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Abstract: This review analyzed 21 scientific papers on the determination of amino acids in various
types of cancer in saliva. Most of the studies are on oral cancer (8/21), breast cancer (4/21), gastric
cancer (3/21), lung cancer (2/21), glioblastoma (2/21) and one study on colorectal, pancreatic, thyroid
and liver cancer. The amino acids alanine, valine, phenylalanine, leucine and isoleucine play a leading
role in the diagnosis of cancer via the saliva. In an independent version, amino acids are rarely used;
the authors combine either amino acids with each other or with other metabolites, which makes it
possible to obtain high values of sensitivity and specificity. Nevertheless, a logical and complete
substantiation of the changes in saliva occurring in cancer, including changes in salivary amino acid
levels, has not yet been formed, which makes it important to continue research in this direction.
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1. Introduction

Amino acids, as a raw material for protein synthesis and a product of protein
metabolism, enter the body or are synthesized endogenously. They play mainly physiolog-
ical roles as major metabolites and regulators of metabolism among the most important
compounds.

Amino acid metabolism is part of the altered processes in cancer cells [1]. Amino acids
are the building blocks as well as sensors of signaling pathways that regulate basic biologi-
cal processes. The main role of amino acids is to provide substrates for the biosynthesis
of proteins and nucleic acids and to participate in the metabolism of carbohydrates and
lipids. They are also involved in non-enzymatic antioxidant mechanisms (through the
synthesis of glutathione) and epigenetic modifications (mainly with the participation of
S-adenosylmethionine as a methyl group donor) [2–4]. Pathways of amino acid metabolism
that tumor cells activate as antioxidants have been described, including the metabolism of
cysteine and methionine and their association with folic acid, transsulfuration pathways,
and ferroptosis [5]. Amino acids are actively studied as potential targets for anticancer ther-
apy (asparagine, arginine, methionine and cysteine) [1,6,7]. Asparagine depletion has been
successfully used for decades in the treatment of acute lymphoblastic leukemia; arginine
auxotrophic tumors are excellent candidates for treatment with arginine starvation, etc.

A number of studies have shown that amino acids used as potential biomarkers vary
for different types of cancer, and changes in the concentration of amino acids in body fluids
and tissues are important for diagnosing cancer, as well as choosing treatment tactics [8–10].

One of the promising biological fluids for the determination of amino acids is
saliva [11–19]. It contains molecules that can potentially be associated with the course
of the disease and facilitate diagnosis and prognosis, including proteins, mRNA, miRNA,
enzymes, hormones, antibodies, antimicrobial components, growth factors, and metabo-
lites [20]. The determination of amino acids in saliva has been described in the norm [21,22],
including intra-day and inter-day variations, as well as the age of the volunteers [23]. The
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existing literature data on the content of amino acids in saliva in cancer patients are few,
scattered and contradictory. There is currently no detailed justification for changes in the
concentrations of individual amino acids and/or their combinations in saliva in certain
types of cancer, including no understanding of how these changes are related to the content
of amino acids in cancer cells, which emphasizes the relevance of research in this direction.
In this review, we summarized the results of studies on the determination of the amino
acid composition of saliva in various types of cancer.

2. Materials and Methods

A review was conducted up to 15 May 2023 using the databases PubMed, Scopus
and Web of Science. The search sentence used was TITLE-ABS-KEY (cancer OR carcinoma
OR neoplasm OR tumour OR tumor OR oncology) AND saliva AND (amino acids OR
metabolomics). Records were screened by title, abstract, and full text by two independent
investigators. At the initial stage, duplicate articles in different databases were deleted;
reviews and conference abstracts were excluded from consideration.

The search returned a total of 156 reports from databases after deleting duplications.
We then excluded studies that were not related to the study question (the matrix did not fit
the query; no saliva; the participants were not human) or were reviews, conference papers,
book chapters, notes, letters or editorials. The final list contained 21 papers.

3. Results

Basic information about the studies included in the review is given in Table 1.

Table 1. Main studies of the amino acid composition of saliva in various types of cancer.

№ Type of Cancer Author Method of Analysis Study Group Amino Acids (AAs) *

1 OSCC Sugimoto M. et al., 2010 [24] CE-TOF-MS OSCC—69, HC—87
Ala, Leu + Ile, Tyr, Glu,
Phe, Ser, His, Pro, Lys, Gly,
Asp, Gln, Val, Trp, Thr

2 OSCC Wei J. et al., 2011 [25] UPLC-QTOF-MS OSCC—37, leukoplakia
(OLK)—32, HC—34 Val, Phe

3 OSCC Reddy I. et al., 2012 [26] HPLC

OSCC—16
(well-differentiated—8,
moderately
differentiated—8), HC—8

Asp, Glu, Ser, His, Gly, Thr,
Ala, Arg, Tyr, Val, Met,
Phe, Ile, Leu, Lys

4 OSCC Wang Q. et al., 2014 [27–29] UPLC–ESI–MS OSCC—60, HC—30 Phe, Leu

5 OSCC Ohshima M. et al., 2017 [30] CE-TOF–MS OSCC—22, HC—21 Val, Leu, Ile, Trp, Ala

6 OSCC Lohavanichbutr P. et al., 2018 [31] HILIC–UPLC–MS OSCC—101, OPC—58,
HC—35 Gly, Pro

7 OSCC Yatsuoka W. et al., 2021 [32] CE-TOF-MS
Head and neck cancer—9
(underwent radiation
therapy)

His, Tyr, Gly, Glu, Asp,
Trp, Lys, Met

8 OSCC de Sá Alves M. et al., 2021 [33] GC-MS OSCC—27, HC—41 Met, Leu

9 Breast cancer Sugimoto M. et al., 2010 [24] CE-TOF-MS Breast cancer—30, HC—87
Ala, Leu + Ile, Tyr, Glu,
Phe, Ser, His, Pro, Lys, Gly,
Asp, Gln, Val, Trp, Thr

10 Breast cancer Cheng F. et al., 2015 [34] HILIC–UPLC–MS Breast cancer—27 (Stage
I—5, II—12, III—10)

Leu, Phe, Trp, Met, Val,
Pro, Ala, Thr, Glu, Gln, Ser,
Asp, Arg, Lys, His

11 Breast cancer Zhong L. et al., 2016 [35] RPLC-ESI-MS
HILIC-ESI-MS

Breast cancer—30 (Stage
I—7, II—14, III—8, IV—1),
HC—25

Phe, His

12 Breast cancer Murata T. et al., 2019 [36] CE-TOF–MS
Invasive breast
carcinoma—101, Ductal
carcinoma in situ—23,
HC—42

Leu, Gln, Ile, Ser
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Table 1. Cont.

