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Abstract: COVID-19, a systemic multi-organ disease resulting from infection with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), is known to result in a wide array of disease
outcomes, ranging from asymptomatic to fatal. Despite persistent progress, there is a continued
need for more accurate determinants of disease outcomes, including post-acute symptoms after
COVID-19. In this study, we characterised the serum metabolomic changes due to hospitalisation
and COVID-19 disease progression by mapping the serum metabolomic trajectories of 71 newly
hospitalised moderate and severe patients in their first week after hospitalisation. These 71 patients
were spread out over three hospitals in Switzerland, enabling us to meta-analyse the metabolomic
trajectories and filter consistently changing metabolites. Additionally, we investigated differential
metabolite–metabolite trajectories between fatal, severe, and moderate disease outcomes to find
prognostic markers of disease severity. We found drastic changes in serum metabolite concentrations
for 448 out of the 901 metabolites. These results included markers of hospitalisation, such as environ-
mental exposures, dietary changes, and altered drug administration, but also possible markers of
physiological functioning, including carboxyethyl-GABA and fibrinopeptides, which might be prog-
nostic for worsening lung injury. Possible markers of disease progression included altered urea cycle
metabolites and metabolites of the tricarboxylic acid (TCA) cycle, indicating a SARS-CoV-2-induced
reprogramming of the host metabolism. Glycerophosphorylcholine was identified as a potential
marker of disease severity. Taken together, this study describes the metabolome-wide changes due
to hospitalisation and COVID-19 disease progression. Moreover, we propose a wide range of novel
potential biomarkers for monitoring COVID-19 disease course, both dependent and independent of
the severity.
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1. Introduction

COVID-19 is a respiratory disease caused by infection with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1]. Although most COVID-19 cases are mild, severe
cases can result in acute lung injury [2] and acute respiratory distress syndrome [3], leading
to potentially fatal outcomes [4]. COVID-19 has been reported to affect multiple organs
beyond the lungs, including the gastrointestinal tract [5], the kidney [6], the liver [5,7], and
the brain [8]. Due to increasing evidence on the systemic extrapulmonary implications
of COVID-19 [9], the disease has been recognised as a multisystem disease [9]. Since the
start of the COVID-19 pandemic, significant efforts have been made to find determinants of
COVID-19 disease outcomes. Phenotypic and epidemiological determinants of COVID-19
disease outcomes, such as age [10,11], BMI [11–13], sex [14,15], air quality [16,17], and
environmental pollution [14,15], have been instrumental in understanding which individ-
uals are at risk of severe COVID-19 outcomes. These epidemiological metrics, however,
are limited as they do not take genetics and molecular phenotypes into account. To find
more accurate and time-dependent predictors of disease outcomes, omics-based studies, in
particular blood metabolomics, have consistently found new prognostic markers of disease
outcomes and enabled important insights into the pathogenesis of COVID-19 [18–20].

Previous blood metabolomic studies have uncovered widespread physiological and
molecular responses upon infection by SARS-CoV-2 [21–24]. After recognition of the
SARS-CoV-2 double-stranded RNA by the host, a series of molecular cascades is initi-
ated, resulting in the production of cytokines and chemokines [1]. In severe and critical
COVID-19 patients, the production of cytokines can become excessive, leading to a “cy-
tokine storm”, which has been proposed as the main driver of COVID-19 severity [25].
IL-6, one of the main cytokines driving COVID-induced hyperinflammation [25], has been
reported to correlate with shifts in tryptophan metabolism, nitrogen metabolism, and
oxidative stress markers, such as methionine sulfoxide and cysteine. Notably, the depletion
of tryptophan, an essential precursor of several neuroactive metabolites, such as serotonin
and melatonin [26], has also been linked with persistent long-COVID symptoms.

Besides physiological and molecular changes due to the host response, SARS-CoV-2
has also been found to hijack the host metabolism to promote its replication [22,27,28].
SARS-CoV-2 is known to promote nucleotide production for its replication by increasing
glucose-derived carbon uptake, leading to an increased oxidative tricarboxylic acid (TCA)
cycle activity and nucleotide production [27]. Alterations in lipid metabolism have also
been linked to SARS-CoV-2-induced metabolic hijacking [29–31]. SARS-CoV-2 replication
is dependent on lipid droplets [32], which consist of various phospholipids, sphingolipids,
and cholesterol compounds. Alterations in lipid metabolism have been confirmed by
various metabolomic studies linking phospholipids and sphingolipids to COVID-19 disease
outcomes [22,33,34].

COVID-19, being a systemic disease, impacts metabolism through COVID-19-related
changes in the gut microbiome, with pathogenic gut microbes increasing in their abun-
dance while beneficial microbes decrease in relative abundance [35]. Moreover, several
gut-microbiome-modulated metabolites in the blood have been linked with COVID-19
outcomes, including short-chain fatty acids and neurotransmitters [35,36].

Although great strides have already been made to find determinants of COVID-19
disease outcomes, the interaction between hospitalisation and disease progression remains
understudied. When an individual moves from the home environment to the hospital
environment, the patient is often subject to a drastically different exposome, an umbrella
term of all dietary, drug, behavioural, and environmental exposures [37]. The exposome
shift from the home environment to the hospital can be expected to have systemic effects
and may, thus, influence COVID-19 disease progression.
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To investigate how the hospital exposome, disease progression, and exposome–disease
interactions influence physiological functioning, we analysed untargeted serum metabolomics
data of newly hospitalised moderate and severe COVID-19 patients. Using a repeated-
measure design, we investigated metabolome-wide shifts in the first week after hospitalisa-
tion of 71 patients in three different locations in Switzerland, namely Geneva, St. Gallen,
and Ticino. Each location was investigated as a separate study, after which the results were
meta-analysed to find consistently changing metabolites. We found drastic metabolome-
wide changes in metabolism that could be linked to various aspects of hospitalisation and
COVID-19 disease progression. This list included markers of changing environmental
exposures, diet, drug metabolism, host–gut microbiota crosstalk, physiological functioning,
and COVID-19-induced metabolic reprogramming. Moreover, we propose carboxyethyl-
GABA and fibrinopeptides as potential markers of COVID-19-driven lung injury. This
study comprehensively describes the shifts in serum metabolite concentrations in newly
hospitalised COVID-19 patients and put these changes into their metabolic context.

2. Results
2.1. Data Descriptions

To investigate serum metabolome trajectories during COVID-19, we analysed a total
of 71 patients from three independent, longitudinal cohorts of COVID-19 patients placed in
Ticino (n = 20), St. Gallen (n = 22), and Geneva (n = 29). We analysed serum samples using
untargeted mass spectrometry during the first eight days of hospitalisation at two different
time points. The Geneva and St. Gallen samples only consisted of severe COVID-19 cases,
while the cohort in Ticino consisted of nine severe and eleven moderate COVID-19 cases
(Table 1). Moderate cases were defined as PCR-confirmed SARS-CoV-2-infected patients
with symptoms of pneumonia, fever, and respiratory tract symptoms. Severe COVID-19
patients had all the symptoms of moderate cases, but also had a respiratory rate of ≥30
breaths per minute and an oxygen saturation of ≤93% when breathing ambient air or
having a PaO2/FiO2 below 300 mmHg. Patients that did not meet these requirements but
needed ventilator support were also classified as severe COVID-19 patients. All moderate
patients were situated in the hospital ward, whereas the severe patients were all in the
intensive care unit (ICU). Across the three locations, 49 (37%) patients had one sample
taken, 55 (42%) patients had two samples taken, 17 patients (13%) had three samples taken,
and only nine patients (6%) had a fourth sample taken (Figure 1A).

