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Abstract: To represent the composition of small molecules circulating in HepG2 cells and the forma-
tion of the “core” of characteristic metabolites that often attract researchers’ attention, we conducted
a meta-analysis of 56 datasets obtained through metabolomic profiling via mass spectrometry and
NMR. We highlighted the 288 most commonly studied compounds of diverse chemical nature and
analyzed metabolic processes involving these small molecules. Building a complete map of the
metabolome of a cell, which encompasses the diversity of possible impacts on it, is a severe challenge
for the scientific community, which is faced not only with natural limitations of experimental tech-
nologies, but also with the absence of transparent and widely accepted standards for processing and
presenting the obtained metabolomic data. Formulating our research design, we aimed to reveal
metabolites crucial to the Hepg2 cell line, regardless of all chemical and/or physical impact factors.
Unfortunately, the existing paradigm of data policy leads to a streetlight effect. When analyzing and
reporting only target metabolites of interest, the community ignores the changes in the metabolomic
landscape that hide many molecular secrets.

Keywords: panoramic metabolomics; LC-MS; GC-MS; NMR; metabolic profile; HepG2; meta-analysis;
data availability; data submission guidelines

1. Introduction

Cancer cells’ metabolism prioritizes growth and biomass production, which can result
in nutrient shortages and metabolic waste buildup occurring due to a lack of resources in
the tissues around the cells. Cancer cells develop an assortment of metabolic adaptations to
support their growth, which is influenced by the mutations possessed and the cell of origin.
Some metabolites regulate gene expression, affect neighboring non-cancerous cells, and
contribute to biomass and energy production [1–3].

HepG2 cells are commonly used as a model for studying liver cancer and drug
metabolism due to their ability to maintain several liver-specific functions [4]. Having a
high rate of proliferation and being easily cultured in vitro, HepG2 culture is a valuable tool
used to study cancer machinery and nutrition patterns, as well as in drug discovery and
toxicological studies. Establishing this core metabolome is crucial to gain insight into the
cell’s vital molecular processes and practical purposes, such as drug discovery, toxicology
research, and disease treatment.

In biofluids and tissues metabolites vary significantly in concentration and chemical
composition based on environmental conditions, exposure to drugs or toxic agents, and
biological factors, making it impossible for a single approach to measure all of them at
once [5–7]. Therefore, scientists use a combination of spectrometric techniques to obtain
broad coverage of the metabolic space [8]. Metabolic profiling is typically performed using
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nuclear magnetic resonance (NMR) or mass spectrometry (MS) in tandem with gas (GC) or
liquid (LC) chromatography.

NMR does not require chemical manipulation of a sample, though it often suffers from
poor sensitivity and difficulties in deconvolution and normalization of complex spectra,
which often limits it to approximately 100 of the most abundant metabolites in a sample (for
example, blood [9,10]). The field of metabolomics has witnessed notable instances of the
utilization of this technique to achieve thorough characterization of the metabolome across
various biological samples. For instance, a study conducted on human urine successfully
identified and quantified a total of 209 metabolites [11]. These exceptional findings imply
that the potential for metabolomic yield in cell culture or cell extract is likely to surpass
that observed in blood or urine.

MS often requires the derivatization of metabolites (especially when coupled with
GC), though it provides the greater sensitivity required to measure a broader array of
low-molecular-weight metabolites [12,13]. It is also be worth mentioning that the typical
chromatographic conditions for LC-MS often favor lipids, whereas NMR is more focused
on hydrophilic metabolites due to the aqueous solvents used in the analysis.

The metabolome constantly changes due to the fact that all chemical reactions oc-
cur in the cell. These changes result from the complex and non-linear interactions with
metabolic, signaling, and regulatory pathways [14]. Each metabolomic experiment provides
a “snapshot” of substances detected in analyzed organs and tissues [15].

