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Abstract: Caloric restriction and aerobic and resistance exercise are safe and effective lifestyle in-
terventions for achieving weight loss in the obese older population (>65 years) and may improve
physical function and quality of life. However, individual responses are heterogeneous. Our goal
was to explore the use of untargeted metabolomics to identify metabolic phenotypes associated with
achieving weight loss after a multi-component weight loss intervention. Forty-two older adults with
obesity (body mass index, BMI, ≥30 kg/m2) participated in a six-month telehealth-based weight loss
intervention. Each received weekly dietitian visits and twice-weekly physical therapist-led group
strength training classes with a prescription for aerobic exercise. We categorized responders’ weight
loss using a 5% loss of initial body weight as a cutoff. Baseline serum samples were analyzed to deter-
mine the variable importance to the projection (VIP) of signals that differentiated the responder status
of metabolic profiles. Pathway enrichment analysis was conducted in Metaboanalyst. Baseline data
did not differ significantly. Weight loss was 7.2 ± 2.5 kg for the 22 responders, and 2.0 ± 2.0 kg for the
20 non-responders. Mummichog pathway enrichment analysis revealed that perturbations were most
significant for caffeine and caffeine-related metabolism (p = 0.00028). Caffeine and related metabolites,
which were all increased in responders, included 1,3,7-trimethylxanthine (VIP = 2.0, p = 0.033, fold
change (FC) = 1.9), theophylline (VIP = 2.0, p = 0.024, FC = 1.8), paraxanthine (VIP = 2.0, p = 0.028,
FC = 1.8), 1-methylxanthine (VIP = 1.9, p = 0.023, FC = 2.2), 5-acetylamino-6-amino-3-methyluracil
(VIP = 2.2, p = 0.025, FC = 2.2), 1,3-dimethyl uric acid (VIP = 2.1, p = 0.023, FC = 2.3), and 1,7-dimethyl
uric acid (VIP = 2.0, p = 0.035, FC = 2.2). Increased levels of phytochemicals and microbiome-related
metabolites were also found in responders compared to non-responders. In this pilot weight loss
intervention, older adults with obesity and evidence of significant enrichment for caffeine metabolism
were more likely to achieve ≥5% weight loss. Further studies are needed to examine these associations
in prospective cohorts and larger randomized trials.

Keywords: older adults; weight loss intervention; biomarkers

1. Introduction

The rise in global obesity, coupled with the rise in the aging population, has resulted
in a larger proportion of older adults with obesity [1]. Specifically, an estimated 35% of
older adults (>65 years) in the U.S. are living with obesity [2]. Furthermore, age-related
body composition changes, and decline in physical activity, lead to a decrease of energy
expenditure, all of which are associated with redistribution of fat mass—particularly in

Metabolites 2023, 13, 853. https://doi.org/10.3390/metabo13070853 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13070853
https://doi.org/10.3390/metabo13070853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-2512-9367
https://orcid.org/0000-0002-8662-3270
https://orcid.org/0000-0002-5199-5744
https://orcid.org/0000-0003-3892-9408
https://orcid.org/0000-0002-0845-4416
https://doi.org/10.3390/metabo13070853
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13070853?type=check_update&version=1


Metabolites 2023, 13, 853 2 of 14

the abdomen—and obesity [1]. Abdominal obesity in older adults is associated with an in-
creased risk of multimorbidity, nursing home placement, disability, and death [2–4]. Older
adults with obesity are at a higher risk of frailty, which can progress to sarcopenic obesity,
which, in turn, increases mortality, exacerbates functional decline, and decreases quality of
life [5]. Dietary and multi-modal exercise interventions are safe and effective in promoting
weight loss and improving physical function in older adults with obesity [2,6]. However,
because of unique physiological, biological, and behavioral traits, there is heterogeneity in
individual responses to various interventions [7,8]. Given the multiple factors associated
with obesity and the variability in responses to interventions, the most effective treatments
for older adults with obesity are those that recognize and adapt to each individual. Specif-
ically, individually crafted programs designed uniquely for each patient seem to be the
most effective for this population [8].