Table 1. Summary of COVID-19 patient demographics from three Swiss hospitals. SD—standard
deviation. BMI—body mass index.

Geneva Moderate Severe-Survived Severe-Fatal

Analysed patients 14 15
Mean age (SD) 66.8 (9.6) 66.6 (8.82)
Female/male 5/9 3/12
Mean BMI (SD) 28.6 (6.2) 25.5 (4.2)
Analysed samples 28 30

St. Gallen Moderate Severe-Survived Severe-Fatal

Analysed patients 11 11
Mean age (SD) 59 (10.6) 65.4 (8.98)
Female/male 1/10 2/9
Mean BMI (SD) 31.2 (6.1) 30.4 (3.7)
Analysed samples 22 22

Ticino Moderate Severe-Survived Severe-Fatal

Analysed patients 11 7 2
Mean age (SD) 53.5 (9.11) 60 (8.56) 68.5 (3.54)
Female/male 5/6 2/5 1/1
Mean BMI (SD) 24.1 (4.4) 28.0 (2.0) 29.7 (5.7)
Analysed samples 22 14 4
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Figure 1. Distributions of serum metabolites by biochemical family. (A) Overview of the number
of significantly and consistently changed metabolites per pathway in the first eight days after hos-
pitalisation. Each pathway was coloured and sorted by their biochemical family. The grey bars
represent the total number of metabolites analysed in each pathway. Panel (B–E) show the distribu-
tions of metabolites per biochemical family, respectively, for all measured metabolites, all removed
metabolites, all analysed metabolites, and all significant and consistently changed metabolites.

The serum metabolome datasets contained measurements of 1086 different metabolites,
consisting of a wide range of compounds with varied origins. These compounds included
dietary markers, markers of environmental exposures, microbiome-derived metabolites,
as well as a wide range of endogenously produced metabolites. Before analysing the
metabolome datasets, we excluded all metabolites that were absent in over 20% of the
samples in all three locations, resulting in 901 metabolites included in this study (Table S1).
The included metabolites represented nine global biochemical families, of which lipids (40%
of all compounds) and amino acids and amino acid derivatives (20% of all compounds)
were most numerous in terms of metabolic species (Figure 1B, Table S2). The removed set
of metabolites consisted mostly of lipids (41%) and unnamed metabolites (32%, Table S2).
Tryptophan was excluded from analysis, since its plasma levels dropped below the limit
of detections in 67% of COVID-19 patients at the day of hospital admission, highlighting
tryptophan depletion during COVID-19 as reported earlier [24].



Metabolites 2023, 13, 951 5 of 26

2.2. The Serum Metabolome Drastically Changed within One Week Hospitalisation
with COVID-19

We first analysed changes in the serum metabolome during the first eight days in
the hospital. Therefore, we performed mixed-effect linear regression analysis for each
sample and each metabolite, with the log-transformed concentration as the response vari-
able and the time point as the predictor of interest (days after hospitalisation). Age, sex,
BMI, and death due to COVID-19 were included as covariates with random intercepts
for the individual. Next, we meta-analysed the regression outcomes to derive a list of
consistently changing metabolites, reducing possible bias due to hospital-specific envi-
ronments and treatments. After correction for multiple testing using the false discovery
rate (FDR), 545 metabolites were significantly changed in the first eight days. After fil-
tering out metabolites with heterogeneous effects (qFDR > 0.05) across the three samples
(Table S3), 448 metabolites consistently changed in their serum concentration. Each major
biochemical class in the full metabolome data was included in these results, with lipids
(163 compounds), amino acids (96 compounds), and xenobiotics (56 compounds) as the
largest groups. Likewise, each pathway in the list of analysed metabolites was repre-
sented in the list of significant metabolites (Figure 1E), indicating large and widespread
changes in physiological and metabolic functioning. The significantly changed metabo-
lites point towards a range of physiological and metabolic processes previously linked
with COVID-19 severity, but are also indicators of host–microbiome interactions, dietary
changes, drug administration, and environmental exposures. Some of our top hits in-
cluded carboxyethyl-GABA (increased), pantoate (increased), phenylacetylcarnitine (in-
creased), and sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0) (increased,
Figure 2A,B). Importantly, our results replicated with comparable effect sizes across the
three different cohorts, indicating that these changes were independent of hospital-specific
exposures. We further quantified our results by performing a pathway enrichment analysis
on the 448 significantly and consistently changed metabolites using the MetaboAnalyst [38]
pathway enrichment web service. Out of the 448 significant metabolites, 289 metabolites
could be mapped onto the MetaboAnalyst 5.0 database (Table S4). Pathway enrichment anal-
ysis then was performed against the KEGG homo sapiens reference pathway library [39],
which resulted in eight enriched pathways after correcting for the false discovery rate.
The KEGG arginine biosynthesis pathway, which included the urea cycle, was the top hit
(eight hits, FDR = 1.11 × 10−5). The other enriched pathways were, in order of significance,
aminoacyl-tRNA biosynthesis (ten hits, FDR = 0.006), panthothenate and CoA biosynthesis
(six hits, FDR = 0.009), phenylalanine, tyrosine and tryptophan biosynthesis (three hits,
FDR = 0.013), histidine metabolism (five hits, FDR = 0.019), caffeine metabolism (four
hits, FDR = 0.019), beta-alanine metabolism (five hits, FDR = 0.0463), and sphingolipid
metabolism (five hits, FDR = 0.046) (Figure S2 and Table S5).

In the following paragraphs, we will further highlight and contextualise the 448 measured
serum biochemical changes. Please note that due to the large number of results, it was not
possible to highlight and contextualise all results. Nevertheless, we tried to give a varied
and broad overview of the measured biochemical changes with special attention to the
effects of hospitalisation and COVID-19 disease progression (Table S3).
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Figure 2. Overview of the top 20 most significantly changed serum metabolites. (A) Volcano plot of
regression outcomes for all 901 analysed metabolites with the regression estimate on the x-axis against
the −log10 transformed p-value on the y-axis. The red and blue dots represent all increased and
decreased metabolites, respectively. The top 20 most-changed metabolites are labelled. (B) Summary
of the regression results for the top 20 metabolites with the lowest FDR corrected p-values. In addition
to the metabolite names, the standard errors (SE), the regression coefficient estimates (Estimate), and
the 95% confidence intervals (CI95) are displayed. The FDR corrected p-values from the regression
models are shown as FDR. The QFDR values represent the FDR corrected p-values obtained from the
Cochran’s Q-test for quantifying the between-cohort heterogeneity.