Our study aimed to collect all existing snapshots of the molecular passport of the
HepG2 cell line to evaluate the composition of the core metabolome of the cell line, which
plays several essential roles in vital cellular processes. Additionally, we examined the
composition of metabolites resulting from exposure to diverse chemical and physical
agents that activate non-standard metabolic pathways.

We present the core of the HepG2 metabolome as a set of metabolites systematically
detected via MS or NMR across multiple experiments.

2. Materials and Methods
2.1. Source of the Data

To summarize recent research in the field of the HepG2 metabolome, we conducted a
literature search by querying “HepG2 metabolome” in PubMed, which returned 313 articles
(published during the period extending from 2006 to 2023) sorted based on relatedness
to the query. A team of experienced metabolomics researchers followed a series of steps
to retrieve study information from the literature, which involved reading bibliographic
information and, in most cases, the full text of articles.

We reviewed the list of suggested publications and selected a shortlist of the most
suitable papers (published during the period extending from 2010 to 2023). The criteria we
used to select articles were as follows:

1. The panoramic nature of the study (which supposes an intended comprehensive analysis
of all of the detectable analytes in a biological sample, including chemical unknowns);

2. The access to results summarizing metabolomic findings.

In total, we found 56 datasets related to the impact of various factors.

2.2. Processing of the Data

In order to compare metabolite lists from various publications, we created Supple-
mentary Table S1, which summarizes the chemical names of all of the metabolites and the
details of the experiment in which it was identified (in total, 23,086 metabolic entries were
included, which characterized 15,161 unique metabolites). This table also includes informa-
tion on the intervention applied to HepG2 cells (such as drugs, genetic modifications, or
exposure to toxins) and the analytical method used. To maintain accuracy, each metabolite
was automatically assigned an InchiKey code using PubChem API [16]. About 90.1% of
metabolites were converted successfully. In case of ambiguous identification, we used the
oldest identifier or manually browsed metabolites (9.9%) via a direct search in PubChem.
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For taxonomic annotation, we utilized the web service ClassyFire in combination with
ChemOnt (version ClassyFire Batch created by Fiehn Lab [17]), which uses InChiKey ID
to automatically assign chemical compounds to a taxonomy including more than four
thousand different categories [18]. The original ClassyFire resource also has an option for
batch loading. However, it accepts other types of identifiers (such as InChi String) as inputs,
which limits its utility in our research.

By default, the metabolite was assigned a “Subclass” (medium—5th out of
11—represents the depth level of the compound’s classification in the ClassyFire sys-
tem). Assigning a subclass to 2212 compounds was impossible; thus, we moved up a
step in the taxonomic hierarchy and assigned a “Class” or “Superclass”. One hundred
and seventy-five compounds were not assigned, even with higher levels of classification
hierarchy; therefore, these compounds were excluded from further consideration.

Further, we performed Metabolite Set Enrichment Analysis via MetaboAnalyst v.
5.0 [19] to highlight any meaningful patterns that could be discerned in the groups of
metabolites detected in HepG2 cells. Over-representation analysis was implemented using
the hypergeometric test to evaluate whether a particular metabolite set was represented
more than expected by chance within the dataset.

2.3. Limits of Our Approach

Each paper’s lists of identified metabolites were manually extracted from the articles,
supplementary data, and data repositories. The majority of the metabolites were identified
based on their chemical names. These names can be expressed in various ways, including
systematic names (such as “propane-1,3-diol”), semi-systematic names (like “diacetyl-
morphine”), non-systematic—trivial—names (such as “tartaric acid”), abbreviations (like
“UTP”), formulas (such as “C27H46O”), names of fragments (like “steroid derivative”),
families of compounds (such as “fatty acids”), and adjective forms (like “taurocholic”).
Most of the names mentioned above do not provide precise details regarding the structure
of the compound (such as the connections between atoms and bonds), making them un-
suitable for fulfilling the demands of the scientists who retrieve information on structural
characteristics [20].