Precision medicine can be effective at identifying and addressing the heterogeneity in
intervention responses among individuals with obesity [9]. It is built upon the principle of
delivering the right treatment to the right person at the right time [10]. Due to the prevalence
of multimorbidity in the elderly population, precision medicine has the potential to be
of great benefit [11]. Furthermore, obesity has a wide range of factors associated with its
onset, such as genetics, lifestyle, and metabolic profile. Thus, utilizing precision medicine’s
“deep phenotyping” approach shows promise in promoting weight loss in older adults
with obesity, as it allows for personalized treatments to one’s specific metabolic makeup
and multimorbidity—as opposed to a one-treatment-fits-all approach [12]. Multi-omics
analyses combine multiple forms of biological data (e.g., metabolomics, proteomics) to
analyze complex biological pathways and, thus, is an essential tool within the field of
precision medicine [13]. Combining the principles of precision medicine with the multi-
omics approach may unveil the subtle phenotypical characteristics responsible for an
individual’s response to an intervention [12,13]. Metabolomics is the emerging field of
precision medicine that involves analyzing an individual’s composition of thousands of
metabolites and relating the data to metabolic and physical changes/responses [14]. For
instance, many researchers use metabolomics to study the metabolic response to exercise in
both the sport and clinical fields [15]. Metabolomics has also played a key role in disease
progression studies. One study incorporated metabol- and lipid-omics in assessing the
interaction between lipids and metabolites in pathogenesis [16].

In the current study, we aimed to use metabolomic strategies and precision medicine
principles to disentangle the heterogeneity in responses to a weight loss intervention in
older adults with obesity. Specifically, we sought to use untargeted metabolomics to identify
metabolic phenotypes that were associated with response to the intervention. We conducted
a non-randomized, single-arm study at a community ageing center on adults ≥ 65 years
or older with a BMI of 30 kg/m2 or higher [17]. Participants were visited weekly by a
dietician and participated in twice-weekly strength/flexibility/balance sessions led by a
physical therapist. An aerobic activity regimen was prescribed to be conducted at home
and monitored using self-report logs. Each participant received a Fitbit Alta HR, which
provided objective step counts. We anticipate that this approach may lay the foundation
for targeted lifestyle interventions for older adults with obesity.

2. Methods
2.1. Study Design

We have previously outlined details on study participants, recruitment, setting, and
design [17]. In brief, this was a pilot, pre/post, 26-week technology-based weight loss
intervention, which included exercise and nutrition components. We recruited 53 older
adults (>65 years) who were community-dwelling at baseline. The intervention consisted
of 25 virtual nutrition sessions with a dietician and fifty exercise sessions led by a physical
therapist. Based on established evidence of impact on long-term clinical outcomes, those
with 5% loss in baseline body weight or more were classified as responders, and those
with <5% were classified as non-responders.
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2.2. Metabolomics Sample Preparation

Serum samples (50 µL) were mixed with 400 µL of 80% methanol (Fisher Scientific,
Waltham, MA, USA), containing 500 ng/mL tryptophan-d5, as an internal standard, and
was vortexed by a multiple-tube vortex mixer for 2 min at 5000 rpm at room temperature.
The same volume (50 µL) of LC-MS grade water was used for blank samples, and the same
volume (50 µL) of National Institute of Standards and Technology (NIST) reference serum
(SRM 909c) was used for external reference materials. Quality control study pool (QCSP)
samples were made by pooling an additional 10 µL of each study sample into a singular
mixture, which was distributed into 50 µL aliquots. Blanks, NIST reference aliquots, and
QCSP aliquots were processed in an identical manner as the study samples. All samples
were centrifuged at 16,000 rcf for 10 min at 4 ◦C. The resulting supernatant (350 µL) was
then dried by a SpeedVac (Labconco, Kansas, MO, USA) overnight. Dried sample extracts
were reconstituted with 100 µL of a water-methanol solution (95:5, v/v), vortexed for 10 min
at 5000 rpm, and then centrifuged at 16,000 rcf for 10 min at 4 ◦C. The supernatant was
transferred to pre-labeled autosampler vials and 5 µL was injected onto the LC-MS column
for untargeted analysis.