2.3. Serum Metabolome Trajectories Reflect Changing Environmental Exposures
after Hospitalisation

Our results contained several markers of changing environmental exposures (Figure 3,
Table S3). For example, one marker was perfluorooctanoate (PFOA, decreased), which is
an industrial surfactant and forever chemical used in the textile industry as a water and
oil repellent coating [40]. Other markers of environmental exposure included propyl-4-
hydroxybenzoate sulphate (decreased) and methyl-4-hydroxybenzoate sulphate (increased).
Propyl-4-hydroxybenzoate and methyl-4-hydroxybenzoate are known as propylparaben
and methylparaben, respectively, and both are widely used in cosmetics and body care [41],
indicating changes in products used for body care in the hospital environment in com-
parison to the items utilised outside the hospital. 2,4-di-tert-butylphenol, an antioxidant
with wide applications in industry [42], was also increased in the hospital setting. While
the clinical meaning of those results is not clear, they suggest that changed environmental
exposures due to hospitalisation affect the serum metabolome.
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Figure 3. Meta-analysed regression outcomes of serum metabolites linked to environmental expo-
sures. Forest plot of meta-analysed compounds linked to environmental exposures. The estimates, or
regression coefficients, represent the pooled change in concentration over time in the three cohorts
(see Section 4 for details). Negative estimates indicate decreased serum concentrations, while positive
estimates indicate increased serum concentrations during hospitalisation. The displayed metabolites
all changed consistently and homogenously between cohorts. All metabolites remained significantly
changed after correction for the false discovery rate. The 95% confidence interval is given by the
protruding lines from the metabolite estimate.
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2.4. Acetaminophen Metabolism Favoured Degradation to Glucuronide Conjugates in Lieu of
Sulphate Conjugates

The metabolomics analyses also revealed changes in drug metabolites (Figure 4,
Table S3). Changes were found in both aspirin and paracetamol metabolism; both are
wide-spread analgesics used in hospital and home settings. Salicylate, a downstream
metabolite of acetyl-salicylic acid (aspirin), increased along with glucuronide conjugates of
acetaminophen (paracetamol). The sulphate conjugates of acetaminophen contrastingly
decreased in their concentrations. In conclusion, untargeted metabolomics identified
metabolites of relevant drugs, indicating that the corresponding degradation pathways may
be influenced by either the disease or changes in the environment due to hospitalisation.
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Figure 4. Meta-analysed regression outcomes of serum metabolites associated with drug metabolism.
Forest plot of meta-analysed compounds associated with drug metabolism. The estimates, or regres-
sion coefficients, represent the pooled change in concentration over time in the three cohorts (see
Section 4 for details). Negative estimates indicate decreased serum concentrations, while positive
estimates indicate increased serum concentrations during hospitalisation. The displayed metabolites
all changed consistently and homogenously between cohorts. Metabolites with red-coloured esti-
mates remained significantly changed after correction for the false discovery rate. Black-coloured
estimates indicate no significant change after multiple testing correction. The 95% confidence interval
is given by the protruding lines from the metabolite estimate.

2.5. Dietary Metabolites Indicate Changes in Diet in Hospitalised COVID-19 Cases

The changed serum metabolome trajectories also reflected changes in diet due to
hospitalisation (Figure 5, Table S3). For example, S-methyl cysteine sulfoxide, a dietary
metabolite found in several vegetables, including cabbages, leeks, garlic, and onions [43],
was strongly decreased in the first eight days. Other markers of dietary changes included
carotene diols (decreasing), which is naturally sourced from peppers [44], and several
increased flavouring agents, such as erythritol, maltol sulphate, and vanillic alcohol sul-
phate. Other flavouring agents, such as catechol sulphate and derivatives, showed both
increases and decreases over time (catechol sulphate decreasing, 4-methylcatechol sulphate
increasing). Benzoate, a widely used antimicrobial agent and food preservative [45], and its
downstream metabolite hippurate were also increased over time. Notably, the increase in
hippurate (Beta = 0.048, FDR = 0.009) was much weaker compared to benzoate (Beta = 0.091,
FDR = 2.95 × 10−12, Figure 5).
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Figure 5. Meta-analysed regression outcomes of serum metabolites related to dietary behaviour.
Forest plot of meta-analysed compounds related to dietary behaviour. The estimates, or regression
coefficients, represent the pooled change in concentration over time in the three cohorts (see Section 4
for details). Negative estimates indicate decreased serum concentrations, while positive estimates in-
dicate increased serum concentrations during hospitalisation. The displayed metabolites all changed
consistently and homogenously between cohorts. All metabolites remained significantly changed
after correction for the false discovery rate. The 95% confidence interval is given by the protruding
lines from the metabolite estimate.

2.6. COVID-19 Related Hospitalisation Impacts Host–Microbiome Co-Metabolism

Beyond the metabolomic changes including markers of environmental exposure, drug
metabolism, and dietary metabolites, metabolites related to host–microbiome interactions
were prominently placed among the significant metabolites (Figure 6, Table S3). Several
secondary bile acids, which are synthesised from primary bile acids via microbial con-
jugations, were accumulating in the serum within the first eight days of hospitalisation.
All major secondary bile acid forms were increased, including deoxycholate, lithocholate,
ursodeoxycholate acid, and their glycated/taurinated derivatives. Notably, several pri-
mary bile acids were also increasing, namely chenodeoxycholate conjugates. Cholate
and its conjugates did not significantly alter in their concentrations. These results sug-
gest an altered bile acid host–microbiome co-metabolism. Tryptophan host–microbiome
metabolism was also affected. Although tryptophan concentration changes could not be
analysed in the regression analyses due to tryptophan being depleted in more than 20%
of all samples, tryptophan depletion could be inferred from its downstream metabolites,
such as the microbially produced 3-formylindole [46] (decreased) and the increase of the
microbiome-mediated tryptophan degradation products [47], including indolelactate and
indoleacetate. Other human degradation products of tryptophan, namely anthranilate
and methoxykynurenate, were also increased, indicating, together with the found over-
all tryptophan depletion, a higher turnover of tryptophan. In summary, we observed
changes in serum concentrations of bile acids and tryptophan degradation products in
newly hospitalised COVID-19 patients, indicating changing interactions between the host
and gut-microbiome during hospitalisation.
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Figure 6. Meta-analysed regression outcomes of serum metabolites related to crosstalk between the
host and gut-microbiome. Forest plot of meta-analysed compounds related to crosstalk between the
host and gut-microbiome. The estimates, or regression coefficients, represent the pooled change in
concentration over time in the three cohorts (see Section 4 for details). Negative estimates indicate
decreased serum concentrations, while positive estimates indicate increased serum concentrations
during hospitalisation. The displayed metabolites all changed consistently and homogenously
between cohorts. Metabolites with red-coloured estimates remained significantly changed after
correction for the false discovery rate. Black-coloured estimates indicate no significant change after
multiple testing correction. The 95% confidence interval is given by the protruding lines from the
metabolite estimate.