In order to unify the obtained data, we converted all of the chemical names to Inchi
keys identifiers, which represent hashed information on the structures of the compounds.
Near 1% of chemical names were left unidentified because chemical names provided in
publications were incorrect or misleading in the sense that they contained mistakes that
made it impossible to generate a structure based on the name as it was published by authors
of accumulated articles [20]).

Among the main problems, hindering the flow and reanalysis of metabolomic data,
grammar mistakes (e.g., billirubin instead of bilirubin), misprints (pvruvate instead of pyru-
vate), and syntax (parentheses, apostrophes, missing or extra spaces, e.g., PE(18:2(9Z12Z)20:5
(5Z8Z11Z14Z17Z)) instead of PE(18:2(9Z,12Z)20:5(5Z,8Z,11Z,14Z,17Z))) were most prevalent.

3. Results and Discussion

We investigated the meta-metabolome of HepG2 cells and the general trends in con-
ducting metabolomic studies and presented the results obtained. In our study, we summa-
rized the results of 56 projects performed using LC-MS (33 articles), GC-MS (16 articles),
and NMR (14 articles). We also looked at the results of four research projects performed
using less common technologies, in particular CE-MS [21], IM-MS [22], direct MS-MS [23],
and SPI-TOF-MS [24]. It is noteworthy that our meta-analysis exclusively relied on the
outcomes of metabolomic analysis as reported in chosen publications, without performing
any additional reprocessing.

Immortalized hepatocyte culture is one of the most studied closed biosystems from
a metabolomic point of view: it is located in the top three regarding the number of
metabolomic publications in PubMed, along with HEK293 and MCF-7 cells. Next, we
presented a complete list of small molecules registered in the HepG2 cell line, information
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on the most frequently detected metabolites and their involvement in metabolic pathways,
features of the metabolomic profiles of the object under study, and “travel essays” on data
deposition and re-analysis that we formed during the study.

3.1. Impact on HepG2 Cell Culture: “Control” and “Experimental” Datasets

In Figure 1, we present a diagram of the PubMed search process for collecting and eval-
uating articles to establish a representative pool of studies that investigated the metabolome
of HepG2 cells. The cumulative dataset that we used for the meta-analysis of reported
metabolites in HepG2 cell culture consisted of 56 articles (Supplementary Table S2). These
articles were published in reputable peer-reviewed journals over a period spanning 13 years,
i.e., from 2010 to 2023, as illustrated in Figure 1. The majority of the journals included in
this dataset were categorized within the Q1 and Q2 quartiles, as shown in Supplementary
Figure S1. Such journals are widely acknowledged for their high impact factors, with Q1
representing the top 25% of journals and Q2 encompassing the following 26–50% range.
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Figure 1. Formation of publication trends among articles that present results of HepG2 cell
metabolomic profiling: distribution of thematic publications by year according to the PubMed
database. The corpus of 56 papers that were presented in the study was derived through a review of
the full-text versions of 97 articles. The exclusion of certain articles from consideration was primarily
attributed to the absence of access to either raw or processed metabolomic data, the study’s targeted
nature, or the execution of metabolomic experiments using a biomaterial type other than HepG2.

Despite having similar genetic backgrounds, different examples of HepG2 cells (genet-
ically modified or treated with various drugs and toxic agents) can display vastly different
metabolic phenotypes [25–27]. Utilizing this variability could provide insights into the
abnormal tumor metabolism and machinery of hepatocytes.

Nine datasets described situations in which cells were not subjected to explicit chemical
or physical stimuli [21,22,27–33]. The article by Chun-Yun Zhang et al. [31] is particularly
interesting. It investigated the characteristics of the conversion of 3,3′-dichlorobiphenyl
(PCB11) in HepG2 cells, which were exposed to PCB11 in DMSO for 24 h, and the effect
on cell metabolome was monitored in comparison to the DMSO-control. The metabolome
of the HepG2 culture exposed to the neurotoxin PCB11 was evaluated using non-targeted
high-resolution LC-MS. As is often the case, since the article’s focus was on evaluating the
impact of PCB11, the panoramic metabolome of the control sample was not published, but it
was kindly provided by the author upon request via email and used in this meta-analysis as
one of the “no impact” datasets. Careful annotation of experimental data (which primarily
occurred if some data did not directly support conclusions made in the manuscript) is
undoubtedly burdensome; thus, “redundant” data were not made publicly available [34].