2.3. UHPLC-HRMS Data Acquisition

Metabolomics data were acquired on a Vanquish UHPLC system coupled to a Q Exac-
tive™ HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA). Separation of metabolites was carried out using an HSS T3 C18 column
(2.1 × 100 mm, 1.7 µm, Waters Corporation, Milford, MA, USA) at 50 ◦C with a binary
mobile phase of water (A) and methanol (B), each containing 0.1% formic acid (v/v). The
UHPLC linear gradient started at 2% B, and increased to 100% B in 16 min, then held for
4 min, with the flow rate at 400 µL/min. UHPLC-HRMS data was acquired in a mass range
from 70 to 1050 m/z in positive mode, and the MS/MS fragmentation data was acquired
under data-dependent acquisition mode using the 20 most abundant ions per scan. Quality
control materials (QCSPs, NIST reference aliquots, and blanks) were interspersed amongst
the study samples throughout the run sequence.

2.4. Metabolomics Data Preprocessing

The UHPLC-HRMS data was processed by Progenesis QI (version 2.1, Waters Cor-
poration, Milford, MA, USA) for peak picking and alignment. Background signals were
excluded by removing peaks with a higher mean intensity of the blanks, as compared to
the QCSPs based on the unnormalized data. The data was normalized to a reference study
pool sample using the “normalize to all” function in Progenesis, and signals with a relative
standard deviation (RSD) > 50% across study pool replicates were excluded from further
analysis [18].

2.5. Compound Identification and Annotation

Peaks detected by UHPLC-HR-MS were identified or annotated by matching to an
in-house reference standard RT, Mass, and MS/MS library of over 2400 compounds run
on the untargeted platform, or to public databases (NIST, METLIN, HMDB). To report the
evidence basis for each metabolite match, an ontology system is given, based on matches
by accurate mass (MS, <5 ppm), retention time (RT, ±0.5 min), and fragmentation similarity
(MS/MS, >30). OL1 refers to an in-house library match by MS, MS/MS, and RT; OL2a refers
to an in-house library match by MS and RT; OL2b refers to an in-house library match by MS
and MS/MS; PDa refers to a public database match by MS and experimental MS/MS (NIST
or METLIN); PDb refers to a public database match by MS and theoretical MS/MS (HMDB);
PDc refers to a public database match by MS and isotopic similarity; PDd refers to a public
database match by MS only. However, it is important to note that structural isomers with D
and L configurations may not always have separate references on the untargeted platform
used for comparison.
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2.6. Statistical Analysis

Multivariate analyses were conducted using SIMCA® 16 (Sartorius Stedim Data Ana-
lytics AB, Umeå, Sweden). Normalized untargeted LCMS data from the baseline visit were
mean-centered and UV-scaled prior to principal component analysis (PCA) and orthogonal
partial least squares discriminant analysis (OPLS-DA). PCA is an unsupervised analysis
that reduces dimensionality by projecting the data onto a new coordinate system that
allows for visualizing the distribution of the data, including clustering [19]. The PCA scores
plots of the data were inspected to ensure that the quality control study pools created from
the individual study samples clustered near the center of all samples, and that the NIST
reference material clustered, a quality control method that is widely used in metabolomic
studies [20]. OPLS-DA is a supervised analysis for categorical outcomes; it was used to
determine the peaks that were important for differentiating the responders to the interven-
tion (≥5% weight loss) from the non-responders. Loadings plots and variable influence
on projection (VIP) plots were inspected, and peaks that had a VIP ≥ 1.0 with a jack-knife
confidence interval that did not include 0 were determined to be important for differentiat-
ing responders from non-responders. The VIP statistic summarizes the importance of the
peak in differentiating the phenotypic group, with higher values indicating that a peak is
more important in differentiating the phenotype [19]. The OPLS-DA model used a 7-fold
cross-validation to assess the model’s predictive performance (Q2).