2.7. Indicators of Changed Physiological Functioning Are Reflected in the Serum
Metabolome Trajectories

The serum metabolome also contained several markers related to physiological func-
tion in progressing COVID disease trajectories (Figure 7, Table S3). For example, the top
hit that consistently changed in this study was carboxyethyl-GABA (increased), which is a
GABA derivative detected in human cerebrospinal fluid [48] and a faecal metabolite [49].
Other top hits in our study included a stark increase of fibrinopeptide A and B, which
are components of fibrin [50], a major component in the coagulation cascade, which stops
bleeding after vessel trauma [51]. Cholesterol sulphate was another increased top hit with
known coagulation-inducing properties [52]. Additionally, several bilirubin degradation
products were increasing, hinting at accelerated heme degradation. Although no conclu-
sions can be made on how useful these compounds are in predicting thrombosis, these
results do warrant further investigations into the clinical relevance of fibrinopeptides,
cholesterol sulphate, and bilirubin degradation products in predicting thrombosis. Another
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compound of potential clinical interest was 3-methylglutaconate (increased), which is a
known marker of metabolic acidosis [53]. Metabolic acidosis is a potential complication of
severe COVID-19 [54], as the lung is one of the key regulators of blood pH value. The first
week of hospitalisation also saw alterations in vitamin status with pyridoxal (vitamin B6)
and retinol (vitamin A) decreasing, while tocopherols (vitamin E) displayed an inconsistent
pattern (alpha-tocopherol increasing, beta/gamma-tocopherol decreasing). Of relevance
in this context, 2-methyl-ascorbic acid, a vitamin C metabolite, was strongly increasing.
While it is unclear whether these changes were caused by COVID-19 or changed nutri-
tion during hospitalisation, it shows that the vitamin status was affected in hospitalised
COVID-19 cases in a replicable pattern across three independent hospitals. In summary,
the metabolomic changes point towards broad alterations in disease-relevant physiological
processes, although, given the design of the study, it remains unclear whether these results
were caused by COVID-19 or by the hospitalisation.
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Figure 7. Meta-analysed regression outcomes of serum metabolites related to physiological function-
ing. Forest plot of meta-analysed compounds related to physiological functioning. The estimates, or
regression coefficients, represent the pooled change in concentration over time in the three cohorts
(see Section 4 for details). Negative estimates indicate decreased serum concentrations, while positive
estimates indicate increased serum concentrations during hospitalisation. The displayed metabolites
all changed consistently and homogenously between cohorts. Metabolites with red-coloured esti-
mates remained significantly changed after correction for the false discovery rate. Black-coloured
estimates indicate no significant change after multiple testing correction. The 95% confidence interval
is given by the protruding lines from the metabolite estimate.
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2.8. Metabolomic Results Reveal Potential Markers of Metabolic Reprogramming in Hospitalised
COVID-19 Cases

The metabolomic analyses also revealed evidence for SARS-CoV-2-induced metabolic
reprogramming (Figures 8 and 9, Table S3). Various lipid metabolites were changed after
one week of hospitalisation, including several sphingomyelins, glycerophosphorylcholine,
sphinganine-1-phosphate, and phosphatidylethanolamine (Figure 8, Table S3). Although
no consistent trend was found in metabolites in any of these classes, these changes in
lipid metabolism were consistent with previous findings that SARS-CoV-2 rewires lipid
metabolism to promote its replication spread [55]. Other possible markers of metabolic
reprogramming were altered concentrations of amino acids (Figures 8 and 9, Table S3), such
as valine (decreasing), arginine (decreasing), lysine (decreasing), histidine (decreasing),
glycine (increasing), and serine (increasing).
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Figure 8. Meta-analysed regression outcomes of serum metabolites linked to SARS-CoV-2-induced
metabolic reprogramming. Forest plot of meta-analysed compounds that are linked to SARS-CoV-2
induced metabolic reprogramming. The estimates, or regression coefficients, represent the pooled
change in concentration over time in the three cohorts (see Section 4 for details). Negative esti-
mates indicate decreased serum concentrations, while positive estimates indicate increased serum
concentrations during hospitalisation. The displayed metabolites all changed consistently and ho-
mogenously between cohorts. All metabolites remained significantly changed after correction for
the false discovery rate. The 95% confidence interval is given by the protruding lines from the
metabolite estimate.
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Figure 9. Metabolic reprogramming in the urea cycle and the TCA cycle. (A) Serum metabolic
changes of the urea cycle metabolites and TCA cycle metabolites. Metabolites in red were increased in
the serum after one week, whereas metabolites in blue were decreased. The yellow star indicates if the
change was significant (FDR < 0.05) over time. All displayed metabolites were consistently changed
across the three locations. (B) Forest plot of meta-analysed regression outcomes of the visualised urea
cycle and TCA cycle metabolites in Figure 2A. The estimates, or regression coefficients, represent the
pooled change in concentration over time in the three cohorts (see Section 4 for details). Negative
estimates indicate decreased serum concentrations, while positive estimates indicate increased serum
concentrations during hospitalisation. The displayed metabolites all changed consistently and
homogenously between cohorts. Metabolites with red-coloured estimates remained significantly
changed after correction for the false discovery rate. Black-coloured estimates indicate no significant
change after multiple testing correction. The 95% confidence interval is given by the protruding lines
from the metabolite estimate.
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We found indications of SARS-CoV-2-induced metabolic reprogramming in the urea
and TCA cycle. The measured substrates of the urea cycle, including citrulline and ornithine,
decreased over time, whereas the products of the urea cycle, namely fumarate and urea,
increased (Figure 9A,B). This result could be interpreted as higher fluxes through the
urea cycle after one week of hospitalisation. Similar to the urea cycle, several TCA cycle
metabolites decreased, including citrate, isocitrate, and aspartate (Figure 9A,B, Table S3).
Interestingly, glucose also decreased during hospitalisation (Table S3). In conclusion,
these results revealed metabolomic patterns, which may relate to processes of metabolic
programming over the course of a viral infection. While these results cannot be directly
linked to disease progression, they do suggest a distinct set of SARS-CoV2-influenced
metabolite trajectories in the serum of newly hospitalised COVID-19 patients.

2.9. Metabolite Trajectories during Hospitalisation Were Dependent on Disease Severity

The results described above refer to changes in metabolite concentration regardless of
the severity of COVID-19. In the next step, however, we investigated whether the changes
in the serum metabolomes during hospitalisation were dependent on disease severity. Note
that this analysis was confined to the Ticino cohort, as this was the only hospital having
samples for severe and moderate COVID-19 cases. We performed mixed-effect regressions
as above, introducing, however, the severity of COVID-19 (binary: moderate vs. severe)
as a predictor of interest as well as an interaction term between the time variable and the
COVID-19 severity. While only three annotated metabolites (caprylate, methylsuccinate,
and xanthurenate) had significantly different serum concentrations between the two condi-
tions (Table S6) across all time points after correction for multiple testing by correcting for
the false discovery rate, 17 metabolites had a significantly different time course during the
first eight days in hospital dependent on the severity of COVID-19 (Figure 10, Table S7). It
is noteworthy that glycerophosphorylcholine, a glycophospholipid degradation product
increasing generally in serum during the first week of hospitalisation (Table S3), was in-
creasing in severe COVID-19 cases and decreasing in moderate cases (Figure 10), making
it a potential marker for monitoring disease progression. Cysteine-S-sulphate, another
top hit, was decreasing much more steeply in moderate cases compared to severe cases
(Figure 10). Interestingly, cysteine-S-sulphate is a metabolite known to be a biomarker
of sulphite oxidase insufficiency [56], a rare disease leading to severe neurological dys-
function. Importantly, cysteine-S-sulphate is a very potent N-methyl-D-aspartate receptor
agonist [57]. Some of the metabolites with severity-dependent trajectories were also found
to change due to hospitalisation (Figure S3). Notably, several bilirubin degradation prod-
ucts were also among the metabolites with altered trajectory in severe COVID-19, as well
glycochenodeoxycholate glucuronide. Taken together, we found various compounds that
may serve as biomarkers for disease progression.

