transketolase reactions
of Q6 and Q8 involve a condensation of two precursors. We use the notation
c(Q8)

p to refer to the transfer of Q8[S1−2 ⊗GAP ]p with the mass offset p on
the condensation product. Accordingly, c(Q6)p refers to Q6[H1−2 ⊗ GAP ]p.
With this abbreviated notation, the mass balances for the isotopomers of the
hexose/pentose subsystem are defined as follows:

Ginput T
m
G6P + Z13 F

m = fluxgG
m (7a)

FinputT
m
F6P + Z12G

m +Qm
inp = fluxfF

m (7b)

Z3 T
p
5 + Z43R5P

p + Z53X5P
p = fluxRu5Ru5P

m (7c)

Z34Ru5P
p +Q8S

p
3−7 = (Q4 +Q7 + Z43)R5P

p (7d)

Z35Ru5P
p + c(Q8)

p + c(Q6)
p = (Q5 +Q7 + Z53)X5P

p (7e)
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When focusing on eqns (7a) and (7c), normalizing these equations by the
fluxes leaving the compartments allows for expressing the labeling on G6P
and Ru5P as a function of the labeling on the other metabolites of the sub-
system:

Gm =
Ginput

fluxg

Tm
G6P +

Z13

fluxg

Fm (8)

Ru5Pp =
Z3T

p
5

fluxRu5

+
Z43R5P

p

fluxRu5

+
Z53X5P

m

fluxRu5

(9)

In a next, crucial step, we substitute for Gm and Ru5Pp with equations (8)
and (9) in the remaining equations of the subsystem (7). After this step, they
no longer depend on G6P and Ru5P while the tracer balances for F6P, R5P,
and X5P are still valid. However, the modified equations contain elaborate
fractions of the Z-fluxes, which still need to be simplified. For example, after
some rearrangement eqn (8) inserted in (7b) results in:

Z12
Ginput

fluxg

Tm
G6P + FinputT

m
F6P +Qm

inp =

(
Z13

Z3

fluxg

+Qloss

)
Fm (10)

Combining the first two terms on the left of eqn (10) gives us an input-derived
flow, while the first term on the right refers to a flow from F6P to G6P that
is followed by the first step of the oxidative PPP pathway. Thus we set:

Q̄1 =
GinputZ12

Z12 + Z3

+ Finput; Q̄3 =
Z3Z13

Z3 + Z12

; Q̄12 =
GinputZ3

fluxg

(11)

Based on eqn (8), the transfer from G6P to the oxidative PPP via Z3 is:

Z3G
m =

GinputZ3

fluxg

Tm
G6P +

Z3Z13

fluxg

Fm = Q̄12T
m
G6P + Q̄3F

m (12)

As a consistency check, we can derive

Q̄1 + Q̄12 =
GinputZ12

Z12 + Z3

+ Finput +
GinputZ3

Z12 + Z3

= Ginput + Finput (13)

Q12 reflects that fraction of Ginput that is converted to Ru5P without reaching
the F6P pool. Based on the preceding substitutions it follows that the hexose
patterns are equal to the F6P patterns of the basic system.
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We now focus on the pentose patterns. Replacing the Ru5P isotopomers
Ru5Pp in eqn (7d) and (7e) with terms shown in eqn (9) while using the
following substitutions

Z34

fluxRu5

= pR;
Z35

fluxRu5

= pX ; (14)

results in

Z34Ru5P
p − Z43R5P

p =pRZ3T
p
5 + pRZ53X5P

p − pXZ43R5P
p (15)

for the exchange between Ru5P and R5P, and

Z35Ru5P
p − Z53X5P

p =pXZ3T
p
5 + pXZ43R5P

p − pRZ53X5P
p (16)

for the exchange between Ru5P and X5P, respectively. With pRZ53 = BX
and pXZ43 = BR, one can define reduced balances for the R5P and X5P
subsystem:

pRZ3T
p
5 +BX X5Pp +Q8S

i
3−7 = (Q4 +Q7 +BR)R5Pp

pXZ3T
p
5 +BRR5Pp + c(Q8)

p + c(Q6)
p = (Q5 +Q7 +BX)X5Pp (17)

When summing up over all isotopomers, one obtains the flux balances for
R5P and X5P:

pRZ3 +BX −BR +Q8 =Q4 +Q7

pXZ3 −BX +BR +Q8 +Q6 =Q5 +Q7 (18)