Statistical analyses were conducted using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).
Hypothesis tests for continuous variables were conducted using a two-sided t-test with
the Satterthwaite correction for unequal variances. The chi-square test was used to test
for differences in categorical variables, with the Fisher’s Exact test being used when a
categorical variable had small cell counts (current smoker, education, income). In this ex-
ploratory metabolomics study, p-values < 0.05 were considered to be statistically significant
and were not adjusted for multiple testing, since the study was not powered to a specific
hypothesis [21,22].

2.7. Pathway Analysis

Pathway enrichment was conducted using the Mummichog algorithm in the “Func-
tional Analysis” module in Metaboanalyst 5.0 [23,24]. All features (m/z) remaining after
filtering the data were entered together with the mass-to-charge ratio (m/z), retention time,
p-value, and fold change between the comparison of responders and non-responders at
baseline. A p-value cut-off of 0.05 was used for the size of the permutation group that
the algorithm used for selecting significant features for metabolite matching. A 3-ppm
tolerance was used for mass accuracy for annotating peaks to metabolites and identifying
candidate pathways. All possible metabolites that were matched by m/z were searched
in the Homo sapiens (human) [MFN] pathway library. Significance is reported as both
uncorrected (FET) and corrected (Gamma) p-values.

3. Results

After preprocessing, 9647 peaks remained in the untargeted metabolomics dataset.
Supervised OPLS-DA analysis of baseline metabolomics data for responders to weight loss
in the clinical trial versus those who were non-responders showed significant separation
between the two groups with a high goodness-of-fit value for the model (R2Y = 0.905),
although it had a low predictive ability (Q2 = −0.16) (Figure 1), presumably due to the low
sample size. Notably, the unsupervised PCA analysis (Supplementary Figure S1) did not
reveal a good visual separation between responders and non-responders. However, the
supervised analysis was used to determine the signals/metabolites that contribute to the
separation of responders and non-responders in the OPLS-DA model, allowing for observ-
able metabolic differences between the two groups. The variable importance to projection
(VIP) score provides an estimate of the importance of each of the signals/metabolites to the
differentiation of the responders and non-responders in the OPLS-DA model. A VIP ≥ 1
indicates that the signal/metabolite is important to the differentiation of the responders
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and non-responders (Supplementary Table S1). No significant differences were observed
in any clinical baseline characteristics between responders and non-responders (Table 1),
indicating that metabolic differences were attributable to responder status in this analysis.
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Figure 1. Orthogonal partial least squares discriminant analysis on baseline samples.

Table 1. Subject Characteristics.

Subject Characteristic at Baseline Weight Loss Non-Responder
(n = 20) *

Weight Loss Responder
(n = 22) * p-Value **

Weight Change (kg) from Baseline −2.0 (2.0) −7.2 (2.5) 4.2 × 10−9

% Weight Change from Baseline −2.1 (2.2) −7.3 (2.2) 4.1 × 10−9

Baseline Subject Characteristics

Age (years) 73.9 (3.9) 72.5 (3.9) 0.3

Married (Yes) 13 (65.0%) 14 (64.6%) 0.9

Female 16 (80.0%) 14 (63.6%) 0.2

BMI (kg/m2) 36.7 (4.5) 36.3 (6.06) 0.8

Education: High School, No College 4 (20.0%) 3 (13.6%) 0.7

Income Less than $25,000/year 4 (20.0%) 3 (13.6%) 0.7

Waist-Hip Ratio 0.93 (0.1) 0.93 (0.1) 0.9

Gait Speed (s) 1.05 (0.2) 1.06 (0.2) 0.8

Grip Strength (kg) 24.3 (7.62) 25.7 (11.9) 0.6

30-Second Sit-to-Stand (repetitions) 12.7 (3.63) 14.5 (7.19) 0.3

Six-Minute Walk (m) 372.0 (81.3) 403.6 (108.9) 0.3

Depression (Yes) 6 (30.0%) 6 (27.3%) 0.8

Diabetes (Yes) 6 (30.0%) 6 (27.3%) 0.8

Fibromyalgia (Yes) 6 (30.0%) 7 (31.8%) 0.9

Hypertension (Yes) 5 (25.0%) 12 (54.6%) 0.05
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Table 1. Cont.