In a further step, we analysed whether trajectories of metabolites were altered in cases
that died of COVID-19 and thus could serve as early biomarkers for COVID-19 mortality.
Here, we combined the samples from Geneva and St. Gallen, since the number of deaths in
the Ticino cohortwas not sufficient for statistical analysis. Once again, we performed mixed-
effect regressions, introducing this time death by COVID-19 (binary: died of COVID-19
vs. survived) as a predictor of interest as well as an interaction term between the time
variable and COVID-19 survival. However, the analysis did not reveal any biomarker
after correction for multiple testing, hinting at missing statistical power (Table S8). Taken
together, while the analyses could identify biomarkers of severe COVID-19 with severity-
dependent time trajectories, we could not identify biomarkers related to survival in this
string of analysis.
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Figure 10. Overview of serum concentrations of metabolites with disease-dependent trajectories in
the Ticino cohort. Boxplots of the log-transformed concentrations of metabolites with different serum
trajectories in moderate and severe patients in Ticino. In each tile, comparisons are made between the
first (salmon red) and second (turquoise) timepoint for the moderate cases (left two boxplots) and
severe cases (right two boxplots). The black dots represent the individual concentration values.
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2.10. Metabolite–Metabolite Relations Are Affected by Disease Severity and Disease Outcome

Next, we analysed the effect of disease severity on the bivariate distributions of all pairs
of metabolites in the Ticino cohort. To this end, we calculated mixed-effect linear regres-
sions as before, including, however, each metabolite and a metabolite-severity interaction
term into the regressions as predictors. We then tested the interaction term on significance.
This resulted in 901 × 901 = 811,801 tests, and we corrected p-values accordingly to account
for multiple testing via Bonferroni correction. This analysis tests whether the statistical
relation between two metabolites is influenced by the severity of the disease. We identified
14 metabolite–metabolite pairs where the statistical relation was significantly influenced by
disease severity after correction for multiple testing (Figure 11A). For example, the corre-
lation between N-acetyl-glutamate and cinnamoylglycine was clearly positive in severe
COVID-19 cases, while being negative in moderate cases. For pyruvate and thymolsulfate,
no correlation was found in moderate cases, while a positive association was detected in
severe cases. The widespread alterations in bivariate metabolite–metabolite distributions
depending on COVID-19 severity highlight the systemic changes due to COVID-19.

Metabolites 2023, 13, x FOR PEER REVIEW  15  of  26 
 

 

2.10. Metabolite–Metabolite Relations Are Affected by Disease Severity and Disease Outcome 

Next, we analysed the effect of disease severity on the bivariate distributions of all 

pairs of metabolites  in the Ticino cohort. To this end, we calculated mixed-effect  linear 

regressions as before, including, however, each metabolite and a metabolite-severity in-

teraction term into the regressions as predictors. We then tested the interaction term on 

significance. This resulted in 901 × 901 = 811,801 tests, and we corrected p-values accord-

ingly to account for multiple testing via Bonferroni correction. This analysis tests whether 

the statistical relation between two metabolites is influenced by the severity of the disease. 

We  identified  14 metabolite–metabolite pairs where  the  statistical  relation was  signifi-

cantly influenced by disease severity after correction for multiple testing (Figure 11A). For 

example, the correlation between N-acetyl-glutamate and cinnamoylglycine was clearly 

positive in severe COVID-19 cases, while being negative in moderate cases. For pyruvate 

and thymolsulfate, no correlation was found in moderate cases, while a positive associa-

tion was detected in severe cases. The widespread alterations in bivariate metabolite–me-

tabolite distributions depending on COVID-19 severity highlight  the  systemic changes 

due to COVID-19. 

 

Figure 11. Altered bivariate metabolite distributions. (A) Altered bivariate distributions of metabo-

lite–metabolite pairs in moderate (red) and severe (blue) COVID cases from Ticino. All shown me-

tabolite–metabolite pairs differed significantly between moderate and severe COVID patients. (B) 

Significantly altered bivariate distributions of metabolite–metabolite pairs in severe COVID patients 

in Geneva and St. Gallen. Bivariate metabolite distributions of patients that survived COVID are 

shown in red, while bivariate metabolite distributions of patients that later died are shown in blue. 

Figure 11. Altered bivariate metabolite distributions. (A) Altered bivariate distributions of metabolite–
metabolite pairs in moderate (red) and severe (blue) COVID cases from Ticino. All shown metabolite–
metabolite pairs differed significantly between moderate and severe COVID patients. (B) Significantly
altered bivariate distributions of metabolite–metabolite pairs in severe COVID patients in Geneva
and St. Gallen. Bivariate metabolite distributions of patients that survived COVID are shown in red,
while bivariate metabolite distributions of patients that later died are shown in blue.

Finally, we tested whether people who died had different metabolite–metabolite
dependencies, pooling the samples from St. Gallen and Geneva and following the same
procedure as above with the difference that the interaction term was now defined as a
metabolite–death interaction term. We found two altered metabolite–metabolite relations
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after correction for multiple testing (Figure 11B). Interestingly, the correlation between
sulphate and 1-methyl-myristoylglycerol was far stronger in severe COVID-19 cases that
later died compared to severe, surviving COVID-19 cases. As we found many sulphated
metabolites to be altered due to hospitalisation, these results together may hint at sulphation
processes being of relevance in COVID-19. In conclusion, while individual bivariate
metabolite–metabolite distributions are difficult to interpret, our analyses provided ample
evidence of altered metabolite–metabolite distributions in connection to disease severity
and disease outcome.

3. Discussion

In this study, we described how the serum metabolomes of COVID-19 patients changed
in the first week after hospitalisation in three independent Swiss hospitals. The repeated
measurement design allowed us to assess the trajectory of the serum metabolome in
71 patients and revealed wide-spread metabolomic alterations during hospitalisation in
the first eight days. In total, after meta-analysing the results, we found 448 metabolites
consistently changing over time out of the 901 analysed compounds. This list covered all
measured biochemical classes and showed surprising consistency in the detected profiles
across the three hospitals. To the best of our knowledge, this is the first study integrating
metabolome data from three independent hospitals in the context of hospitalisation.

In the following, we will highlight several aspects of our results that could deserve
further investigation for their potential clinical importance. In particular, we will discuss
(1) metabolomic changes in relation to the hospital exposome, including dietary behaviour
and drug metabolism, (2) metabolomic changes related to host–microbiome interactions,
(3) potential markers of COVID-19-related pathophysiology, and (4) metabolomic changes
that deliver potential markers of viral reprogramming of the host metabolism. Together,
these results reveal important patterns that, while not being directly translatable in terms
of clinical outcomes, can point towards the processes that are responsible for adverse
COVID-19 trajectories or physiological resilience to COVID-19.