№ Type of Cancer Author Method of Analysis Study Group Amino Acids (AAs) *

13 Gastric cancer Zhang Z. et al., 2017 [37] DNA/Ag NCs based
biosensing system - DAA index (D-Ala, D-Pro)

14 Gastric cancer Chen Y. et al., 2018 [38] SERS sensors Gastric Cancer (earlier—20,
advanced—84), HC—116

Gly, Gln, His, Ala, Glu,
Pro, Tyr

15 Gastric cancer Li Z. et al., 2022 [39] UV–vis absorption
spectra Gastric cancer—5, HC—5 D-Pro and D-Ala

16 Lung Cancer Jiang X. et al., 2021 [40] MALDI-TOF-MS
Lung cancer—100
(early—89 and
advanced—11), HC—50

Ser, Pro, Val, Arg

17 Lung Cancer Takamori S. et al., 2022 [41] CE-TOF-MS Lung Cancer—41, benign
lung lesion (BLL)—21 Ile, Leu, Lys, Phe, Tyr, Trp

18 Glioblastoma García-Villaescusa A. et al., 2018 [42] NMR spectroscopy Glioblastoma—10,
HC—120 Leu, Val, Ile, Ala

19 Glioblastoma Bark J.M. et al., 2023 [43] UPLC-QTOF-MS Glioblastoma—21 dl-Val

20 Pancreatic
cancer Sugimoto M. et al., 2010 [24] CE-TOF-MS Pancreatic cancer—18,

HC—87

Ala, Leu + Ile, Tyr, Glu,
Phe, Ser, His, Pro, Lys, Gly,
Asp, Gln, Val, Trp, Thr

21 Thyroid cancer Zhang J. et al., 2021 [44] HILIC–UPLC–MS Papillary thyroid
carcinoma—61, HC—61

Gly, Ala, Pro, Val, Thr, Leu,
Ile, Met, Phe, Trp

22 Hepatocellular
carcinoma Hershberger C.E. et al., 2021 [45] GC-TOF-MS

Hepatocellular
carcinoma—37,
cirrhosis—30, HC—43

Gln, Ser

23 Colorectal
cancer Kuwabara H. et al., 2022 [46] CE-TOF-MS

Colorectal cancer
(CRC)—235, adenoma
(AD)—50, HC—2317

Ile, Val, Lys, Ala

Note. *—A complete list of the amino acids that were determined in each study is provided. OSCC—oral
squamous cell carcinoma; OPC—oropharyngeal squamous cell carcinoma; HC—healthy control. HPLC—high-
performance liquid chromatography, CE-TOF-MS—capillary electrophoresis time-of-flight mass spectrometry,
MALDI-TOF-MS—matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, UPLC-ESI-
MS—ultra-performance liquid chromatography—electrospray ionization-mass spectrometry, UPLC-MS method
in the hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC)
separations in both positive (ESI+) and negative (ESI-) ionization modes, UPLC-QTOF-MS—ultra-performance
liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry.

Saliva collection techniques were similar across all studies. Saliva samples were
collected without additional stimulation in the morning (7:00–8:00 [26],
8:30–10:30 [34,35,40,44], 9:00–10:00 [25], 9:00–11:00 [36,46], strictly at 8:00 [30]). Subjects
were asked to refrain from eating, drinking, smoking, or using oral hygiene products for
at least 1 h prior to saliva collection; in some cases, patients did not eat for 12 h. Saliva
samples were collected 5–10 min after rinsing the mouth with water by spitting into a
plastic container in an amount of 100 µL to 5 mL, which took an average of 5–15 min. In
one study, DNA Genotek OMNIgene ORAL OM-505 (Ottawa, Ontario) was used to collect
saliva [45]; in another, Salivette® polyester swabs (SARSTEDT, Germany) were used by
the 5 min soak method [44]. Immediately after collection, saliva samples were centrifuged
at low speed (1500–3000 rpm) for 10–20 min [24–31,44] or high speed (12,000–13,500 rpm
in for 20–30 min [34,35,38] at 4 ◦C to remove any insoluble materials, cellular debris,
and food debris. In one study, additional filtration of contaminants in saliva was per-
formed using a centrifugal filter (Nanosep®; Pall Corporation, Port Washington, NY,
USA) [30]. In studies [32,33,36,37,42,43,46], saliva was frozen without prior centrifuga-
tion. In studies [26,40,41], proteins were pre-sedimented before freezing. If it was im-
possible to perform a saliva study on the day of collection, the samples were stored at
−35–40 ◦C [27–29,34,35,44], −70 ◦C [38], and in other cases at −80 ◦C. Further sample
preparation was determined by the method of analysis.

The amino acid composition of saliva is determined independently via liquid
chromatography [26], as well as in the course of complex analysis of metabolites using
gas chromatography coupled to a mass spectrometer (GC-MS) [33,45], nuclear
magnetic resonance (NMR) spectroscopy [42], and various variants of mass
spectrometry [24,25,27–32,34–36,40,41,43,44,46]. Also surface-enhanced Raman scattering
(SERS) Sensors using metal nanoparticles, especially gold nanoparticles (AuNPs) and silver
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nanoparticles [38], DNA/Ag NCs-based biosensing system [37], carbon dots confined in
N-doped carbon (CDs@NC) for colorimetric detection of D-Pro and D-Ala [39] is used;
however, in these variants, one or a few amino acids are determined.

The main part of the studies is devoted to the diagnosis of oral cavity cancer (8/21),
breast cancer (4/21), gastric cancer (3/21), lung cancer (2/21), glioblastoma (2/21) and
one study concerns the of diagnosis colorectal cancer, pancreatic, thyroid and liver cancer,
respectively (Table 1).

It is shown that more than 50% of studies mention the amino acids alanine and leucine,
while none of them pays attention to asparagine and cysteine (Table 2). Combinations of
amino acids in the studies of different authors vary; however, in addition to alanine and
leucine, an important role is noted for valine, isoleucine, phenylalanine, and proline.

Table 2. Main studies of the amino acid composition of saliva in various types of cancer.

AA
OSCC BC GC LC GBM PC TC HCC CRC

∑
24 * 25 26 27 30 31 32 33 24 34 35 36 37 38 39 40 41 42 43 24 44 45 46

Ala ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ 14

Arg ↑ ↑ ↓ 3

Asn 0

Asp ↑ ↑ ↓ ↑ ↑ ↑ ↑ 7

Cys 0

Gln ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ 8

Glu ↑ ↑ ↓ ↑ ↑ ↑ ↑ 7

Gly ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ 8

His ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ 9

Ile ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ 12

Leu ↑ ↓ ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓ 14

Lys ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ 9

Met ↑ ↑ ↑ ↑ ↓ 5

Phe ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↓ 12

Pro ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ 11

Ser ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ 9

Thr ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↓ 8

Trp ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ 8

Tyr ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ 8

Val ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ 13

Note. *—Study number in the list of references. ∑—number of studies in which this amino acid is mentioned.
↑—amino acid is upregulated; ↓—amino acid is downregulated. BC—breast cancer; GC—gastric cancer; LC—
lung cancer; GBM—glioblastoma; PC—pancreatic cancer; TC—thyroid cancer; HCC—hepatocellular carcinoma;
CRC—colorectal cancer.

The content of amino acids varies differently depending on the type of cancer; for
example, for lung and thyroid cancer, the level of amino acids is lower than for healthy
controls and higher for breast cancer (Table 2). For oral cancer, the data vary, which may be
due to the characteristics of the sample or the method of sample preparation and analysis
since the list of methods is quite wide (Table 1).

Only three studies show the absolute concentrations of amino acids in saliva in the
norm [26,27,34], while the data are given in different units of measurement (Ref. [26]—
µmol/mL, Refs. [27,34]—ng/mL). It was also noted that the range of variation in amino
acid concentrations in the norm is quite wide; for example, in [34], the concentration of
alanine was 11,424.5 ± 12,290.0 ng/mL, leucine—1072.3 ± 1344.7 ng/mL, etc. Such wide
ranges of variation require the collection and analysis of more representative samples,
as well as the inclusion of a healthy control group in the design of each experiment, in
order to exclude the influence of methodological inaccuracies on the result of the analysis.
More often, the authors give the relative values of the content of individual amino acids,
determined in comparison with the control group (Table 3). According to the given values,
it is possible to compare the results of different authors on the content of amino acids for
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the same type of cancer (oral cancer and breast cancer, Table 3). It is shown that the data for
breast cancer are more similar to each other than for OSCC (Table 3). All other scientific
papers present the results of data processing by multivariate statistics without analyzing
the original data, so it is not possible to assess their reproducibility.

Table 3. Relative change in the concentration of individual AAs in saliva compared to healthy
controls.