In the vast majority of articles, the motivation of researchers was to assess the per-
turbations of the metabolome of the chosen culture in response to various stimuli. The
investigated impacts naturally had a wide range.

The effect of using drugs of various natures was evaluated in 15 publications, [24,35–48].
Four publications studied the disturbance of the HepG2 metabolome after genetic
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editing [49–52]. Moreover, the impact of a combination of drug use and genetic technolo-
gies was established in two scientific articles [53,54].

The significance of the HepG2 line as a model for toxicological research is difficult to
overestimate—the line is routinely used to determine the toxicological profile of different
substances and predict the toxicity of new compounds in a highly controllable mode. In
our collected data pool, 10 articles described the influence of various toxic agents on the
HepG2 metabolome [25,55–62].

Seven papers of accumulated datasets studied the effects of sugars [63,64], acids [65,66],
and other “neutral” compounds [67–69]. One work was devoted to the impact of gamma-
irradiation [70] on the HepG2 cell line.

The remaining eight articles evaluated the effect of small-sized particles (nanomaterials—six
articles [23,71–75] and technogenic ultrafine particles—two articles [76,77]) on the cell culture.

Out of 56 articles, 4 had a direct link to raw data (from which one valuable dataset
was kindly provided by the authors upon e-mail request [31], and three others deposited
their data in a repository [27,46,68]). Twenty-three articles provided processed data in a
reduced form (i.e., as complete lists of detected metabolites) [21,22,25,28–30,32,33,35,36,
39,43,50,55,57,58,63,64,70,72–74,78]. The remaining 29 articles [23,24,37,38,40–42,44,45,47–
49,51–54,56,59–62,65–67,69,71,75–77] directly demonstrated fragmentary information about
metabolites in the manuscript or Supplementary Materials, such as by providing tables,
heat maps, or schemes that only noted changing metabolites (Supplementary Table S2).

3.2. The Resemblance of an Average Dataset in Accordance with the Number of
Reported Metabolites

On average, one experiment reported about 331 findings (with a maximum of
13,926 unique metabolites, a minimum of seven metabolites, and median of 46 metabolites;
Figure 2). Obviously, the number of findings was not balanced. There was a clear leader,
i.e., [31], which reported a record number of findings, and several unexpectedly small
datasets, i.e., [21,23,71]. Excluding the data derived from [31], the average number of
metabolites provided in the article was 84, with a maximum of 385, a minimum of 7, and a
median of 46.
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The manuscript examining the complex mechanism of toxicity of multi-walled carbon
nanotubes presented 11 different metabolites detected via NMR [71]. The fact that the NMR-
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generated data array is expectedly much narrower than the list of metabolites detected
via chromato-mass spectrometric methods (on average, about 27 metabolites for NMR
versus 665 for LC-MS and 60 for GC-MS) was aggravated by the decision of the authors
to present only variable metabolites. From this perspective, the “metabolome” presented
may seem modest and, perhaps, does not fully demonstrate the full analytical power of
the NMR technology. As such, NMR may be limited in its ability to detect low-abundance
metabolites and may only identify a relatively small number of metabolites in complex
mixtures (ranging from 20 to 200 unique substances, depending on the resolution of NMR)
in comparison to MS (which can potentially identify over 1000 substances). This advantage
makes mass spectrometry a dominant choice for exploring a wide range of metabolites.
However, due to its ease of sample preparation and exceptional reproducibility, NMR has
proven to be a reliable method for metabolomic profiling, but it is possibly not the best
method for identifying unknown compounds from a complex solution.