3.1. Metabolomic Changes Related to the Hospital Exposome

We found clear indications of changes in environmental exposure due to hospital-
isation, covering so-called forever-chemicals, including perfluorooctanoate (decreased).
Perfluorooctanoate has an estimated half-life between 0.5 and 1.5 years in the blood [58].
However, unaccounted background exposures have been known to result in widely varied
perfluorooctanoate half-life estimates [59]. Although the timeframe of this study is only
one week, our results similarly seem to show more rapid decreases in PFOA concentra-
tions compared to what would be expected based on the half-life estimates, with average
decreasing PFOA concentrations in one week of 16%, 26%, and 37% in Geneva, St. Gallen,
and Ticino, respectively. These results seem to suggest a faster decrease in serum PFOA
when changing environments. Future studies on this topic, however, would need to test
this hypothesis. Our results also showed indicators of decreased usage of cosmetic and
body care products, highlighting the breadth of metabolic changes that can be detected via
untargeted metabolomics. Importantly, none of the markers of environmental exposure
showed evidence of a disease-dependent trajectory in blood. As all severe patients in our
cohorts were situated in the ICU and all moderate patients were situated in the hospital
ward, this result also suggests that we did not find environmental exposures specific to the
hospital ward or the ICU that influenced disease severity. Nevertheless, we believe that the
topic of environment-disease interactions in the hospital deserves further considerations in
future studies dealing with hospitalised patients.

Although no data on medication usage were integrated in this work, the serum
metabolome provided information, on which drugs were administered and how these drugs
were degraded. For example, changes in acetaminophen metabolism were reflected in an
increased concentration of glucuronide conjugated degradation products of acetaminophen
while sulphate conjugates decreased. This decrease might be explained by the longer
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half-life of glucuronide conjugates [60]. An alternative explanation of this result is that the
increase of glucuronide conjugates was due to patients in all locations having an overweight
BMI (BMI > 25), as a higher BMI has been associated with an enhanced glucuronide
conjugation in overweight individuals [61].

Our results also included several markers of changed dietary behaviour, in particular
hinting at decreased intake of compounds commonly found in vegetables and an increased
intake of food additives and food preservatives. These changes in dietary markers hint at a
reduced nutrient content during the hospital stay, which would be in line with previous
findings that reported 66.7% of patients in the ICU and 23.7% of the moderate patients in
the hospital ward to be malnourished [62]. It should be noted that the measured changes
in these dietary outcomes are likely driven by patients in the ICU, given the fact that ICU
patients might have needed enteric or intravenous nutrition. The statistical power to test
differences in dietary changes in moderate and severe patients, however, was not enough
to derive clear inferences due to the low number of moderately ill patients. Future studies
on this subject should investigate how differences in ICU nutrition and the hospital ward
diet may influence the patient’s metabolism and physiology.

In conclusion, although hospital exposome-related compounds could not be linked
with disease severity or mortality, we believe that the measured exposome-related serum
changes are a relevant step towards a better and more holistic understanding on exposome–
disease interactions.

3.2. Metabolomic Changes Related to Host–Microbiome Interactions

We also found markers of diet–microbiome interactions in changes in benzoate
metabolism. The human gut-microbiome is a known modulator of benzoate degradation [63]
and has evolved pathways to protect against the normally antimicrobial properties of
benzoate [64]. The benzoate degradation product hippurate was also increased, but much
less then benzoate. One possible explanation might be that changed microbiome composi-
tions, which are known to occur in COVID-19 [65], reduced the importance of benzoate
degradation via hippurate. While unclear in their clinical importance, these results indicate
that hospitalisation has strong effects on the human serum metabolome due to changes in
diet and environment. Furthermore, we also found markers of changing host–microbiome
co-metabolism, as primary bile acids had an increased turnover rate and secondary bile
acids were accumulating in the serum. These findings are in line with earlier findings on
gut-microbiome compositions, as both in-hospital disease progression and disease severity
have been found to correlate with higher abundances of pathogenic and opportunistic
bacteria and lower abundances of beneficial bacteria [65,66].

3.3. Potential Markers of COVID-19 Related Pathophysiology

Besides markers of changing host–gut microbiota interactions, we found various
other domains of metabolism that may be related to physiological changes and disease
progression. For example, the top hit in this study, carboxyethyl-GABA (increased), is
known to promote cell proliferation and migration in mouse fibroblasts [67], which are cells
that function as support in the structural integrity of the intercellular matrix and play an
important role in wound healing. The increased carboxyethyl-GABA concentrations over
time led us to hypothesise that carboxyethyl-GABA could be a possible marker of interstitial
pulmonary fibrosis, a group of diseases marked by the pathological healing of lung tissue
and pathological fibroblast behaviour. Interstitial pulmonary fibrosis is associated with
lung injury and is common in severe COVID-19 disease trajectories [68]. We also found
indicators of increased coagulation activity (Figure 7, Table S3). Fibrinopeptide A and
B increased during hospitalisation. These compounds are released in the coagulation
cascade from fibrinogen in the formation of fibrin [69], which forms a matrix around
vessel lesions and captures platelets to produce blood clots [51,70]. Another indicator of
increased coagulation was the higher level of cholesterol sulphate during hospitalisation.
Cholesterol sulphate is present in platelet membranes and promotes platelet adhesion
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and clotting [71]. Serum fibrinopeptide and cholesterol sulphate concentrations could be
potential markers to assess the risk of a patient developing intravenous thrombosis, which
is a common complication in severe COVID-19 patients [72]. Anticoagulation drugs, such
as low molecular weight heparins [73], could be given to patients at high risk of developing
intravenous thrombosis.

Our results also showed increased concentrations of several bilirubin degradation
products during hospitalisation (Figure 7, Table S3). Bilirubin is a waste product from the
breakdown of red blood cells and is metabolised in the liver and subsequently degraded by
microbes in the colon [74]. Previous findings have linked increases in serum bilirubin and its
degradation products in COVID-19 patients to decreased liver function [33], but increased
bilirubin degradation could also be explained by SARS-CoV-2-induced breakdown of
red blood cells [75]. 3-methylglutaconate was proposed as a potential marker of severe
COVID-19 outcomes due to its properties related to the prediction of metabolic acidosis [76].
Although no conclusions can be made on how useful these compounds are in predicting
thrombosis, these results do warrant further investigations into the clinical relevance of
these compounds in predicting lung injuries and thrombosis.