Thus, the balances of R5P and X5P require the three additional parameters
pR, BR, and BX, which define the exchange between the pentose pools and
the NADPH oxidase-linked flow Z3 that feeds into these pools. If necessary,
they can be used to asses Z53, and Z43 as:

X5P
BX−−→ R5P : Z53 =

BX

pR
; R5P

BR−−→ X5P : Z43 =
BR

pX
(19)

The resulting core system is shown in Figure 2. Given the flows and labeling
patterns for the core system, one can assess the G6P and Ru5P patterns
with eqn (7a) and (9), respectively. The flux Z3 results from the sum over
all isotopomers of equation (12) with Z3 = Q3 +Q12. These equations serve
as an interface to calculate values of the original system while using data of
the core system.
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Figure 2: The condensed system. It affects the exchange between F6P and
G6P and the flow through the NADPH oxidase step. The input is split into
a ‘direct’ use by the NADPH oxidase (Q12) and an uptake into the hexose
pool Q1.

6 Dependency based on mass balance equa-

tions

For the different pools of the system in Fig. 1, input-output balance equations
can be defined. Only the net fluxes of reversible reactions are of relevance
and denoted with the symbol ∆ in the following. Specifically, we use ∆Q2 =
Q2 − QR for the net glycolytic rate, and ∆TAL for the transaldolase net
flow Q9 − Q10. Further definitions include ∆TKT2 = Q6 − Q5, ∆TKT1 =
Q8 − Q7, ∆GPI = Z12 − Z13 (glucose-6-phosphate-isomerase), ∆TPI =
Q14−Q13(triose-phosphate-isomerase), and ∆PEX = BR−BX. With these
net fluxes, the mass balances for the core system and the G6P compartment
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are

G6P: Z1 = Z3 +∆GPI

F6P: ∆GPI +∆TAL = ∆Q2 + ∆TKT2

R5P: pRZ3 +∆TKT1 = Q4 +∆PEX

X5P: pXZ3 +∆TKT2 + ∆TKT1 = −∆PEX

S7P: Sinp = ∆TKT1 + ∆TAL

E4P: ∆TAL = −∆TKT2

DHAP: ∆Q2 + Tinp = ∆TPI

GAP: ∆Q2 + ∆TPI = ∆TKT2 + ∆TKT1 + ∆TAL+Q11 (20)

These mass balances can be formally expressed as a matrix

0 = [M0]× fluxes

and this equation can then be split into two parts:

0 = [Ma]× fluxesa + [Mb]× fluxesb

For the next step we require the separation of matrix [M0] to be performed in
a way so that matrix [Ma] is square and invertible. This allows the following
steps:

− [Ma]× fluxesa = [Mb]× fluxesb

fluxesa =− [Ma]
−1 [Mb]× fluxesb

fluxesa = [Mc]× fluxesb with [Mc] = − [Ma]
−1 [Mb] (21)

With these rearrangements, eqn (21) allows for defining 8 dependent fluxes
( fluxesa) and 7 independent fluxes fluxesb. [Mc] serves as a Dependency
matrix, resulting in the following corresponding dependency system:

Z3

Q4

Q11

∆GPI
∆TKT2
∆TKT1
∆TPI
∆PEX


=



1 −1 2 0 0 0 0
1 −1 −1 1 0 2 0
0 2 1 0 1 −1 0
0 1 −2 0 0 0 −1
0 0 −1 0 0 0 0
0 0 −1 0 0 1 0
0 −1 0 0 −1 0 0

−pX pX 2pR 0 0 −1 0


×



Z1

∆Q2
∆TAL
PInput

Tinput

Sinput

FInput


(22)
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6.1 Application of the dependency system to extreme
conditions

We assume that the minimal value of ∆Q2 is -20, which would indicate the
gluconeogenetic flux QR exceeding the glycolytic flux Q2 by 20. We further
set Z1 = 100. In the dependency system, only the dependent fluxes Z3, Q4

and Q11 are subject to the restriction that they do not become negative.
These restrictions play a role in potential extreme values and are calculated
with the first 3 rows of the dependency system. The following discussion
refers to these lines. In our scenario, the input flows appear only in combi-
nation, namely:

Pentinput = PInput + 2SInput; TrioseInput = TInput − SInput (23)

6.1.1 Scenario: No R5P loss from the network

Q4 = 0 implies a complete utilization of the entire hexose input either via
glycolysis or NADPH oxidation. We set Q4 = 0 for the second row of eqn
(22):

Q4 = 0 =Z1 −∆Q2−∆TAL+ PentInput

or: ∆TAL =Z1 −∆Q2 + PentInput (24)

When replacing ∆TAL with eqn (24), the first and third row of eqn (22)
result in:

Z3 =Z1 −∆Q2 + 2(Z1 −∆Q2) + PentInput

=3(Z1 −∆Q2) + PentInput (25a)

Q11 =2∆Q2 + ∆TAL+ TrioseInput

=2∆Q2 + (Z1 −∆Q2) + PentInput + TrioseInput

=Z1 +∆Q2 + PentInput + TrioseInput (25b)

If we now disregard the input values, we get the following values for this
extreme scenario: For ∆Q2 = 0 the maximum TAL value would be 100, the
maximum Z3 value 300, and the minimum Q11 value 100. These limits can
be shifted by ∆Q2.
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6.1.2 Scenario: Ribose formation exclusively through the non ox-
idative PPP

In this scenario, the complete input Z1 must be converted to R5P through
the non-oxidative PPP and leave the network. Accordingly, if we set Z3 = 0
and Q11 = 0, then

Q11 = 0 =2∆Q2 + ∆TAL+ TrioseInput

or: ∆Q2 =−∆TAL/2− TrioseInput (26)

When using this expression for ∆Q2 and setting Z3 = 0, one obtains

Z3 = 0 =Z1 −∆Q2 + 2∆TAL

or: 0 = Z1 +∆TAL/2 + 2∆TAL− TrioseInput

or: ∆TAL =− Z1/2.5 + TrioseInput/2.5 = −40 + TrioseInput/2.5 (27)

from the first row of eqn (22). Similarly, we get the following equations for
the Ribose formation via Q4:

Q4 = Z1 −∆Q2−∆TAL+ PentInput = Z1 +∆TAL/2−∆TAL+ PentInput

Q4 = Z1 −∆TAL/2 + PentInput = Z1 + Z1/5 =
6

5
Z1 + PentInput (28)

From eqn (28), it can be deduced that 6 mol of R5P can be maximally
produced by 5 mol of hexose. Furthermore, the minimal flux of ∆TAL is
-100/2.5 or -40. Under these conditions Q4 would be 120, while 20 of it
(from eqn (26)) would be derived from the triose formation by ∆Q2 or the
first steps of glycolysis. So far, the derivation indicates that ∆TAL ranges
from -40 to 100. These extremes include complete hexose utilization for R5P
production and extend to complete oxidation of the upper half of hexose and
loss of the lower half from the PPP as triose.

7 Sampling for the core system

In a Bayesian approach [12], prior ranges or initial distributions can be spec-
ified for individual fluxes. These priors should be as ‘non-informative’ as
possible and the allowed parameter range should be fully explored/covered
by the prior distributions. However, there is one restriction to take into
consideration: fluxes derived from other parameters should never become
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negative, as negative fluxes can lead to a program termination. In the previ-
ous section, we derived upper and lower bounds for selected fluxes that fulfill
these constraints. In the following, we now develop an approach to define
admissible flux or parameter ranges.

7.1 Parameter and flux sampling

With the lower limit ∆Q2 = −20, the first line of the dependency equation
(22) results from:

Z3 =Z1 + 20 + 2∆TAL = 120 + 2∆TAL (29)

Z3 becomes smaller when ∆Q2 becomes larger than the limit value of -20.
Thus, a tolerable Z3 is always below on the limit line defined by eqn (29).
The flux Q4, which we want to limit from becoming negative, is defined by:

Q4 =Z1 −∆Q2−∆TAL+ Pentinput (30)

We resolved the first line of the equation system (22) for ∆Q2

∆Q2 = Z1 − Z3 − 2∆TAL (31)

and used this expression to replace ∆Q2 in eqn (30):

Q4 =Z1 − (Z1 − Z3 + 2∆TAL)−∆TAL+ Pentinput

=Z3 − 3∆TAL+ Pentinput (32)

This results in the limit line Z3−3∆TAL+Pentinput = 0. When rearranging
this formula to

Z3 = 3∆TAL− Pentinput (33)

we gain another limit line that Z3 needs to exceed. A similar strategy can
be utilized for Q11.