Against the background of NMR-based articles, the varied natures of MS datasets are
noteworthy, making up 98% of the collected experimental array. However, the popularity
and performance of this platform do not guarantee the completeness of the published
data. Despite the panoramic nature of the works collected via our meta-analysis, in [75],
which investigated the effect of strigol/albumin/chitosan (S/A/CNP) nanoparticles on
the HepG2 cell line, only 18 metabolites were published. This subset is not exhaustive
and likely represents only a fraction of the full complement of metabolites affected by
nanoparticle exposure. Specifically, the 18 metabolites identified in this study exhibited
log2FC values ranging from −3.45 to 2.10, indicating a range of fold changes in abun-
dance. The presented data are much more modest than expected when using advanced
chromato–mass–spectrometric technologies and do not allow their reanalysis to be car-
ried out effectively by other scientists. Regrettably, the lack of open data associated with
this study precludes the possibility of the independent verification or reproducibility of
these findings.

3.3. The Potential of Analytical Methods to Detect Different Chemical Substances

The physicochemical properties of the target metabolites determine the choice of
analytical technology [15]. We analyzed the list of subclasses of chemical compounds
detected via various methods (intersections and unique metabolite subclasses and the
complete list of subclasses are given in Table S3). The result illustrated the well-known
strength of the LC-MS method, which provides the maximum width of the spectrum of
physicochemical properties of the detected compounds. The tandem of LC and MS made it
possible to identify 609 subclasses of metabolites, and most of them (507 subclasses mapped
to 200 classes) could not be detected via GC-MS, NMR, and other MS-based technologies.
Thus, not only exotic compounds (e.g., isocoumarams and cinchona alkaloids), but also
rather basic pyrrolizines, naphthalenes, and pyrans, were included among the “unique”
metabolites determined via LC-MS.

The second place in terms of coverage is occupied by GC-MS, which made it possible
to detect a total of 93 subclasses, and five of them, which were related to homogeneous
non-metal compounds and miscellaneous mixed metal/non-metals, were not available for
other technologies.

The NMR method allowed the detection of 39 subclasses of metabolites, only 1 of
which (homogeneous actinide compound) was exclusively detected using this technology.

The total “core” of subclasses of metabolites was made up of the most studied metabo-
lites, namely glycerophosphocholines (involved in cell membrane synthesis and degra-
dation), purine and pyrimidine ribonucleotides (major energy carriers), glycerophospho-
ethanolamines (involved in the secretion of lipoproteins in the liver), and amino acids and
peptides (building materials for protein synthesis). This pattern is illustrated by the pie
chart (Figure 3), which reflects the proportion of the subclass among all detected metabolites
in the HepG2 line.
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Figure 3. Detectability of metabolites of different chemical natures: pie-charts presenting proportions
of the classes, subclasses, and direct parents among all (15,161) metabolites, which are presented in a
cumulative pool of 56 articles. Subclasses that accounted for less than 2% (or 1% in case of “Classes”
and “Direct parents 1”) of unique metabolites were merged into the “other” categories.

In order to analyze the data from different hierarchical levels, we utilized pie charts
to visually represent “Classes” (a broader classification) and “Direct parents 1” (a more
specific classification based on the compound’s largest structural feature). This approach
allows a comprehensive understanding of the chemical composition of metabolites in the
HepG2 cell line. However, it also highlights the limitations of the automatic grouping
of metabolites using the ClassyFire system, which heavily relies on pre-defined chemical
patterns. The pie chart for the “Subclass” category reveals that amino acids are the most
frequently detected group. Although there are significantly fewer entries for “Carboxylic
acids and derivatives” (the class to which amino acids belong) than lipids (which encompass
glycerophospholipids, phenol lipids, and glycerolipids), amino acids and derivatives still
hold the top position at the “direct parent” level.