3.4. Potential Markers of Viral Reprogramming of Host Metabolism

Our results also included possible signals of SARS-CoV-2-induced metabolic pro-
gramming of the host. Notably, the urea cycle was found to be dysregulated, with urea
cycle substrates arginine, citrulline, and ornithine decreasing over time while its products
accumulated. Interestingly, these results confirm metabolic modelling efforts on SARS-
CoV-2-driven metabolic reprogramming of the host, which also found decreased fluxes of
citrulline and ornithine and increased fumarate fluxes when comparing mild and severe
COVID-19 patients against non-infected individuals [28]. Besides a higher flux through the
urea cycle, we observed that citrulline decreased more over time than ornithine (Figure 9).
Although these differences in the regression slopes could be explained by processes not cap-
tured in this study, this observation could also indicate that the increased urea production
(Figure 9) from arginine resulted in a decreased production of nitric oxide from arginine.
However, as nitric oxide was not measured in our data, no conclusions on SARS-CoV-2
influences on nitric oxide productions can be made. SARS-CoV-2 has been hypothesised
before to benefit from a decrease in nitric oxide production, as nitric oxide is known to
inhibit the early steps in the replication of the original SARS-CoV virus [77]. At the same,
an increased production of ornithine could promote viral replication as it is an important
precursor of several polyamines, which play important roles in viral replication [78]. These
dysregulations hint at a worsening COVID-19 progression as urea cycle dysregulation and
reduced importance of nitric oxide production from arginine have also been found when
comparing healthy individuals with moderate and severe COVID-19 patients [79].

Indications of SARS-CoV-2-induced metabolic programming were also found in de-
creased concentrations of several TCA cycle metabolites, including aspartate, citrate, and
isocitrate, and in a decrease of serum glucose concentrations. Although no causal infer-
ences can be made from our results, it is likely that SARS-CoV-2 played a role in these
metabolic changes as SARS-CoV-2 is known to increase TCA cycle activity by promoting
the cellular uptake of glucose [27]. The dysregulation of TCA cycle metabolites in our
cohorts agrees with previous results where healthy individuals were compared to mild
and severe COVID-19 patients, which might again suggest a worsening of COVID-19
disease progression. To summarise, we found drastic changes in urea and TCA cycle
metabolite concentrations in the first week after hospitalisation. These results agreed with
previous findings that associated urea and TCA cycle metabolites with COVID-19 disease
severity [79]. Therefore, we hypothesise that urea cycle and TCA cycle metabolites could
be possible prognostic markers of disease progression.

We also found hints of metabolic reprogramming by testing bivariate metabolite–
metabolite trajectories against disease severity and disease outcome. Although our results
could be confounded by the altered prevalence of disease-severity-associated comorbidities,
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the altered metabolite trajectories still present potential biomarkers for disease progression
and disease monitoring. The top hit was glycerophosphorylcholine, a phospholipid degra-
dation product, which had a far steeper increase in the serum in severe cases in comparison
to moderate cases. Glycerophosphorylcholine is a known marker of COVID-19 disease
severity [22,23,80]. Interestingly, phospholipids in general are known to be beneficial for
viral replication, as they are important constituents of lipid droplets and lipid rafts, which
play major roles in the viral lifecycle [81,82]. These results align with previous insights
into SARS-CoV-2 rewiring of phospholipid metabolism [22,23,80], thus making serum
glycerophosphorylcholine trajectory a potential marker for disease severity.

3.5. Strengths and Limitations

The main strength of the study is the possibility of meta-analysing the results of three
independent cohorts from three different hospitals with repeated metabolome measure-
ments. This study design enabled finding consistent metabolomic changes across the three
cohorts, while the use of the untargeted metabolomics approach made it possible to access
a wide range of serum metabolites. Thus, we could analyse not only the main players in the
human metabolism, such as amino acids or lipids, but also markers of environmental expo-
sure, shedding a light on the complex and intertwined changes in the metabolome during
hospitalisation. The study, however, has some important limitations. It is of observational
design, and as such causal inferences are generally impossible, due to unmeasured con-
founding factors, making interpretations of individual results difficult. As a consequence,
our findings cannot be attributed to COVID-19 since hospitalisation also leads to changes
in environmental exposure and behavioural changes, e.g., physical activity, medication,
and diet, which all influence human metabolism. Moreover, the limited sample size in the
cohorts, while being enough to detect the vast and drastic changes in the trajectories, may
not have been sufficient to detect all of the relevant effects present. Part of the analyses
included utilising interaction terms, where it is known that large sample sizes are needed
for adequate statistical power. Therefore, it is conceivable that when it comes to metabolite–
metabolite relations, many true effects were not detected, delivering an incomplete picture.
A further limitation is that we did not analyse the effect of comorbidities on metabolomics
trajectories, as this was beyond the scope of this work.

3.6. Conclusions

In conclusion, our work revealed the drastic effects of COVID-19 hospitalisation on
the human serum metabolome. We found markers related to hospitalisation, including
environmental, dietary, and drug metabolism. Our results also included possible markers of
changed lung injury, including carboxyethyl-GABA and fibrinopeptides. Furthermore, we
proposed urea cycle metabolites, TCA cycle metabolites, and glycerophosphorylcholine as
potential markers of COVID-19-induced metabolic reprogramming and disease progression.
We hope that the reported results prove to be fruitful and helpful for the interpretation of
metabolome data sampled within hospitals in general.

4. Methods
4.1. Study Cohorts

In order to analyse serum metabolome trajectories in COVID-19 patients during
hospitalisation, three prospective cohorts were selected across different locations across
Switzerland. A total of 71 patients were recruited in total, with 29 patients from Geneva,
22 patients from St. Gallen, and 20 patients from Ticino (Table 1). The Geneva cohort
originally included 30 patients; however, one patient was dropped as they did not have
information on mortality and sex. Patient recruitment started in August 2020. The selection
criteria included that the study participants were adults ≥18 years and were admitted to
the hospital ward or ICU due to PCR-confirmed SARS-CoV-2 infection. Finally, partici-
pants were only included if they or their representatives had signed an informed consent
form. This study was approved by a local ethics committee (EKOS 20/058). The final
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cohorts included moderate and severe cases in Ticino and only severe cases in Geneva and
St. Gallen. Moderate cases were defined as PCR-confirmed SARS-CoV-2-infected patients
with symptoms of pneumonia, fever, and respiratory tract problems. Severe COVID-19
patients had all the symptoms of moderate cases, but also needed to have a respiratory rate
of ≥30 breaths per minute and an oxygen saturation of ≤93% when breathing ambient air
or having a PaO2/FiO2 below 300 mmHg. Patients that did not meet these requirements
but needed ventilator support were also classified as severe COVID-19 patients. Moderately
ill patients were all staying in a hospital ward, whereas severe patients were all situated in
the intensive care unit.

4.2. Sample Collection and Treatment

All patients that were willing to partake in this study and passed the inclusion criteria
had a first blood sample collected within 24–48 h after hospitalisation. Subsequent samples
were generally taken every week after hospitalisation (Figure S2). Collected samples were
immediately stored at −80 ◦C until processing. Sample preparation was performed by
MetabolonTM using the automated MicroLab STAR® system from Hamilton CompanyTM

(Reno, NV, USA). Proteins were removed by dissociating small molecules bound to pro-
tein or trapped in the precipitated protein matrix. Chemically diverse metabolites were
then recovered by precipitating proteins with methanol under vigorous shaking for 2 min
(GenoGrinder 2000®, Glen Mills Inc., Clifton, NJ, USA), followed by centrifugation. The
samples were briefly placed on a TurboVap® (Zymark Corp, Portland, OR, USA) to re-
move the organic solvent, after which they were stored overnight under nitrogen before
preparation for analysis.