AA
Oral Cancer (OSCC) Breast Cancer Pancreatic

Cancer

[24] [25] [26] * [30] [24] [34] * [36] **** [24]

Ala 3.91 1.85/5.91 ** 1.3 1.94 1.68/1.99 *** ~1.5 3.67

Arg 4.68/12.6 1.29/1.26 ~1.6

Asn

Asp 1.63 6.89/17.2 1.70 2.12/2.09 4.10

Cys

Gln 2.35 1.59 2.24/2.55 ~2.5 4.96

Glu 2.87 0.76/2.01 2.12 4.80

Gly 1.38 4.43/8.49 2.32 3.10

His 1.70 1.33/2.34 1.35 1.35/1.24 2.02

Ile
4.65

7.15/13.4 2.7 3.05 ~2.0 7.71

Leu 16.1/33.4 2.5 1.81/2.10 ~2.5

Lys 1.84 1.63/0.56 2.96 1.90/1.97 3.97

Met 13.5/104.4 4.93/2.17

Phe 2.25 0.74 9.54/33.5 1.78 1.67/1.45 3.54

Pro 1.63 2.48 3.25/3.97 3.99

Ser 1.74 3.74/10.3 1.66 2.62/2.96 ~2.2 4.34

Thr 2.15 2.77/4.62 1.71 2.21/2.39 ~1.6 4.75

Trp 4.26 1.9 1.59 2.07/1.56 6.47

Tyr 1.84 3.06/5.38 1.99 2.90

Val 4.53 0.56 4.34/8.42 2.6 2.64 2.82/6.64 ~1.5 5.92

Note. *—calculated according to the authors’ data as the cancer amino acid concentration divided by the
corresponding healthy control concentration; **—for well-differentiated/for moderately differentiated cancer;
***—for stage I-II/for stage III-IV; ****—determined from Figure 2 in Ref. [36].

Table 4 shows the values of sensitivity and specificity when using individual amino
acids for the diagnosis of different types of cancer. Sensitivity and specificity values of 75.1
and 71.8, respectively, were obtained (Table 4), while when using combinations of amino
acids with each other or with other metabolites, sensitivity and specificity values increase
(Table 5).
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Table 4. Diagnostic characteristics for individual amino acids.

N Type of Cancer AAs AUC Sensitivity, % Specificity, % Cutoff Point (ng/mL)

1 OSCC [25]
Val 0.81 (0.706–0.911) 82.4 75.7 -

Phe 0.64 (0.508–0.765) 52.9 56.8 -

2 OSCC [27]
Phe 0.695/0.767 * 84.6/47.1 61.7/95.0 -

Leu 0.863/0.852 * 84.6/82.4 81.7/80.0 -

3 OSCC [33]
Met 0.925 - - -

Leu 0.923 - - -

4 Breast cancer [34]

Phe 0.748/0.739 * 64.7/70.0 82.1/82.1 599.3/570.3

Trp 0.763/0.786 82.4/90.0 71.4/71.4 46.1/45.1

Met 0.786/0.786 82.4/90.0 71.4/71.4 6.8/5.9

Pro 0.866/0.857 70.6/80.0 92.8/92.9 11,119.7/10,959.1

Thr 0.830/0.886 76.5/90.0 85.7/85.7 408.3/412.3

Asp 0.792/0.696 82.4/80.0 67.9/67.9 362.1/360.2

Ser 0.750/0.832 76.5/90.0 67.9/71.4 931.3/1010.5

His 0.695/0.646 52.9/50.0 82.1/82.1 1317.9/1317.0

Gln 0.769/0.832 58.8/90.0 82.1/64.3 852.6/531.6

Leu 0.748/0.857 76.5/100.0 75.0/71.4 1011.6/959.9

Val 0.727/0.961 70.6/90.0 71.4/92.8 280.1/532.6

Glu 0.798/0.861 58.8/90.0 89.3/89.3 1977.4/1925.8

Lys 0.706/0.821 76.5/80.0 60.7/51.4 3210.8/3807.8

5 Breast cancer [35]
Phe 0.739 (0.597–0.881) 77.8 66.7 -

His 0.847 (0.736–0.958) 96.3 62.5 -

6 Thyroid cancer [44]

Gly 0.743 (0.650–0.837) 100.0 51.0 879.6

Ala 0.814 (0.736–0.891) 72.1 76.5 388.2

Pro 0.754 (0.665–0.843) 50.8 92.2 1241.7

Val 0.833 (0.758–0.907) 80.3 78.4 2806.7

Thr 0.755 (0.663–0.848) 63.9 92.2 198.3

Leu 0.746 (0.657–0.835) 62.3 76.5 332.5

Ile 0.689 (0.589–0.789) 86.9 47.1 96.6

Met 0.678 (0.576–0.779) 90.2 45.1 36.3

Phe 0.749 (0.658–0.839) 98.4 43.1 592.0

Trp 0.732 (0.641–0.824) 63.9 76.5 53.7

7 Lung cancer [41]

Ile 0.620 - - -

Leu 0.621 - - -

Lys 0.620 - - -

Phe 0.634 - - -

Tyr 0.618 - - -

Trp 0.663 - - -

Meanvalue 0.748 ± 0.026 75.1 ± 4.9 71.8 ± 5.1 -

Note. *—for stage I–II/for stage III–IV.
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Table 5. Methods of multidimensional data processing and diagnostic characteristics of algorithms
based on them.

N Statistical Methods Type of Cancer Variables in the Model Characteristics

1 Principal component analysis (PCA);
Multiple logistic regression (MLR) OSCC [24]

Alanine, Choline, Leucine + Isoleucine,
Glutamic acid, 120.0801 m/z,
Phenylalanine, alpha-Aminobutyric acid,
Serine

AUC—0.865 (0.810)

2

Principal component analysis (PCA);
Orthogonal partial least
squares-discriminant analysis
(OPLS-DA); Logistic regression (LR)

OSCC [25]

OSCC vs. HC:
Lactic acid and Valine

AUC—0.890 (0.813–0.972)
Sensitivity—86.5%
Specificity—82.4%

OSCC vs. leukoplakia:
Lactic acid, Phenylalanine, Valine

AUC—0.970 (0.932–1.000)
Sensitivity—94.6%
Specificity—84.4%

3 Logistic regression (LR) OSCC [27–29]

HC vs. T1–2: Phenylalanine, Leucine
AUC—0.871 (0.767–0.974)
Sensitivity—92.3%
Specificity—81.7%

HC vs. T3–4: Phenylalanine, Leucine
AUC—0.899 (0.827–0.971)
Sensitivity—94.1%
Specificity—75.0%

4
Partial least squares
regression-discriminant analysis
(PLS-DA)

OSCC [32] Histidine, Tyrosine AUC—0.94 (0.79−1.0)

5 Principal component analysis (PCA);
Multiple logistic regression (MLR) Breast cancer [24]

173.0285 m/z, Lysine,
409.2312 m/z, Threonine, Leucine +
Isoleucine, Putrescine, 131.1174 m/z,
Glutamic acid, Tyrosine, Piperideine,
Valine, Glycine, 437.7442 m/z

AUC—0.973 (0.881)

6 Multiple logistic regression (MLR) Breast cancer [34] SFAA index: Proline, Threonine,
Histidine

HC vs. T1–2:
AUC—0.916 (0.834–0.998)
Sensitivity—88.2%
Specificity—85.7%

7
Multiple logistic regression (MLR);
Alternative decision tree (ADTree +
Bagging)

Breast cancer [36]

Spermine, ribulose 5-phosphate,
1,3-Diaminopropane, Butanoate,
Threonine, DHAP, Leucine, Cadaverine,
GABA, Propionate, N-acetylneuraminate,
N1-acetylspermine, Arginine, Carnitine,
N1-acetylspermidine, Lactate, Ile,
Spermidine, Serine, Succinate, Alanine,
gamma-Butyrobetaine, 5-Aminovalerate,
Choline, Glutamine, Valine