3.4. Most Often “Published” Metabolites and their Involvement in Biological Processes

During our meta-analysis, it became apparent that it is not only families of metabolites
(in terms of belonging to chemical subclasses) that are systematically detected, but also
distinct metabolites.

We evaluated the occurrence of metabolites in published studies (Supplementary
Table S4) based on LC-MS, GC-MS, and NMR technologies. We subdivided the entire pool
of unique metabolites into those reported “more often without impact” (if the metabolite
was more often described in articles in which the cell line was untreated), “more often under
the impact” (if the metabolite was more often detected in articles in which HepG2 was
subjected to chemical or physical treatment), and “general” (the most frequently described
metabolites in the literature, regardless of context).

As frequently detected, we selected 288 metabolites reported by the authors of more
than five articles. Consequently, we found that the endo- and exo-metabolites that com-
prised this pool of 288 small molecules significantly overlapped, with only 37 metabolites
exclusively detected in studies focusing on cells (Supplementary Table S5). Analysis of the
sum of these metabolites using the MetaboAnalyst platform showed that such a dataset
was enriched in the participants of several processes typical of a cancer cell line, which is
primarily designed to facilitate the uptake and incorporation of nutrients into the biomass
needed to produce a new cell. Among these typical processes are the Warburg effect,
metabolism of various amino acids, ammonia recycling, gluconeogenesis and glycoly-
sis, urea and citric acids cycles, phospholipid biosynthesis, and purine and pyrimidine
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metabolisms (Supplementary Table S4 and Figure 4). It is worth mentioning that the se-
lection of the top-25 enriched sets for HepG2 metabolites remains largely consistent, even
when excluding [31] from the overall dataset that comprised 56 articles. Among these
pathways, 23 were consistently identified in both scenarios, indicating their robustness.
The two pathways that differed between the two datasets were Galactose metabolism and
starch and sucrose metabolisms, which were characteristic of the “reduced” dataset, while
beta oxidation of very long chain fatty acids and phospholipid biosynthesis were specific
to the complete dataset.
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Frequent and reliable detection of such metabolites gives hope that the participants in
these processes can “mirror” the perturbations of the corresponding processes and become
the basis of biomarker panels.

Given the above facts, comparing the processes to which the metabolites detected
in treated and untreated cells are mapped was fascinating. We expected to see an inter-
section of 15 of the top-25 processes occurring in both cell types (purine and pyrimidine
metabolisms, amino acids metabolism, phosphatidylethanolamine biosynthesis, and biosyn-
thesis of polyamines involved in the regulation of genetic processes from DNA synthesis
to cell migration, proliferation, differentiation, and apoptosis). Among untreated cells,
the specific degradation and shuttle of several amino acids, phenylacetate metabolism,
nicotinate, and nicotinamide metabolism have been noted. In addition to these processes,
while maintaining cellular homeostasis, the synthesis of thyroid hormone is notable, which
regulates downstream the expression of a large panel of genes that support cancer cell
proliferation, antiapoptosis, and cancer-associated angiogenesis [79].

For treated HepG2 cells, a clear pattern is observed—most often, the metabolites
detected are involved in the reorganization of metabolic pathways in cancer (e.g., Warburg
effect, gluconeogenesis, glycolysis, and beta-oxidation of fatty acids). In response to
exposure to various natures, the cancer cell line reacts with the above processes. Such core
“alarm” tumor processes and the metabolites that participate in them should be explored in
more detail as potential targets.

We believe that it is essential to assemble the HepG2 metabolomic core, no matter the
meaning of this concept (which can be a subset of metabolites constantly identified in the
cells due to the limitations of analytical techniques or a pool of small molecules essential
for the basic functioning of a cell). Studying the core metabolome of the cancer cell line can
help to reveal dysregulated metabolic pathways and unravel the underlying mechanisms
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driving tumor growth and survival. Understanding the core metabolome provides insights
into potential therapeutic targets and the analytical capabilities of the applied methods.