4.3. Metabolomics

Untargeted metabolomics data were generated from patient serum samples using
the MetabolonTM using the HD4 platform. Waters ACQUITY ultra-performance liquid
chromatography (UPLC) was performed with a Thermo Scientific (Waltham, MA, USA)
Q-Exactive high-resolution/accurate mass spectrometer interfaced with a heated electro-
spray ionization (HESI-II) source and Orbitrap mass analyser, which operated at a mass
resolution of 35,000. Before analysis, the serum sample extract was dried and reconstituted
in four separate solvents compatible with each of the four used methods. The first aliquot
was analysed in acidic positive ion conditions, which were chromatographically optimised
for hydrophilic compounds. The second aliquot was analysed in acidic positive ion condi-
tions, which were chromatographically optimised for more hydrophobic compounds. The
third aliquot was analysed using a separate dedicated C18 column in basic negative ion
optimised conditions. Analysis of the fourth aliquot was conducted via negative ionization
after elution from a HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm). A
gradient was used consisting of water and acetonitrile with 10 mM ammonium formate
and a pH of 10.8. The mass spectrometry (MS) analysis was performed in an alternating
manner between MS and data-dependent MSn scans using dynamic exclusion. There were
slight variations between the methods, but the scan range covered 70–1000 m/z.

The serum samples were analysed by the Metabolon platform in two batches. Batch
effects were mitigated by running 12 anchor samples from healthy volunteers in both
Metabolon runs. The second batch was rescaled to be on an identical scale as the first
batch. First, the anchor sample metabolite ratios were computed as follows: ratiox,y =
metabolite(x, y)batch 1/metabolite(x, y)batch 2, where x corresponds to the anchor sample
and y corresponds to the metabolite area under the peak value. The second batch was then
rescaled by multiplying the metabolite values with the median of twelve anchor sample
ratios. If a metabolite was not measured in more than half of the anchor datasets, scaling
was not performed for that metabolite and the metabolite was excluded from our analysis.
After batch scaling, missing values were imputed with the minimum value measured for a
metabolite value.
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Metabolites that were not present in at least 20% of all samples in the three cohorts were
removed. Data processing and sample removal were performed using the Tidyverse [83]
software suite in the R programming language version 4.2.2.

4.4. Analyses of Differential Metabolite Trajectories over Time

Metabolite trajectories and metabolite depletion trajectories were analysed by per-
forming linear and logistic mixed-effect regressions with, respectively, the log-transformed
metabolite concentrations as the outcome. Both regression models used the number of days
after hospitalisation as the predictor of interest and included age, sex, BMI, and death due
to COVID-19 as control variables. The individual patient was used as the random intercept.
Both regression models were performed on each of the 901 selected metabolites and for
each location.

Next, we meta-analysed the metabolite and metabolite depletion regressions for each
of the 901 metabolites. We treated the regression coefficients β̂i, i = 1, . . . , 3 of the
standardised metabolite concentrations for each of the three studies as the individual effect
estimates we wanted to summarise. Given the sample estimates σ̂2

i of Var(β̂i) and assuming
that the individual effect estimates were fixed outcomes of the three studies, we calculated
the overall effect estimates β using a fixed-effects model [84] and the inverse variance
method for each metabolite. We quantified heterogeneity using Cochran’s Q-test for each
of the 901 metabolites. After FDR correction of the p-values of the overall effect estimates,
for 545 metabolites, the overall effect remained significant (FDR < 0.05). After that, we
filtered out the metabolites of the total 901 that were significant (FDR < 0.05) according to
Cochran’s Q-test, resulting in 448 metabolites.

Additionally, we also investigated time-dependent trajectories in the number of sam-
ples where a metabolite was depleted, i.e., metabolites with concentrations below the
detection limit in a sample. We ran logistic mixed-effect regressions for each location
with the binary metabolite detected/not detected as the outcome and the days after hos-
pitalisation as the predictor of interest. We again controlled for age, sex, and BMI, with
random intercepts for the individuals, and meta-analysed the results as we did with the
metabolite concentration trajectories. However, due to most metabolites having too few
depleted samples in one or more locations, meta-analysed results could only be obtained
for 22 metabolites. Of these 22 metabolites, five were nominally significant, which were all
already identified in the regressions on the metabolite concentration trajectories. Due to
the uninformative results from this analysis, it was dropped from the reported results.

The regression analyses and meta-analyses were performed using the following
software packages in R (v.4.2.2). Metabolite trajectories were calculated using the PLM
package [85]. The lme4 package [86] was used to perform the logistic mixed-effect re-
gressions on the metabolite depletions and to calculate the 95% confidence intervals. All
calculations for the meta-analysis were performed using the metafor package [84].

4.5. Analyses of Time-Dependent Metabolite Trajectories against Disease Severity and Outcome

Potential biomarkers that could differentiate between moderate and severe cases were
investigated by performing mixed-effect regressions on the log-transformed metabolite
concentrations (response) against the disease severity (binary: moderate vs. severe) as
the predictor of interest, while controlling for age and sex and the interaction between
disease severity and the number of days after hospitalisation. The p-values of the regression
coefficients were corrected for the false discovery rate with an alpha value of 0.05. All
samples between the first and ninth day after hospitalisation were included. This analysis
was only conducted for Ticino, as it was the only cohort with both moderate and severe
patients. In a second analysis, we again investigated potential biomarkers, but now between
severe surviving and fatal cases in a combined cohort from St. Gallen and Geneva. Ticino
was excluded as it did not include enough fatal cases (two fatal cases) for any useful
statistical analyses. Mixed-effect regressions were performed on the log-transformed
metabolite concentrations (response) against the binary: died of COVID-19 vs. survived as
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the predictor of interest. This time, we controlled not only for age and sex, but also for the
location and the interaction between time and COVID-19 mortality. We again corrected for
the false discovery rate with an alpha value of 0.05.

4.6. Pathway Enrichment Analyses

Pathway enrichment analysis was performed on MetaboAnalyst 5.0 [38]. The HMDB
IDs of the list of significant metabolites were uploaded to the MetaboAnalyst website,
after which the metabolites were mapped onto the MetaboAnalyst database. A total
of 289 metabolites could be mapped. Enrichment analysis was then performed against
the KEGG Homo sapiens reference pathway library [39]. The enrichment impact and
p-values were calculated with the Fisher exact test (hypergeometric test) using a relative-
betweenness centrality.

4.7. Disease-Severity-Dependent Metabolite–Metabolite Interactions

Associations between bivariate metabolite–metabolite distributions and disease severity
were investigated by performing mixed-effect linear regressions for all 901 × 901 = 811,801
metabolite pairs with one metabolite as response and predictors for a second metabolite and
the metabolite-severity interaction term. Control variables were added for age and sex. The
resulting outcomes were corrected via Bonferroni correction to account for multiple testing.
The relationship between metabolite–metabolites distributions and disease severity were
only tested in Ticino as this was the only location with both moderate and severe COVID-19
patients. Bivariate metabolite–metabolite distributions were associated with COVID-19
mortality in the same manner as outlined earlier, with the difference that an interaction term
for metabolite concentration and disease mortality was used as the predictor of interest.
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