Subject Characteristic at Baseline Weight Loss Non-Responder
(n = 20) *

Weight Loss Responder
(n = 22) * p-Value **

Non-Skin Cancer (Yes) 15 (75.0%) 15 (68.2%) 0.6

Rheumatologic (Yes) 7 (35.0%) 11 (50.0%) 0.3

Stroke (Yes) 9 (45.0%) 8 (36.4%) 0.5

* Mean (Standard Deviation) or Counts (Percent). ** t-test with Satterthwaite correction for unequal variances for
continuous variables, chi-square for categorical variables, and Fisher’s Exact Test for categorical variables with
small sample sizes (current smoker, education, income).

Statistical analysis of the preprocessed data set revealed 697 peaks with p < 0.1 be-
tween responders and non-responders (Supplementary Table S1). To determine metabolic
pathways differentiating the two groups (responder versus non-responder), pathway en-
richment analysis using the Mummichog algorithm was performed using all 9647 peaks in
the untargeted dataset (Figure 2, Table 2). Seven metabolic pathways were significantly
different between the two groups (p < 0.05). Significant metabolic pathways included (1) caf-
feine metabolism; (2) valine, leucine, and isoleucine degradation; (3) lysine metabolism;
(4) galactose metabolism; (5) starch and sucrose metabolism; (6) hexose phosphorylation;
and (7) pentose phosphate pathway. Caffeine metabolism was notably the most signifi-
cantly perturbed pathway (p = 0.00049, Table 2). The full list of pathway analysis results is
presented in Supplementary Table S2.
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Table 2. Mummichog pathway enrichment of responders vs. non-responders.

Pathway Number Pathway Name p-Value

1 Caffeine metabolism 0.000284

2 Valine, leucine, and isoleucine degradation 0.010064

3 Lysine metabolism 0.013518

4 Galactose metabolism 0.018886

5 Starch and Sucrose Metabolism 0.022688

6 Hexose phosphorylation 0.028288

7 Pentose phosphate pathway 0.039733

8 Arginine and Proline Metabolism 0.056501

9 TCA cycle 0.067128

10 Phytanic acid peroxisomal oxidation 0.067128

11 Beta-Alanine metabolism 0.085587

12 Fructose and mannose metabolism 0.094926

13 Glycosphingolipid metabolism 0.1043

14 Leukotriene metabolism 0.12449

15 Keratan sulfate degradation 0.12534
Full pathway enrichment is present in Supplementary Table S1.

To gain a better understanding of metabolic differences between responders and non-
responders, untargeted metabolomics peaks were matched to an in-house library of stan-
dards and public databases. A number of 645 and 4748 peaks were matched to the in-house
library and to public databases, respectively. Of the in-house matches, 57 serum metabolites
had a p < 0.1 between responders and non-responders (Supplementary Table S1). Included
in these were caffeine (1,3,7-trimethylxanthine (VIP = 2.0, p = 0.033, FC = 1.9) and its
metabolites, theophylline (VIP = 2.0, p = 0.024, FC = 1.8), paraxanthine (VIP = 2.0, p = 0.028,
FC = 1.8), 1-methylxanthine (VIP = 1.9, p = 0.023, FC = 2.2), 5-acetylamino-6-amino-3-
methyluracil (VIP = 2.2, p = 0.025, FC = 2.2), 1,3-dimethyl uric acid (VIP = 2.1, p = 0.023,
FC = 2.3), and 1,7-dimethyl uric acid (VIP = 2.0, p = 0.035, FC = 2.2). All caffeine metabolites
were matched at a level of OL1 (RT, MS, and MS/MS match), and were all increased in
responders (Table 3). The distribution of caffeine metabolites showed that differences
between responders and non-responders was not due to a small number of outlier measure-
ments (Figure 3). The variation in the level of caffeine metabolites across individuals within
a group may be related to inter-individual differences in the genetics of caffeine metabolism,
the rate of caffeine metabolism, and/or the time since last caffeine consumption.