3.5. Travel Essays on the Way to the Formation of the Metabolomic Core of the HepG2 Culture

Even though most metabolomics studies are conducted in full-scan mode, and the pre-
experiment sample preparation does not close the window of opportunity for identifying a
wide range of compounds, the manner in which results are presented is such that only a
portion of the findings is demonstrated (only metabolites whose content is significantly
altered under a particular investigated condition or treatment). This situation suggests a
metabolomic “deja vu” effect in which the same metabolites are reported [80], predomi-
nating regardless of the experiment. As in proteomics, data-driven metabolomics faces
the following question—do we permanently observe experimental artifacts or universal
sensors that respond to any disturbance?

In order to answer this question, it is necessary to re-analyze a representative pool
of published data, the protocols for the obtainment of which are transparent during the
metabolomic experiment and further processing. In the general case, this idea is broken
by the natural tendency of researchers to share results rather than data. “Raw” data are
usually not presented, and the result of processing is often shown in fragments [81].

The deposition of initial data in open-access depositories in other omics sciences
has long been a self-evident requirement for the publication of findings; however, in
metabolomics, the rules are much less stringent. Many journals that publish metabolomic
studies either do not have a publication policy regarding the provision of experimental data
at all or do not require but only “encourage” open publication of data [81]; thus, scientists
are expected to spare themselves the burdensome task of annotating and publishing com-
plete experimental data. Even when data were published via thematic repositories, critical
information about the experiment may be lost. For example, it has been observed that
metadata concerning the operation of a mass spectrometer are usually (although not consis-
tently) reported. However, the details of chromatographic separation are often (in 70–80%
of cases) insufficiently described [82]. Accordingly, only circa 20% of the descriptions allow
data to be reused (e.g., to predict the retention times of specific metabolites).

We witness an inconsistency in using recommended reporting standards in many
excellent manuscripts produced at a high scientific level and published in high-ranking
journals [72]. Thus, among the studies that we have summarized, which were published
over the past 13 years in respectable journals, only a few (for example, [33]) fully adhere to
the system recommended by the Metabolomics Society for classifying identifiable metabo-
lites based on levels of confidence [83], ranging from confidently identified to unknown.
The authors of scientific publications are advised to provide transparency regarding the cri-
teria used to ensure the validity of the data analyzed in their studies, as per standardization
guidelines. Researchers are equipped with two options when interpreting a chromatogram.
The first approach involves utilizing pure standards (and/or isotopically labeled standards)
to determine retention times or indexes, followed by obtaining a characteristic mass spec-
trum that can be accurately matched with a library mass spectrum. This method enables
precise interpretation of mass spectrometric data. In contrast, the second (more popular)
option involves utilizing various libraries or databases to search for potential candidates in
an operator-dependent manner, which poses a potential risk of causing inadequate analysis
of the acquired data, as a real spectrum may contain numerous peaks that do not necessarily
correspond to specific metabolites.

Attempts to reanalyze and comprehend already processed data are also hampered by
the unstructured mechanism used to assign names to metabolites. There are many different
formats and styles used to name molecules, including InChIKey, SMILES, PubChem,
ChemSpider, CHEBI, and many others, in addition to traditional names, resulting in the
redundancy of multiple (often conflicting) names of the same molecule.

Despite clear and well-established guidelines, MSI recommendations are followed by
a minority of researchers, and only 7% of publications show identifications of the highest
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level of reliability [84]. Several reasons for this problem exist, including the increasing trend
of research teams outsourcing LC-MS analysis to third-party entities (e.g., core facilities or
private enterprises). These entities provide finalized reports, but they often do not disclose
much information about their proprietary methods or in-house spectral libraries. The raw
data may be kept by a third party and are often not shared with authors or deposited in
metabolomics repositories.