AUC—0.912 (0.838–0.961)

8

Principal component analysis (PCA);
Cluster analysis; Orthogonal partial
least squares-discriminant analysis
(OPLS-DA); ANN model

Lung cancer [40]

Gamma aminobutyric
acid (GABA), Cytosine, Uracil, Creatinine,
Pyroglutamic acid,
Ketoleucine, Adenine, Imidazolepropionic
acid, Allysine, Guanine,
3-hydroxyanthranilic acid, gentisic acid,
N-acetylproline,
N-acetylhistidine, Serine, Proline, Valine,
Phenylglyoxylic acid, Xanthine, Arginine,
N-acetyl-L-glutamic acid, N-acetyltaurine,
Glycylphenylalanine

AUC—0.986
Sensitivity—97.2%
Specificity—92.0%

9 Multiple logistic regression (MLR) Lung cancer [41] Diethanolamine, Cytosine, Lysine,
Tyrosine AUC—0.663 (0.516–0.810)

Principal component analysis (PCA);
Logistic regression (LR) Gastric cancer [38]

Taurine, Glycine, Glutamine,
Ethanolamine, Histidine, Alanine,
Glutamic acid, Hydroxylysine, Proline,
Tyrosine

Sensitivity > 80%
Specificity > 87.7%

10

Principal component analysis (PCA);
Partial least-squares discriminant
analysis (PLS-DA); Binary logistic
regression (BLR)

Thyroid cancer [44] Alanine, Proline, Phenylalanine, Valine
AUC—0.936 (0.894–0.977)
Sensitivity—91.2%
Specificity—85.2%
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Table 5. Cont.

N Statistical Methods Type of Cancer Variables in the Model Characteristics

11 Principal component analysis (PCA);
Multiple logistic regression (MLR)

Pancreatic cancer
[24]

Phenylalanine, Tryptophan,
Ethanolamine, Carnitine, 173.0919 m/z AUC—0.993 (0.944)

12

Principal component analysis (PCA);
Random Forest model with a
leave-one-out cross-validation
(LOOCV); classification and
regression tree method (CART)

Hepatocellular
cancer [45]

125 metabolites (RF125)
AUC—0.845
Sensitivity—81.8%
Specificity—87.2%

12 metabolites (iRF12):
Octadecanol, Acetophenone, Lauric acid,
1-monopalmitin, Dodecanol,
Salicylaldehyde,
Glycyl-proline, 1-monostearin, Creatinine,
Glutamine, Serine, 4-hydroxybutyric acid

AUC—0.886
Sensitivity—84.8%
Specificity—92.4%

4 metabolites (iRF4): Octadecanol,
Acetophenone, 1-monopalmitin,
1-monostearin

AUC—0.917
Sensitivity—87.9%
Specificity—95.5%

CART:
Octadecanol, Acetophenone,
1-monopalmitin, 1-monostearin

AUC—0.907
Sensitivity—87.9%
Specificity—93.5%

13
Partial least squares-discriminant
analysis (PLS-DA); Multiple logistic
regression (MLR); ADTree algorithm

Colorectal cancer
[46]

N-acetylputrescine, N1-acetylspermine,
N1,N8
-diacetylspermidine, N8-acetylspermidine,
N1
-acetylspermidine,
N1,N12-diacetylspermine, pyruvate,
lactate, succinate, malate,
4-methyl-2-oxopentanoate, 5-oxoproline,
Isoleucine, Valine, Lysine, Alanine,
3-Aminoisobutyrate, alpha-Aminoadipate,
2AB, Cadaverine,
2-Hydroxy-4-methylpentanoate,
gamma-Butyrobetaine, Creatine

CRC + AD vs. HC
AUC—0.870 (0.837–0.903)

Note. The amino acids included in the diagnostic algorithms are highlighted in bold.

The main methods of multivariate statistics used to analyze the amino acid profile of
saliva in cancer are principal component analysis (PCA), partial least squares-discriminant
analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), hierar-
chical and heatmap cluster analysis, logistic regression (LR) (Multiple—MLR,
binary—BLR), ANN and Random Forest models, classification and regression tree
method (CART) (Table 5).

In 13 studies out of 21 (Table 5), combinations of metabolites and amino acids are used
to build a diagnostic algorithm. At the same time, only four algorithms use amino acids
directly, while all the others use a wider set of parameters for construction. Most often,
the algorithms include valine, alanine, leucine and phenylalanine; a little less often, serine,
tyrosine, histidine, lysine, glutamic acid, glutamine, threonine, isoleucine and proline
(Table 4). It should be noted that it was for valine and alanine that higher AUC-ROC values
were obtained (Table 5).

Several amino acids have been proposed for early cancer detection: leucine for
OSCC [27–29]; proline, threonine and histidine were included in the complex index for
detecting early breast cancer [34]; serine, proline, valine and arginine in combination with
other metabolites for lung cancer [40]. Only one study reported absolute concentrations of
amino acids in the early and advanced stages of breast cancer (Table 3) [34].

4. Discussion

The researchers found that amino acid metabolism was markedly altered in cancer
cells [47] and plasma free amino acids also had a visible difference between cancer patients
and healthy controls [48]. So, leucine, isoleucine and valine are three essential branched-
chain amino acids that are raw materials for the synthesis of proteins and nucleic acids with
the formation of acetyl and/or propionyl coenzyme-A, which enter the tricarboxylic acid
cycle in the last stages of their metabolic pathways. Proline is a regulator of cytoplasmic
balance and an important component of collagen, the most abundant protein in the body. Its
biosynthetics are required for remodeling of the tumor microenvironment and extracellular
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matrix to promote reprogramming and proliferation of cancer cells. In addition, proline can
generate adenosine triphosphate for cell growth through the tricarboxylic acid cycle during
catabolism. Glycine is a precursor for the synthesis of important substances such as proteins,
nucleic acids and lipids that are essential for cell growth. Meanwhile, their biosynthesis will
affect the antioxidant capacity of cells to maintain tumor homeostasis. Studies have shown
that mitochondrial glycine metabolism is closely related to the rapid proliferation of cancer
cells [49]. Alanine is an amino acid in glycogen; it is the main source of carbon rather than
the carbon of glucose in the tricarboxylic acid cycle (production of lipids and non-essential
amino acids), which makes glucose more available for the biosynthesis of other functions;
this synergistic metabolism promotes tumor growth. Phenylalanine is converted to tyrosine
via catalytic oxidation by phenylalanine hydroxylase, and tyrosine is involved in the
metabolism of glucose and fats in the body, which are the main energy sources for rapidly
growing cancer cells. Methionine is a substrate for the biosynthesis of the universal methyl
donor S-adenosylmethionine, and threonine maintains the intracellular concentration of S-
adenosylmethionine and methylation of histones that enter the folate cycle by converting to
folate intermediates. The folic acid cycle and the methionine metabolism cycle are the two
main components of one-carbon metabolism important for the growth and multiplication
of cancer cells at a high growth rate. Tryptophan, a precursor of kynurenine, is metabolized
to kynurenine by indolamine 2,3-dioxygenase. Under normal physiological conditions,
indolamine 2,3-dioxygenase expression is modulated; however, it is frequently activated in
some types of cancer [50]. Upregulation of indolamine 2,3-dioxygenase expression leads to
increased tryptophan metabolism, which increases kynurenine production. Kynurenine,
an oncometabolite, inhibits T-cell differentiation and therefore promotes cancer growth
and development. This ultimately leads to a decrease in serum tryptophan levels in cancer
patients. Several studies have suggested dependence of tumor cells on glutamine [51,52].