Q11 =2∆Q2 + ∆TAL+ Trioseinp using eqn (31) gives

=2(Z1 − Z3 + 2 ∗∆TAL) + ∆TAL+ Trioseinp

=2Z1 − 2Z3 + 5∆TAL+ Trioseinp (34)
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Figure 3: Permissible range (orange polygon) for the parameters Z3 and
∆TAL in the case that the input values are zero.

If we set Q11 to zero, it results in a third and final limit line, which Z3 must
be below.

Z3 = Z1 +
5

2
∆TAL+

1

2
Trioseinp (35)

Figure 3 demonstrates the resulting feasible range for sampling Z3 and
∆TAL.

Sampling is initiated by drawing random non-negative values for Tinput,
Sinput and Pinput. With these input values, the feasible range for Z3 and
∆TAL can be defined with eqns (29), (33) and (35). We first sampled from
the ∆TAL range, represented by the blue, dashed horizontal line in Fig. 3.
By indicating the sampled ∆TAL by a horizontal arrow in the graphic, we
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can define a vertical dashed line through the yellow segment reflecting the
sampling range for corresponding Z3 values. An example for a potential Z3

value is given by the vertical arrow. After sampling of ∆TAL and Z3, ∆Q2
can be determined using eqn (31). Then, the five different ∆-net fluxes can
be calculated with eqn (22). These net fluxes must be converted into forward
and reverse fluxes, such as:

Q6 = ∆TKT2 +Q5; Q8 = ∆TKT1 +Q7; (36)

Therefore, 5 more ‘independent’ fluxes ( Q5, Q7, Q13, Z13 and BR) must
be collected so that both the dependent ( Q6, Q8, Z12, Q14 and BX ) and
independent fluxes are always greater than or equal to zero. Hence, we split
the ‘independent fluxes/parameters’ into

Q6 = ∆TKT2 +Q5,min +Q5,offset

Q8 = ∆TKT1 +Q7.min +Q7,offset (37)

where the offset values are always ≥ 0. If the ∆ values are negative (e.g.
∆TKT2), we set Q5,min = −∆TKT2, else Q5,min = 0 . With this strategy,
dependent and independent fluxes are always ≥ 0.

8 Testing for correct enrichment calculation

The EMU approach requires individual calculation steps for each level. For
own implementations, a programming error can creep in on each level. There-
fore, we use a test to verify whether patterns at higher levels are compatible
with those from lower levels. For this test we require the following quantities:
a) The abundance on isolated carbons, independent of the abundance on ad-
jacent carbons. We define this quantity as ĉi(metabolite), i.e ĉi(G6P ), where
the index i refers to the carbon position. b) The 13C content of a fragment
ion. It is denoted and calculated as:

C̄a−b = 1/n
n∑
1

i ∗ pia−b (38)

where pia−b is the abundance of isotopomers with mass offset i across the
fragment ranging from carbon a to carbon b and n refers to the total number
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of considered carbons. As outlined by Lima et al. [13], the 13C -content of a
fragment can be related to the isolated carbon labeling of a fragment:

n∑
i=1

ĉi = nC̄1−n (39)

The isolated carbon labeling of a given metabolite is obtained from EMU level
1. Each subsequent EMU level adds one additional carbon to the distribution.
Thus, for each calculated distribution over a longer segment of the carbon
skeleton, there is the corresponding set of level-1 enrichments and a test based
on equation (39) can be performed. While these tests might only capture
whether an EMU setup is consistent across different levels, implementing
them is warranted as these inconsistencies pose a critical obstacle during
implementation.

9 Model free assessment of unlabeled input

at different sides

Most PPP versions ignore any input besides unlabeled or labeled glucose.
Theoretically a cold input may happen for different metabolites of the system,
and therefore multiple ways to expand a model structure are possible. The
following section demonstrates, that a uniformly labeled glucose can expose
an cold input at different sides. We start with a system pertaining to isolated
carbon enrichment. In the general case the mass balances of the isolated
labeling form a matrix equation of the form:involved transfer fluxes

×

carbon labeling

 = j (40)
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