The example of a popular object clearly shows how voluminous, intricate, diverse,
and uncertain data, compounded by inadequate archiving, create enormous challenges for
reporting scientific research that adheres to the principles of FAIR (Findable, Accessible,
Interoperable, and Reusable) science [85].

4. Conclusions

This manuscript describes HepG2 cells’ metabolome and its routinely reported fraction,
as registered through MS techniques and nuclear magnetic resonance analysis. In our study,
we collected information on 15,161 metabolites previously detected in HepG2 cells. Meta-
analysis of published data showed that even in panoramic studies, scientists focus on
specific metabolites, ignoring the rest of the metabolomic profile. Interestingly, these
metabolites are repeated from study to study (in our case, 288 metabolites), which, on one
hand, may indirectly confirm their key role in the metabolism of hepatocytes, and, on the
other hand, indicate significant limitations of technologies that only allow high-reliability
identification for these compounds.

We demonstrated that the comprehensive list of identified metabolites is often not fully
disclosed. In most cases, the focus of researchers primarily concerns specific metabolites of
interest, disregarding other compounds. As a result, third-party researchers have to analyze
only the “published “metabolome, rather than the complete set of detected metabolites.
These “deja vu” metabolites are consistently reported across different studies, which, on
one hand, may indirectly confirm their crucial role in cancer metabolism. On the other
hand, this phenomenon may highlight significant technological limitations if identification
is reliable only for these specific compounds.

In addition to artificially narrowing the width of panoramic data, we encountered the
phenomenon of data closure. Our research sheds light on the current state of metabolomics
data. Despite the publication of MSI guidelines in 2007 [86] and the FAIR Data Principles
in 2016 [87], the landscape of metabolomics data remains quite ambiguous, in contrast to
proteomics [88], where data reanalysis and meta-analysis serve as powerful tools for data
verification and tracking technology and software advancements.

Despite advancements in generating high-resolution spectral profiles, interpretation
of metabolomic data still largely relies on expert intuition and remains a significant chal-
lenge [89–91]. We acknowledge that there is still uncertainty regarding the assessment
of retention indices (as well as quality criteria required for high-resolution MS) in the
published data.

Data closure is accompanied not only by the complexity of the process itself, but
also by the policies of thematic journals, which often do not require authors to place
experimental data in public repositories, making it impossible to verify data and make
meaningful further use of them [81]. Only 5% of studies have made their raw data publicly
available. The same problem applies to metadata, as detailed protocols are only found
in a limited number of studies and are not accessible through public repositories, rather
existing within the texts of articles or their Supplementary Materials. The unavailability of
raw data reduces the opportunity to verify and meaningfully re-use them [92,93].

The limited throughput of classical techniques, the lack of precise presentation rules
available to compare metabolic profiles, and “one-time data” are the main bottlenecks en-
countered on the way to forming the molecular passport of a biological object. However, we
have made efforts to provide a comprehensive analysis by including studies that followed
MSI guidelines and independently evaluating the validity of metabolite identifications
in other articles. Being fully aware of the difficulty and pain involved in the process of
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metabolite identification and further depositing experimental data in open repositories,
we would like to emphasize how important it is for the entire metabolomics community
to extract value and meaning from the time and resources expended when performing
untargeted analyses.

Supplementary Materials: The following supporting information can be downloaded via the below
link: https://www.mdpi.com/article/10.3390/metabo13080908/s1, Figure S1: Information on the
ranking and popularity of scientific journals preferred by authors for publishing metabolomic studies;
Table S1: Cumulative data on metabolites detected in HepG2 cell line; Table S2: Map of various types
of chemical or physical impacts on HepG2 cell line presented in scientific literature; Table S3: Contents
of Venn diagram presenting subclasses of metabolites detected via various analytical technologies;
Table S4: Metabolite frequencies in publications describing various experiments (three analytical
methods and the absence or presence of influence on the HepG2 cell line are taken into account);
Table S5: Distribution of 288 often-published metabolites between endo- and exo-metabolomes.
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