Thus, changes in the content of amino acids in biological fluids, including saliva, in
oncological diseases are metabolically substantiated and deserve the attention of researchers.
It should be expected that in addition to the general patterns for each individual type of
cancer, characteristic combinations of amino acids could be identified.

OSCC. Sugimoto M. et al. [24] identified the following amino acids for the diagnosis
of oral cancer: alanine, leucine, isoleucine, glutamic acid, phenylalanine, and serine. Wei J.
et al. [25] focused on phenylalanine and valine, which had also previously been identified
as discriminating serum metabolites in OSCC compared to healthy subjects [53]. At the
same time, amino acid concentrations decreased in cancer, which may be associated with
increased glycolysis during cell proliferation in cancer tissues [24]. Reddy I. et al. [26]
showed that levels of amino acids histidine, threonine, valine, isoleucine, methionine,
phenylalanine, leucine, lysine, tyrosine, arginine, alanine, glycine, serine and aspartic acid
were significantly higher in both well-differentiated OSCC cases and moderately differenti-
ated OSCC cases than in healthy controls. Wang Q et al. [27–29] showed that the content
of phenylalanine and leucine decreased compared to the control. Mean concentrations of
phenylalanine in OSCC patients with T1–2 compared with healthy controls were 1.6 times
lower (p = 0.028) and leucine 3.8 times lower (p = 0.001). As a standalone biomarker, leucine
may have a better predictive power for the early stages of OSCC, and phenylalanine can
be used to screen for and diagnose advanced stages of OSCC. The combination of pheny-
lalanine and leucine improved sensitivity and specificity. Ohshima M. et al. [30] isolated
valine, leucine, isoleucine, tryptophan, and alanine, while Lohavanichbutr P. et al. [31]
focused on glycine and proline. The concentrations of glycine and proline in the saliva
of oral cancer patients are lower than those of the control group in both sets of samples.
The authors hypothesized that OSCC tumor cells take up glycine from the salivary extra-
cellular space and actively synthesize glycine in mitochondria to form one-carbon units
for subsequent nucleotide synthesis to support tumor progression. Yatsuoka W. et al. [32]
found significant differences between the groups in terms of histidine and tyrosine levels,
and de Sá Alves M. et al. [33] isolated methionine and leucine in a set of 25 metabolites.
Thus, most studies point to the important role of leucine and isoleucine, phenylalanine,
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valine and alanine in the diagnosis of oral cancer. At the same time, in different studies, the
concentration of amino acids varied in different ways; no definite regularity had been re-
vealed: in half of the studies, the concentration of amino acids was up-regulated, and in the
other half—down-regulated. Apparently, this was due to the characteristics of the studied
sample and/or differences in sample preparation and analysis of the biomaterial. Three
of the four studies for which amino acid concentrations were up-regulated used capillary
electrophoresis time-of-flight mass spectrometry (CE-TOF-MS), while ultra-performance
liquid chromatography was used to obtain down-regulated amino acid profiles. However, a
more detailed consideration of the process of sample preparation and analysis was beyond
the scope of this review.

Breast cancer. Sugimoto M. et al. [24] proposed eight amino acids (lysine, threonine,
leucine + isoleucine, glutamic acid, tyrosine, valine, and glycine) as part of a number of
metabolites for diagnosing breast cancer. Cheng F. et al. [34] analyzed 17 amino acids to
distinguish stage I–II breast cancer from healthy controls: Pro, Thr, and Glu (p < 0.001);
Phe, Trp, Met, Asp, Ser, Gln and Leu (p < 0.01); His, Val and Lys (p < 0.05); and Ala and
Arg (p > 0.05). However, only three amino acids were included in the complex index for
detecting early breast cancer: proline, threonine and histidine (Table 4). Comparison of
amino acid levels in stage I–II and III–IV breast cancer showed no significant differences,
with the exception of valine (p = 0.027). Zhong L. et al. [35] identified two amino acids:
phenylalanine and histidine. An obvious decrease in the level of acetylphenylalanine
indicates a violation of the metabolism of phenylalanine in individuals with breast cancer.
A similar abnormality in phenylalanine metabolism was found in oral squamous cell carci-
noma [29]. Murata T. et al. [36] identified four amino acids leucine, glutamine, isoleucine,
and serine. The authors also determined salivary metabolite concentration in four cancer
subtypes: Luminal A-like, luminal B-like, HER2-positive, and triple-negative. However,
differences between molecular biological subtypes of breast cancer are characterized by
other metabolites, not amino acids. Thus, in the four studies analyzed, the authors identi-
fied different amino acids; in three studies, leucine and isoleucine are common, but there is
no justification for the choice of these particular amino acids from the point of view of the
biochemistry of the ongoing processes, which has yet to be done.

Gastric cancer. For gastric cancer, all studies used spectroscopy methods: Raman
and ultraviolet, as well as sensors. Chen et al. did not evaluate the content of individual
amino acids (Gly, Gln, His, Ala, Glu, Pro, Tyr); data processing was carried out using
principal component analysis; sensitivity and specificity were noted above 80 and 87%,
respectively [38]. In [37], the DAA index was proposed, which ranged from 2 to 10 for
cancer patients; while in the healthy control group, DAA scores remained low (from 0 to 1).
The authors quantified the probe fluorescence shift by defining the percent fluorescence
quenching (PFQ) as (I0 − I)/I0 ∗ 100%, where I0—the fluorescence intensity of the blank
control, I—the fluorescence intensity of the test samples. The DAA index was evaluated as
a number of PFQ/5%. The test results showed that the concentration of DAA in healthy
people and stomach cancer patients was 0~25.3 µM, in particular (D-Ala)/0~11.3 µM
(D-Pro) and 50.6~253.2µM (D-Ala)/22.5~112.6 µM (D-Pro), respectively. These results
showed that gastric cancer patients and healthy people can be distinguished using the
silver DNA nanocluster. Moreover, our test values were in good agreement with the
range of physiologically significant concentrations (6.6 ± 1.2 µM (D-Ala)/12.8 ± 5.5 µM
(D-Pro) for healthy individuals and 205.8 ± 79.5 µM (D-Ala))/80.3 ± 34.2 µM (D-Pro) for
patients with gastric cancer). Li Z. et al. also used sensors; however, unlike [39], carbon
dots confined in N-doped carbon (CDs@NC) were used, but the amino acids determined
were the same D-Ala and D-Pro. The sensitivity and specificity of these methods have not
been evaluated, and no detailed patient information is available. Of note, all three studies
highlight alanine and proline as important amino acids for diagnosing gastric cancer.

Lung cancer. Jiang X. et al. [40] identified 23 metabolites, which allow diagnosing
early lung cancer with high accuracy; this list includes four amino acids (serine, proline,
valine, arginine) (Table 4). A decrease in amino acid content and activation of down-
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stream metabolites of amino acid metabolism, including ketoleucine, N-acetylhistidine,
imidazolepropionic acid, N-acetylproline, allisin, gentisic acid, 3-hydroxyanthranilic acid,
γ-aminobutyric acid and pyroglutamic acid were observed in the early lung cancer group,
which is consistent with previous studies [54,55]. This may be due to protein deficiency and
increased amino acid requirements caused by tumor growth [56]. According to Takamori
S. et al. [41], profiles of 10 salivary metabolites differed markedly between lung cancer
and benign lung lesion patients. Among them, salivary tryptophan concentration was
significantly lower in patients with lung cancer. It is known that the level of tryptophan
in the blood serum in patients with lung cancer was significantly lower than in healthy
people [57]. Takamori S. et al. [41] developed an MLR model in which four metabolites were
selected, including lysine and tyrosine. The MLR model had a high ability to distinguish
between lung cancer and benign lung lesion patients (AUC = 0.729, Table 4). It should be
noted that in lung cancer, in both studies, the content of amino acids was downregulated.

