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Abstract: Taurine, the end product in the sulfur-containing amino acid pathway, is conjugated with
bile acids (BAs) in the liver. The rate-limiting enzymes in both taurine synthesis and BA conjugation
may be regulated by a nucleus receptor, FXR, that promotes BA homeostasis. However, it is contro-
versial because BAs act as natural FXR agonists or antagonists in humans and mice, respectively, due
to the species differences in BA synthesis. The present study evaluated the influences of different
BA compositions on both pathways in the liver by comparing Cyp2a12−/−/Cyp2c70−/− mice with
a human-like BA composition (DKO) and wild-type (WT) mice. The DKO liver contains abundant
natural FXR agonistic BAs, and the taurine-conjugated BA proportion and the taurine concentration
were significantly increased, while the total BA concentration was significantly decreased compared
to those in the WT liver with natural FXR antagonistic BAs. The mRNA expression levels of the
enzymes Bacs and Baat in BA aminations and Cdo and Fmo1 in the taurine synthesis, as well as Fxr
and its target gene, Shp, were significantly higher in the DKO liver than in the WT liver. The present
study, using a model with a human-like BA composition in the liver, confirmed, for the first time in
mice, that both the taurine synthesis and BA amidation pathways are upregulated by FXR activation.

Keywords: taurine synthesis; bile acid conjugation; FXR; Bacs; Baat; Cdo; Fmo1; mouse model with
human-like BA composition; Cyp2a12−/−/Cyp2c70−/−

1. Introduction

Taurine (2-aminoethanesulfonic acid) is abundant in various cells and tissues in mam-
mals. This is due to dietary intake and its biosynthesis from sulfur-containing amino acids,
methionine and cysteine, which involves the rate-limiting enzymes, cysteine dioxygenase
(CDO) [1] and cysteine sulfinate decarboxylase (CSD) (Figure 1C) [2–5]. Taurine has been
reported to have many physiological and pharmacological roles with regard to maintaining
various biological forms of homeostasis [6–11]. Among them, the most established and
well-known role is the conjugation with bile acids (BAs) [12,13]. Bile acids are metabolized
from cholesterol in the liver. Newly synthesized cholic acid (CA) and chenodeoxycholic
acid (CDCA), the primary BAs in humans, are then conjugated at the C24 carboxyl group
with taurine or glycine (Figure 1B) [14]. Through the conjugation with amino acids (ami-
dation), the polarity of BAs is increased, and, consequently, the excretion into the bile, the
formation of bile micelle, and the intestinal absorption of lipids and lipid-solved vitamins
are promoted. In addition, the cytotoxicity of hydrophobic BAs is reduced [13,15]. The
excreted primary BAs conjugated with taurine or glycine in the intestine are deconjugated
by intestinal bacteria, and then converted to the secondary BAs, deoxycholic acid (DCA)
and lithocholic acid (LCA) (from CA and CDCA, respectively), following dehydroxylation
at the 7α-hydroxy group by intestinal bacteria (Figure 1A) [16]. The deconjugated BAs are
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conjugated again with the amino acids in the liver following intestinal absorption in the
enterohepatic circulation. The BA amidation is carried out in the peroxisome and endo-
plasmic reticulum through sequential enzyme reactions involving two limiting enzymes:
ATP-dependent microsomal BA coenzyme A (CoA) synthetase (BACS), which converts a
BA to an acyl-CoA thioester; and BA-CoA:amino acid N-acetyltransferase (BAAT), which
transfers the acyl-CoA thioester to taurine or glycine (Figure 1B) [17,18]. Almost all BAs are
conjugated with taurine in rodents [19], while the ratio of taurine- and glycine-conjugation
is 1:3~3.5 in humans [20,21].

Bile acids play the role of the endogenous agonist of a nuclear receptor, farnesoid
X receptor (FXR; NR1H4), to regulate the transcription of associated genes in the hep-
atic synthesis and enterohepatic circulation of BAs to avoid BA accumulation in the
liver [22,23]. It is also involved in the downregulation of microsomal cholesterol 7α-
hydroxylase (CYP7A1), the rate-limiting enzyme in the BA synthetic pathway (Figure 1B),
through the upregulation of the atypical nuclear receptor, small heterodimer partner (SHP;
NR0B2) [24], the upregulation of ABC transporter family including the bile salt export
pump (BSEP; ABCB11), which actively excretes BAs into the bile canaliculi [24], and the
downregulation of the basolateral sodium/taurocholate co-transporter peptide (NTCP;
SLC10A1), which transports BAs into the liver from the portal vain [24].