Analysis of additional metabolites, matched to the in-house library at a level of OL1
or OL2a, showed differences in endogenous metabolic pathways (Table 4). Responders
versus non-responders had perturbations in amino acid/peptides, lipid/fatty acids, carbo-
hydrates, nucleic acids, and a form of vitamin D. Additionally, differences were found in
phytochemical and microbiome-related metabolites, the majority of which were increased
in the baseline serum of individuals who has a significant weight loss. Acetaminophen
was significantly reduced in responders, indicating a lesser need for pain management.
Monoethyl phthalate was increased in responders, potentially derived from consuming
coffee [25].
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Table 3. Caffeine and caffeine-related metabolites between responders and non-responders (all
metabolites matched by RT, exact mass, and MS/MS).

Caffeine and Its
Metabolites Responder (Mean) Non-Responder (Mean) VIP * p-Value ** Fold Change ***

1,3,7-trimethylxanthine 336,175.61 175,286.29 2.0 0.033 1.9

Theophylline 16,459.94 9,402.76 2.0 0.024 1.8

Paraxanthine 484,599.90 265,153.95 2.0 0.028 1.8

1-Methylxanthine 16,403.31 7,439.80 1.9 0.023 2.2

5-Acetylamino-6-amino-3-
methyluracil 29,851.36 13,325.84 2.2 0.025 2.2

1,3-dimethyl uric acid 1,749.40 7,75.29 2.1 0.023 2.3

1,7-dimethyl uric acid 9,306.68 4,184.77 2.0 0.035 2.2

* VIP values were calculated by the OPLS-DA model in Figure 1. ** p-values were calculated using a two-sided
t-test with the Satterthwaite correction for unequal variances. *** Positive fold changes denote compounds higher
in responders, as compared to non-responders.
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each box, and the median is represented by a horizontal line within each box. The bottom of the box
represents the 25th percentile and the top of the box represents the 75th percentile.
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Table 4. Additional metabolites differentiating responders and non-responders (p < 0.1) matched to in-house library of standards.

Compound Ontology Level Responder (Mean) Non-Responder (Mean) VIP p-Value Fold Change Classification

N-Acetyl-Beta-Alanine OL1 30,096 22,968 1.5 0.0448 1.3 Amino acids/peptides

L-Ornithine OL1 51,267 44,420 1.6 0.0525 1.2 Amino acids/peptides

Dimethylglycine OL1 93,750 69,088 2.4 0.0073 1.4 Amino acids/peptides

N6-Acetyl-L-Lysine OL1 20,220 22,871 1.1 0.0873 −1.1 Amino acids/peptides

Methylcysteine OL2a 130 184 1.4 0.0890 −1.4 Amino acids/peptides

N-Methyl-a-Aminoisobutyric Acid OL2a 1,324,135 1,191,910 1.8 0.0640 1.1 Amino acids/peptides

Glycyl-Glutamate OL1 49,370 36,909 1.3 0.0868 1.3 Amino acids/peptides

Glycyl-Serine OL2a 170 296 1.5 0.0587 −1.7 Amino acids/peptides

Mevalolactone OL2a 3,843 3,407 1.7 0.0788 1.1 Carbohydrate

Fucose OL2a 3,118 2,623 2.0 0.0483 1.2 Carbohydrate

Xylose OL2a 2,633 3,436 1.2 0.0718 −1.3 Carbohydrate

Galactitol OL1 745 6,671 1.2 0.0531 −9.0 Carbohydrate

DL-Glyceraldehyde OL1 428,309 516,829 1.7 0.0448 −1.2 Carbohydrate

Acetaminophen OL1 311 766 1.5 0.0903 −2.5 Drug

Monoethyl Phthalate OL2a 1,592 678 1.7 0.0273 2.3 Environmentally relevant
compound