Glioblastoma. Garcia-Villaescusa A. et al. [42] showed that four amino acids leucine,
isoleucine, alanine, and valine change their content in glioblastoma. It is known that
alanine is elevated in malignant brain tumors and, therefore, can be used to distinguish
between tumor type and grade [58]. In addition, an increase in leucine-rich proteins was
observed in some malignant gliomas, which was mainly associated with an increased
risk of developing astrocytomas and glioblastomas [59]. A study by Bark J.M. et al. [43]
identified valine among a large number of metabolites, which overlaps with the results
of García-Villaescusa A. et al. [42] and other studies showing the contribution of valine to
cancer diagnosis.

Thyroid cancer. We found the only study of amino acids in saliva in thyroid cancer [44].
The authors showed that the content of all studied amino acids in thyroid cancer is reduced
compared to healthy controls. The results are consistent with previous blood metabolism
studies for the detection of thyroid cancer. Abooshahab et al. described a marked decrease
in the concentrations of valine, phenylalanine, proline, glycine, methionine and threonine
in patients with thyroid cancer [60]. Huang et al. reported in a comparative study between
healthy controls and thyroid cancer that the expression of alanine, proline and tryptophan
was reduced in the patient group [61]. Threshold values have been established that can be
used for diagnosis (Table 5). The values of sensitivity and specificity for individual amino
acids vary within a fairly wide range, the average sensitivity was 76.9% (50.8–100.0%),
and the average specificity was 55.1% (43.1–92.2%). When using the complex index, the
values of sensitivity and specificity increased significantly and amounted to 91.2 and 85.2%,
respectively.

Colorectal Cancer. In the only study by Kuwabara H. et al. [46] showed that several
amino acids, such as isoleucine, valine, lysine, and alanine, were elevated in both adenomas
and colorectal cancer, but the authors do not offer justification for what this may be due to.

Hepatocellular cancer. Hershberger C.E. et al. [45] proposed four variants of algo-
rithms for detecting hepatocellular cancer based on metabolomic profiling of saliva, but
only one of the algorithms included the amino acids glutamine and serine (Table 4). It
has previously been reported that serum serine levels are altered in patients with cirrhosis
compared to healthy individuals and in the urine of patients with hepatocellular cancer
compared to healthy individuals [62,63]. Glutamine levels differed in serum and liver
tissue between healthy people and people with cirrhosis, healthy people and people with
hepatocellular cancer [64,65]. The enzyme responsible for glutamine production, glu-
tamine synthetase, has been identified as a potential biomarker for early hepatocellular
cancer in proteomic assays and has been shown to promote cell migration by mediating
epithelial–mesenchymal transition [66].

Pancreas cancer. Sugimoto M. et al. [24] identified two amino acids in five metabolites
for diagnosing pancreatic cancer: phenylalanine and tryptophan. Although pancreatic
cancer samples showed a trend towards decreasing levels of amino acids, including leucine,
isoleucine, valine, and alanine [67], an increase in amino acid levels was observed in saliva.
In this regard, the authors argue that further validation of these results by comparing saliva
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profiles with blood and tissue profiles is necessary in order to understand the reason for
the different amino acid profiles in saliva.

5. Conclusions

The amino acids alanine, valine, phenylalanine, leucine and isoleucine play a leading
role in the diagnosis of cancer by saliva. Depending on the type of cancer, the significance
of individual amino acids varies: leucine, isoleucine, phenylalanine, valine and alanine are
important for oral cancer, leucine and isoleucine for breast cancer, alanine and proline for
gastric cancer, and valine for glioblastoma. Whereas for lung cancer, the list of significant
amino acids according to different authors is completely different; however, in both cases,
amino acids are down-regulated. In general, amino acid levels in cancer are elevated
in all types of cancer except lung and thyroid cancer. The data of different authors on
oral cancer are contradictory: the same amino acids in some studies are up-regulated, in
others, down-regulated, requiring a more detailed acquaintance with the method of sample
preparation and analysis.

In an independent version, amino acids are rarely used; the authors combine either
amino acids with each other or with other metabolites, which makes it possible to obtain
high values of sensitivity and specificity. Nevertheless, a logical and complete substantia-
tion of the changes in saliva occurring in cancer, including changes in the salivary amino
acid level, has not yet been formed, which makes it important to continue research in this
direction.
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21. Poboẑy, E.; Czarkowska, W.; Trojanowicz, M. Determination of amino acids in saliva using capillary electrophoresis with
fluorimetric detection. J. Biochem. Biophys. Methods 2006, 67, 37–47. [CrossRef]

22. Martín Santos, P.; del Nogal Sánchez, M.; Pérez Pavón, J.L.; Moreno Cordero, B. Non-separative method based on a single
quadrupole mass spectrometer for the semi-quantitative determination of amino acids in saliva samples. A preliminary study.
Talanta 2019, 208, 120381. [CrossRef]

23. Qu, C.; Jian, C.; Ge, K.; Zheng, D.; Bao, Y.; Jia, W.; Zhao, A. A rapid UHPLC-QDa method for quantification of human salivary
amino acid profiles. J. Chromatogr. B 2022, 1211, 123485. [CrossRef]

24. Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva
metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [CrossRef] [PubMed]

25. Wei, J.; Xie, G.; Zhou, Z.; Shi, P.; Qiu, Y.; Zheng, X.; Chen, T.; Su, M.; Zhao, A.; Jia, W. Salivary metabolite signatures of oral cancer
and leukoplakia. Int. J. Cancer 2011, 129, 2207–2217. [CrossRef] [PubMed]

26. Reddy, I.; Sherlin, H.J.; Ramani, P.; Premkumar, P.; Natesan, A.; Chandrasekar, T. Amino acid profile of saliva from patients with
oral squamous cell carcinoma using high performance liquid chromatography. J. Oral. Sci. 2012, 54, 279–283. [CrossRef]

27. Wang, Q.; Gao, P.; Cheng, F.; Wang, X.; Duan, Y. Measurement of salivary metabolite biomarkers for early monitoring of oral
cancer with ultra performance liquid chromatography–mass spectrometry. Talanta 2014, 119, 299–305. [CrossRef]

28. Wang, Q.; Gao, P.; Wang, X.; Duan, Y. The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics.
Sci. Rep. 2014, 4, 6802. [CrossRef]

29. Wang, Q.; Gao, P.; Wang, X.; Duan, Y. Investigation and identification of potential biomarkers in human saliva for the early
diagnosis of oral squamous cell carcinoma. Clin. Chim. Acta 2014, 427, 79–85. [CrossRef]

30. Ohshima, M.; Sugahara, K.; Kasahara, K.; Katakura, A. Metabolomic analysis of the saliva of Japanese patients with oral squamous
cell carcinoma. Oncol. Rep. 2017, 37, 2727–2734. [CrossRef] [PubMed]

31. Lohavanichbutr, P.; Zhang, Y.; Wang, P.; Gu, H.; Nagana Gowda, G.A.; Djukovic, D.; Buas, M.F.; Raftery, D.; Chen, C. Salivary
metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS ONE 2018, 13,
e0204249. [CrossRef] [PubMed]

32. Yatsuoka, W.; Ueno, T.; Miyano, K.; Enomoto, A.; Ota, S.; Sugimoto, M.; Uezono, Y. Time-Course of Salivary Metabolomic Profiles
during Radiation Therapy for Head and Neck Cancer. J. Clin. Med. 2021, 10, 2631. [CrossRef]