In addition, the rate-limiting enzyme genes in BA amidation, BACS and BAAT, have
been shown to be the direct target of FXR (Figure 1B) [25,26]. Pircher et al. showed that both
BACS and BAAT genes are positively regulated via inverted repeat-1 elements cognate to the
FXR in human and rat hepatocytes [26]. The increased transcriptional levels of both genes
were also confirmed in the liver of rats treated with the synthetic FXR agonist GW4064 (3-[2-
[2-chloro4-[[3-3(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethen
yl]benzoic acid) [26]. Therefore, it makes sense that both the rate-limiting enzymes in BA
amidation and taurine synthesis are positively regulated by FXR activation, based on the
role of FXR in accelerating BA excretion from the liver tissue.

On the other hand, in vivo studies using mice showed that the Baat and Csd gene
expression levels were significantly reduced by GW4064 treatment, suggesting that the
taurine synthetic enzymes are negatively regulated by the FXR–SHP axis [27]. Thus, there
is a discrepancy in mice with regard to the responses of BA amidation and taurine synthesis
to the role of FXR on BA homeostasis. A possible reason for this is the species difference,
particularly between humans and mice, in BA metabolism [28]. In the liver, CA and CDCA
are the end-product, as the primary BAs in humans, while CDCA is further metabolized to
muricholic acids (MCAs) by Cyp2c70 in mice (Figure 1A) [28]. Moreover, the secondary
BAs are converted by Cyp2a12 back to their respective primary BAs in the mouse, but not
the human, liver (Figure 1A) [28]. The potency order of the FXR agonist activity among the
natural BAs is CDCA > DCA > LCA > CA [29,30], but MCAs act as FXR antagonists [31].
Thus, the hepatobiliary concentrations of BAs with more potent FXR agonists are almost
deficient, whereas the concentrations of natural FXR antagonistic MCAs are abundant
in mice.

In order to eliminate the species difference in the BA metabolism with regard to
humans, we created a mouse model with human-like BA composition by double knockouts
of Cyp2a12 and Cyp2c70 (DKO) [28,32–35]. The purpose of this study is to evaluate the
influences of alteration in the composition of human-type BAs with higher FXR agonist
activity on BA amidation and taurine biosynthesis by comparing the DKO mouse to the
wild-type (WT) mouse, which has endogenous FXR antagonistic MCAs.
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Figure 1. The species differences in BA synthesis in the liver between humans and mice (A), and
the FXR regulation of the BA synthesis, BA amidation, and taurine synthesis pathways (B,C). The
primary BAs, CA and CDCA, are metabolized from cholesterol and then further converted to the
secondary BAs, DCA and LCA, respectively, by the intestinal bacteria in humans. In the mouse liver,
CDCA is further metabolized to MCAs by Cyp2c70, and the secondary BAs are converted back to
the respective primary BA by Cyp2a12. Consequently, CA and MCAs are the main BAs in mice.
The mouse-specific reactions are shown in orange. The human-type BAs act as endogenous FXR
agonists, and the order of ligand activity is CDCA > DCA > LCA > CA. On the other hand, MCAs
behave as endogenous FXR antagonists. The gene expression of the rate-limiting enzymes in BA
synthesis, BA amidation, and taurine synthesis might be regulated by FXR. Blue arrow and red line
with head show the acceleration and inhibition, respectively. The orange line and the arrow show
the BAs in the mouse liver and the mouse-specific metabolic pathway. Abbreviations: BA, bile acid;
BAAT, bile acid-coenzyme A:amino acid N-acetyltransferase; BACS, ATP-dependent microsomal
bile acid coenzyme A synthetase; CA, cholic acid; CDCA, chenodeoxycholic acid; CDO, cysteine
dioxygenase; CSD, cysteine sulfinate decarboxylase; CYP7, CYP, cytochrome P450; DCA, deoxycholic
acid; FMO1, flavin containing monooxygenase 1; FXR, farnesoid X receptor; LCA, lithocholic acid;
MCA, muricholic acid.
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2. Materials and Methods
2.1. Materials