8-Hydroxyoctanoate OL2a 77,724 68,981 1.8 0.0584 1.1 Lipids/Fatty acids

Glycerol OL2a 79,047 68,602 1.8 0.0677 1.2 Lipids/Fatty acids

Octadecanoylcarnitine OL1 19,143 23,878 1.7 0.0263 −1.2 Lipids/Fatty acids

Glycoursodeoxycholic Acid OL1 63,971 25,373 1.5 0.0448 2.5 Lipids/Fatty acids

Dodec-2-Enedioic Acid OL2a 7,871 6,438 1.6 0.0703 1.2 Lipids/Fatty acids

Palmitoylethanolamide OL1 11,015 8,359 1.9 0.0164 1.3 Lipids/Fatty acids

Docosahexaenoate OL1 19,544 14,054 1.7 0.0617 1.4 Lipids/Fatty acids

Adenosine OL1 323 437 1.4 0.0235 −1.4 Nucleic acids

Cytosine OL1 1,123 1,542 1.0 0.0967 −1.4 Nucleic acids
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Table 4. Cont.

Compound Ontology Level Responder (Mean) Non-Responder (Mean) VIP p-Value Fold Change Classification

Pipecolate OL1 126,578 42,799 1.6 0.0246 3.0 Phytochemical/microbiome-
related

Pipecolinic Acid OL1 717,629 582,803 2.0 0.0451 1.2 Phytochemical/microbiome-
related

Dihydroferulic Acid OL1 1,206 182 1.5 0.0671 6.6 Phytochemical/microbiome-
related

3-(3-Hydroxyphenyl)-3-
Hydroxypropanoic
Acid

OL1 3,256 1,675 2.0 0.0253 1.9 Phytochemical/microbiome-
related

3,4-Dimethoxyphenylpropanoic
Acid OL1 5,496 1,421 2.4 0.0031 3.9 Phytochemical/microbiome-

related

3,5-Dihydroxybenzaldehyde OL2a 1,697 812 1.8 0.0588 2.1 Phytochemical/microbiome-
related

5-Hydroxypipecolic Acid OL2a 664 956 1.6 0.0711 −1.4 Phytochemical/microbiome-
related

3-Hydroxyhippuric Acid OL1 8,526 3,771 1.8 0.0745 2.3 Phytochemical/microbiome-
related

24,25-Dihydroxyvitamin D OL2a 1,491 1,970 1.3 0.0833 −1.3 Vitamin

Ontology level (OL1) described in methods section. VIP values were calculated by the OPLS-DA model in Figure 1. p-values were calculated using a two-sided t-test with the
Satterthwaite correction for unequal variances. Positive fold changes denote compounds higher in responders as compared to non-responders.
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4. Discussion

In this pilot study of a weight loss intervention in older adults with obesity, we found
that responders in the weight loss clinical trial had differences in baseline metabolomic
profiles compared to non-responders. Specifically, caffeine (1,3,7-trimethylxanthine) and
caffeine-related metabolites (paraxanthine, theobromine, 1-methylxanthine,1,3-dimethyl
uric acid, and 1,7-dimethyl uric acid) were all increased in the baseline samples of respon-
ders compared with non-responders (Figure 4). This data elucidates a correlation between
older adults with obesity losing ≥5% of their body weight and increased caffeine intake or
altered metabolism.
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Our findings, with respect to caffeine metabolism and weight loss, are consistent with
existing literature. A systematic review of the effects of caffeine intake on weight loss
showed a correlation between caffeine intake and BMI/fat mass reduction [26]. A random-
ized control trial in younger men showed caffeine ingestion to be associated with increased
energy expenditure and increased lipid turnover [27]. Furthermore, in a randomized
control trial of a diet and exercise intervention conducted in competitive cyclists, caffeine
intake was associated with increased lipid metabolism and a decrease in perceived exertion,
enabling more exercise to be performed [28]. This is consistent with an increase in lipids
and fatty acids in responders (compared with non-responders) in our study. Therefore,
in our study, it is possible that caffeine metabolism could have altered the effectiveness
of exercise in responders, thus enabling them to lose more weight, while also enhancing
biological pathways that further promoted weight loss [27–29].