33. de Sá Alves, M.; de Sá Rodrigues, N.; Bandeira, C.M.; Chagas, J.F.S.; Pascoal, M.B.N.; Nepomuceno, G.L.J.T.; da Silva Martinho,
H.; Alves, M.G.O.; Mendes, M.A.; Dias, M.; et al. Identification of Possible Salivary Metabolic Biomarkers and Altered Metabolic
Pathways in South American Patients Diagnosed with Oral Squamous Cell Carcinoma. Metabolites 2021, 11, 650. [CrossRef]

34. Cheng, F.; Wang, Z.; Huang, Y.; Duan, Y.; Wang, X. Investigation of salivary free amino acid profile for early diagnosis of breast
cancer with ultra performance liquid chromatography-mass spectrometry. Clin. Chim. Acta 2015, 447, 23–31. [CrossRef]

35. Zhong, L.; Cheng, F.; Lu, X.; Duan, Y.; Wang, X. Untargeted saliva metabonomics study of breast cancer based on ultra performance
liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta 2016, 158, 351–360. [CrossRef]
[PubMed]

36. Murata, T.; Yanagisawa, T.; Kurihara, T.; Kaneko, M.; Ota, S.; Enomoto, A.; Tomita, M.; Sugimoto, M.; Sunamura, M.; Hayashida,
T.; et al. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination.
Breast Cancer Res. Treat 2019, 177, 591–601. [CrossRef] [PubMed]

https://doi.org/10.1016/j.talanta.2021.122544
https://doi.org/10.18821/0869-2084-2019-64-6-333-336
https://doi.org/10.1016/j.bbcan.2019.05.007
https://www.ncbi.nlm.nih.gov/pubmed/31152821
https://doi.org/10.1016/j.ejpb.2019.06.016
https://www.ncbi.nlm.nih.gov/pubmed/31220573
https://doi.org/10.1515/cclm-2022-0793
https://doi.org/10.1016/j.medntd.2022.100115
https://doi.org/10.1038/s41368-022-00209-w
https://www.ncbi.nlm.nih.gov/pubmed/36596771
https://doi.org/10.1002/jssc.202100384
https://doi.org/10.3390/metabo13010028
https://doi.org/10.3390/ijms21145173
https://doi.org/10.1016/j.jbbm.2006.01.001
https://doi.org/10.1016/j.talanta.2019.120381
https://doi.org/10.1016/j.jchromb.2022.123485
https://doi.org/10.1007/s11306-009-0178-y
https://www.ncbi.nlm.nih.gov/pubmed/20300169
https://doi.org/10.1002/ijc.25881
https://www.ncbi.nlm.nih.gov/pubmed/21190195
https://doi.org/10.2334/josnusd.54.279
https://doi.org/10.1016/j.talanta.2013.11.008
https://doi.org/10.1038/srep06802
https://doi.org/10.1016/j.cca.2013.10.004
https://doi.org/10.3892/or.2017.5561
https://www.ncbi.nlm.nih.gov/pubmed/28393236
https://doi.org/10.1371/journal.pone.0204249
https://www.ncbi.nlm.nih.gov/pubmed/30235319
https://doi.org/10.3390/jcm10122631
https://doi.org/10.3390/metabo11100650
https://doi.org/10.1016/j.cca.2015.05.008
https://doi.org/10.1016/j.talanta.2016.04.049
https://www.ncbi.nlm.nih.gov/pubmed/27343615
https://doi.org/10.1007/s10549-019-05330-9
https://www.ncbi.nlm.nih.gov/pubmed/31286302


Metabolites 2023, 13, 950 14 of 15

37. Zhang, Z.; Liu, Y.; Liu, P.; Yang, L.; Jiang, X.; Luo, D.; Yang, D. Non-invasive detection of gastric cancer relevant d-amino acids
with luminescent DNA/silver nanoclusters. Nanoscale 2017, 9, 19367–19373. [CrossRef] [PubMed]

38. Chen, Y.; Cheng, S.; Zhang, A.; Song, J.; Chang, J.; Wang, K.; Zhang, Y.; Li, S.; Liu, H.; Alfranca, G.; et al. Salivary Analysis Based
on Surface Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons.
J. Biomed. Nanotechnol. 2018, 14, 1773–1784. [CrossRef] [PubMed]

39. Li, Z.; Liu, W.; Ni, P.; Zhang, C.; Wang, B.; Duan, G.; Chen, C.; Jiang, Y.; Lu, Y. Carbon dots confined in N-doped carbon as
peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids. Chem. Eng. J. 2022, 428, 131396. [CrossRef]

40. Jiang, X.; Chen, X.; Chen, Z.; Yu, J.; Lou, H.; Wu, J. High-Throughput Salivary Metabolite Profiling on an Ultralow Noise
Tip-Enhanced Laser Desorption Ionization Mass Spectrometry Platform for Noninvasive Diagnosis of Early Lung Cancer. J.
Proteome Res. 2021, 20, 4346–4356. [CrossRef] [PubMed]

41. Takamori, S.; Ishikawa, S.; Suzuki, J.; Oizumi, H.; Uchida, T.; Ueda, S.; Edamatsu, K.; Iino, M.; Sugimoto, M. Differential
diagnosis of lung cancer and benign lung lesion using salivary metabolites: A preliminary study. Thorac. Cancer 2022, 13, 460–465.
[CrossRef]

42. García-Villaescusa, A.; Morales-Tatay, J.M.; Monleón-Salvadó, D.; González-Darder, J.M.; Bellot-Arcis, C.; Montiel-Company, J.M.;
Almerich-Silla, J.M. Using NMR in saliva to identify possible biomarkers of glioblastoma and chronic periodontitis. PLoS ONE
2018, 13, e0188710. [CrossRef] [PubMed]

43. Muller Bark, J.; Karpe, A.V.; Doecke, J.D.; Leo, P.; Jeffree, R.L.; Chua, B.; Day, B.W.; Beale, D.J.; Punyadeera, C. A pilot study:
Metabolic profiling of plasma and saliva samples from newly diagnosed glioblastoma patients. Cancer Med. 2023, 12, 11427–11437.
[CrossRef] [PubMed]

44. Zhang, J.; Wen, X.; Li, Y.; Zhang, J.; Li, X.; Qian, C.; Tian, Y.; Ling, R.; Duan, Y. Diagnostic approach to thyroid cancer based on
amino acid metabolomics in saliva by ultra-performance liquid chromatography with high resolution mass spectrometry. Talanta
2021, 235, 122729. [CrossRef]

45. Hershberger, C.E.; Rodarte, A.I.; Siddiqi, S.; Moro, A.; Acevedo-Moreno, L.A.; Brown, J.M.; Allende, D.S.; Aucejo, F.; Rotroff, D.M.
Salivary Metabolites are Promising Non-Invasive Biomarkers of Hepatocellular Carcinoma and Chronic Liver Disease. Liver
Cancer Int. 2021, 2, 33–44. [CrossRef]

46. Kuwabara, H.; Katsumata, K.; Iwabuchi, A.; Udo, R.; Tago, T.; Kasahara, K.; Mazaki, J.; Enomoto, M.; Ishizaki, T.; Soya, R.;
et al. Salivary metabolomics with machine learning for colorectal cancer detection. Cancer Sci. 2022, 113, 3234–3243. [CrossRef]
[PubMed]

47. Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.
Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight
mass spectrometry. Cancer Res. 2009, 69, 4918–4925. [CrossRef]

48. Miyagi, Y.; Higashiyama, M.; Gochi, A.; Akaike, M.; Ishikawa, T.; Miura, T.; Saruki, N.; Bando, E.; Kimura, H.; Imamura, F.
Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE 2011, 6, e24143.
[CrossRef]

49. Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K.
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336, 1040–1044. [CrossRef]

50. Löb, S.; Königsrainer, A.; Zieker, D.; Brücher, B.L.D.M.; Rammensee, H.G.; Opelz, G.; Terness, P. IDO1 and IDO2 are expressed in
human tumors: Levobut not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol. Immunother. 2009, 58,
153–157. [CrossRef]

51. Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.;
et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013, 496, 101–105.
[CrossRef]

52. Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [CrossRef]
[PubMed]

53. Tiziani, S.; Lopes, V.; Gunther, U.L. Early stage diagnosis of oral cancer using H-1 NMR-based metabolomics. Neoplasia 2009, 11,
269–276. [CrossRef] [PubMed]

54. Mu, Y.; Zhou, Y.; Wang, Y.; Li, W.; Zhou, L.; Lu, X.; Gao, P.; Gao, M.; Zhao, Y.; Wang, Q.; et al. Serum Metabolomics Study of
Nonsmoking Female Patients with Non-Small Cell Lung Cancer Using Gas Chromatography-Mass Spectrometry. J. Proteome Res.
2019, 18, 2175–2184. [CrossRef] [PubMed]

55. Kim, H.J.; Jang, S.H.; Ryu, J.-S.; Lee, J.E.; Kim, Y.C.; Lee, M.K.; Jang, T.W.; Lee, S.-Y.; Nakamura, H.; Nishikata, N.; et al. The
performance of a novel amino acid multivariate index for detecting lung cancer: A case control study in Korea. Lung Cancer 2015,
90, 522–527. [CrossRef]

56. Callejón-Leblic, B.; García-Barrera, T.; Grávalos-Guzmán, J.; Pereira-Vega, A.; Gómez-Ariza, J.L. Metabolic profiling of potential
lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/gas chromatography mass
spectrometry platform. J. Proteomics 2016, 145, 197–206. [CrossRef]

57. Lee, K.B.; Ang, L.; Yau, W.P.; Seow, W.J. Association between metabolites and the risk of lung cancer: A systematic literature
review and meta-analysis of observational studies. Metabolites 2020, 10, 362. [CrossRef]

58. Bulakbasi, N.; Kocaoglu, M.; Ors, F.; Tayfun, C.; Ucoz, T. Combination of single-voxel proton MR spectroscopy and apparent
diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am. J. Neuroradiol. 2003, 24, 225–233.

https://doi.org/10.1039/C7NR07337B
https://www.ncbi.nlm.nih.gov/pubmed/29199749
https://doi.org/10.1166/jbn.2018.2621
https://www.ncbi.nlm.nih.gov/pubmed/30041723
https://doi.org/10.1016/j.cej.2021.131396
https://doi.org/10.1021/acs.jproteome.1c00310
https://www.ncbi.nlm.nih.gov/pubmed/34342461
https://doi.org/10.1111/1759-7714.14282
https://doi.org/10.1371/journal.pone.0188710
https://www.ncbi.nlm.nih.gov/pubmed/29408884
https://doi.org/10.1002/cam4.5857
https://www.ncbi.nlm.nih.gov/pubmed/37031458
https://doi.org/10.1016/j.talanta.2021.122729
https://doi.org/10.1002/lci2.25
https://doi.org/10.1111/cas.15472
https://www.ncbi.nlm.nih.gov/pubmed/35754317
https://doi.org/10.1158/0008-5472.CAN-08-4806
https://doi.org/10.1371/journal.pone.0024143
https://doi.org/10.1126/science.1218595
https://doi.org/10.1007/s00262-008-0513-6
https://doi.org/10.1038/nature12040
https://doi.org/10.1038/s12276-020-00504-8
https://www.ncbi.nlm.nih.gov/pubmed/32943735
https://doi.org/10.1593/neo.81396
https://www.ncbi.nlm.nih.gov/pubmed/19242608
https://doi.org/10.1021/acs.jproteome.9b00069
https://www.ncbi.nlm.nih.gov/pubmed/30892048
https://doi.org/10.1016/j.lungcan.2015.10.006
https://doi.org/10.1016/j.jprot.2016.05.030
https://doi.org/10.3390/metabo10090362


Metabolites 2023, 13, 950 15 of 15

59. Tanaka, S.; Nakada, M.; Nobusawa, S.; Suzuki, S.O.; Sabit, H.; Miyashita, K.; Hayashi, Y. Epithelioid glioblastoma arising from
pleomorphic xanthoastrocytoma with the BRAF V600E mutation. Brain Tumor Pathol. 2014, 31, 172–176. [CrossRef]

60. Abooshahab, R.; Hooshmand, K.; Razavi, S.A.; Gholami, M.; Sanoie, M.; Hedayati, M. Plasma metabolic profiling of human
thyroid nodules by gas chromatography-mass spectrometry (GC-MS)-Based untargeted metabolomics. Front. Cell Dev. Biol. 2020,
8, 385–398. [CrossRef]

61. Huang, F.Q.; Li, J.; Jiang, L.; Wang, F.X.; Alolga, R.N.; Wang, M.J.; Min, W.J.; Ma, G.; Zhao, Y.J.; Wang, S.L.; et al. Serum-plasma
matched metabolomics for comprehensive characterization of benign thyroid nodule and papillary thyroid carcinoma. Int. J.
Cancer 2019, 144, 868–876. [CrossRef]

62. Gong, Z.-G.; Zhao, W.; Zhang, J.; Wu, X.; Hu, J.; Yin, G.-C.; Xu, Y.J. Metabolomics and eicosanoid analysis identified serum
biomarkers for distinguishing hepatocellular carcinoma from hepatitis B virus related cirrhosis. Oncotarget 2017, 8, 63890–63900.
[CrossRef]

63. Chen, T.; Xie, G.; Wang, X.; Fan, J.; Qiu, Y.; Zheng, X.; Qi, X.; Cao, Y.; Su, M.; Wang, X.; et al. Serum and urine metabolite profiling
reveals potential biomarkers of human hepatocellular carcinoma. Mol. Cell Proteomics. 2011, 10, M110.004945.

64. Gao, H.; Lu, Q.; Liu, X.; Cong, H.; Zhao, L.; Wang, H.; Lin, D. Application of 1H NMR-based metabonomics in the study of
metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Sci. Engl. 2009, 100, 782–785. [CrossRef]

65. Gao, R.; Cheng, J.; Fan, C.; Shi, X.; Cao, Y.; Sun, B.; Ding, H.; Hu, C.; Dong, F.; Yan, X. Serum Metabolomics to Identify the Liver
Disease-Specific Biomarkers for the Progression of Hepatitis to Hepatocellular Carcinoma. Sci. Rep. 2015, 5, 18175. [CrossRef]
[PubMed]

66. Liu, P.; Lu, D.; Al-Ameri, A.; Wei, X.; Ling, S.; Li, J.; Zhu, H.; Xie, H.; Zhu, L.; Zheng, S.; et al. Glutamine synthetase promotes
tumor invasion in hepatocellular carcinoma through mediating epithelial-mesenchymal transition. Hepatol. Res. Off. J. Jpn. Soc.
Hepatol. Neth. 2020, 50, 246–257. [CrossRef] [PubMed]

67. Fang, F.; He, X.; Deng, H.; Chen, Q.; Lu, J.; Spraul, M.; Yu, Y. Discrimination of metabolic profiles of pancreatic cancer from
chronic pancreatitis by highresolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis.
Cancer Sci. 2007, 98, 1678–1682. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10014-014-0192-2
https://doi.org/10.3389/fcell.2020.00385
https://doi.org/10.1002/ijc.31925
https://doi.org/10.18632/oncotarget.19173
https://doi.org/10.1111/j.1349-7006.2009.01086.x
https://doi.org/10.1038/srep18175
https://www.ncbi.nlm.nih.gov/pubmed/26658617
https://doi.org/10.1111/hepr.13433
https://www.ncbi.nlm.nih.gov/pubmed/31652385
https://doi.org/10.1111/j.1349-7006.2007.00589.x

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