While our findings in this small pilot study suggest a potential relationship between
caffeine metabolism and weight loss in obese older adults, future studies are needed to
further disentangle the relationship between caffeine consumption, caffeine metabolism,
exercise capacity, and weight loss. Such studies could provide information as to whether
caffeine itself, or genetic factors related to the rate of caffeine metabolism, are associated
with weight loss in this population [30,31]. Future studies can use these results to inform
targeted genetic and caffeine metabolism analyses to support our findings. This will
allow for further characterization of metabolites that are associated with both ingestion
and exercise response. This study has the potential to inform precision medicine-based
weight loss interventions. However, more information is needed to determine whether
caffeine may be beneficial in all individuals, or only those with specific polymorphism in
caffeine metabolism. Understanding the effects of caffeine and its relationship with caffeine
metabolism can help physicians make decisions about whether to prescribe caffeine as a
weight loss treatment. Furthermore, based on one’s genetic polymorphisms and caffeine
metabolism, physicians can perhaps make better decisions regarding the intensity of the
exercise prescribed.
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Additional differences were found in energy-producing metabolic pathways between
responders and non-responders. This indicates that macronutrient metabolism may differ
between responders and non-responders, and that basal protein, lipid, and/or carbohydrate
metabolism may predispose an individual to be more responsive to weight loss interven-
tions. Additionally, caffeine has previously been reported to alter substrate utilization
for energy production, giving rise to the possibility that these differences may be a direct
consequence of the differences in caffeine metabolism seen in responders [32]. Furthermore,
our finding that increased phytochemical and microbiome-related metabolites were mostly
increased in responders suggests that a phytochemical-rich diet and microbiome status
may play a role in determining responder status. Several of these metabolites belong
to the metabolism of pipecolic acid, which is metabolically produced by the intestinal
microbiota from lysine [33]. Further, 3-hydroxyhippuric acid and dihydroferulic acid are
indicators of metabolism of phenolic compounds and have been shown to arise following
coffee consumption; both increased in responders. N-acetyl-beta-alanine, an amino acid
derivative, has also been found in coffee sources and was also increased in responders in
the current study [34,35]. In addition, dimethylglycine (a metabolite of the vitamin-like
compound choline) was significantly increased in responders. More research is needed
to determine if elevated levels of these compounds play a functional role in modulating
response to weight loss interventions.

Strengths of this study include its use of novel omics and precision medicine ap-
proaches that have, thus far, been underutilized in older adults with obesity. These ap-
proaches may be particularly useful in this population, given the heterogeneity present
in phenotypes and response to interventions [7,9]. Identifying how a single population
differs on the premises of biological markers can be used in precision medicine to provide
specific treatment that may benefit a certain group at an enhanced level compared to
others; altogether, this could help make weight loss interventions for older adults more
individualized [9]. There are several significant limitations of this study. Most notably,
our small sample size in this pilot study greatly limits the generalizability and conclusions
that can be drawn from these results. Additionally, the untargeted methods used in this
study were exploratory in nature and further validation with targeted methods should be
performed to better understand the role of these metabolites in weight loss interventions.
Additionally, caffeine and dietary intake of the participants were unknown during the
time of intervention. Therefore, it is hard to draw conclusions about the effects of caffeine
versus caffeine metabolism on weight loss in older adults with obesity. Lastly, specific
information about capacity of participants for physical activity is unknown, limiting our
ability to understand if weight loss in responders was related to their capacity to be able to
exercise more than non-responders.

In conclusion, our data suggests that older adults with obesity losing ≥5% of their
body weight in response to a lifestyle intervention may have distinct metabolic phenotypes
at baseline and may have a different caffeine metabolism than those who fail to respond.
However, more studies need to be conducted in larger prospective cohorts. Additionally,
future studies on the feasibility of metabolomic analysis to predict exercise response are
also needed to identify common trends among multiple studies, enabling better conclusions
to be drawn.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13070853/s1. Figure S1. Scores plot of PCA of UPLC-MS
metabolomics data. Table S1. UPLC-MS Signals that differentiated responders from non-responders,
identified or annotated using the in-house physical standards library or annotated using public
databases. Table S2. Candidate pathways, enriched in the functional analysis module in Metaboana-
lyst 5.0 using the Mummichog algorithm, differentiating responders from non-responders.
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