Cholic acid, glycocholic acid (GCA), taurocholic acid (TCA), CDCA, glycochenodeoxy-
cholic acid (GCDCA), taurochenodeoxycholic acid (TCDCA), DCA, glycodeoxycholic acid
(GDCA), taurodeoxycholic acid (TDCA), LCA, glycolithocholic acid (GLCA), taurolitho-
cholic acid (TLCA), ursodeoxycholic acid (UDCA), glycoursodeoxycholic acid (GUDCA),
αMCA,βMCA,ωMCA, tauro-αMCA (TαMCA), tauro-βMCA (TβMCA), and tauro-ωMCA
(TωMCA) were obtained from Steraloids, Inc. (Newport, RI, USA). [2H4]cholic acid,
[2H4]DCA, and [2H4]LCA were purchased from C/D/N Isotopes, Inc. (Pointe-Claire, QC,
Canada). [2H4]taurocholic acid was obtained from Merck, KGaA (Darmstadt, Germany).
[2H4]chenodeoxycholic acid was supplied from the Research Laboratory of Nippon Kayaku
Co. (Toyo, Japan). Tauroursodeoxycholic acid (TUDCA), [2H4]UDCA, and [2H4]TUDCA
were supplied by Tokyo Tanabe Company (Tokyo, Japan).

3-Aminopyridyl-N-hydroxysuccinimidyl carbamate (APDS), acetonitrile, amino acids
mixture standard solutions (Type B, AN-2), ammonium acetate, APDSTAG Wako Amino
Acids Internal Standard (IS) mixture solution, APDSTAG Wako Eluent, dicalcium phos-
phate, ethanol, formic acid, methanol, potassium phosphate, sodium borate buffer, su-
crose, and taurine were purchased from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan).

The RNeasy Plus Mini Kit was purchased from Qiagen K.K. (Tokyo, Japan). The
reverse transcription using the PrimeScript RT reagent kit and the mouse housekeeping
gene primer set were purchased from Takara Bio, Inc. (Shiga, Japan). The FastStart DNA
Master SYBR Green I and the LightCycler system were obtained from Roche Diagnostics
(Mannheim, Germany).

2.2. Animals

Wild-type C57BL/6J mice (male, body weight 26.9± 0.6 g, n = 8) and DKO (Cyp2a12−/−

and Cyp2c70−/−; male, 28.3 ± 0.5 g, n = 8) mice were used according to our previous stud-
ies [28,32,33]. The mice were bred and kept until 20 weeks of age at the Jackson Laboratory
Japan, Inc. (Ishioka, Japan) under a regular 12 h light–dark cycle (6:00–18:00) with regular
food (CRF-1, Oriental Yeast Co., Ltd., Tokyo, Japan) and water ad libitum in pathogen-
free conditions. After fasting overnight with free access to water, mice were euthanized
by exsanguination under combination anesthesia with medetomidine, midazolam, and
butorphanol. Liver tissue was collected and frozen at –80 ◦C until analysis.

2.3. BA Analysis

Liver tissue was homogenized with ice-cold ten-times volume of phosphate-buffered
saline (PBS), and the supernatant was collected after centrifugation at 3500× g for 10 min at
4 ◦C. In the supernatant, BAs were measured using a high-performance liquid
chromatography–electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS)
system according to the previous reports [28,36]. In brief, 200 µL of the supernatant was
mixed with 20 µL of IS mixture (41.6 ng of [2H4]CA, 57.5 ng of [2H4]CDCA, 32.8 ng of
[2H4]DCA, 22.4 ng of [2H4]LCA, 34.4 ng of [2H4]UDCA, 34.4 ng of [2H4]TUDCA, 100 ng
of [2H3]TCA in acetonitrile), and 2 mL of 0.5 M potassium phosphate buffer (pH 7.4).
The sample was eluted using Bond Elut C18 cartridges (200 mg; Agilent Technologies,
Santa Clara, CA, USA) and was evaporated at 100 ◦C under a nitrogen stream. Then, the
dried residue was redissolved in 20 mM ammonium acetate–methanol buffer (pH 7.5) and
centrifugated at 12,000× g for 1 min. An aliquot of the supernatant was injected into the
HPLC-ESI-MS/MS system for analysis. For further information on the extraction of BAs,
see the previous study [37].

2.4. Amino Acid Analysis

Amino acids in the liver, including taurine, methionine, and cysteine, were measured
by a derivatization method with APDS using the HPLC-ESI-MS/MS system according to
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the previously reported method [38,39]. In brief, 50 µL of the supernatant of liver tissue
homogenized with PBS was mixed with an equal volume of APDSTAG IS solution and
two-times volume of acetonitrile. After centrifugation at 20,000× g for 10 min, 20 µL of the
supernatant was mixed with an equal volume of APDS-acetonitrile solution (20 mg/mL)
and three-times volume of 0.2 M sodium borate buffer (pH 8.8), and then incubated at 55 ◦C
for 10 min. Next, the reaction mixture was added to 100 µL of formic acid solution (0.1%
in water), and 5 µL was used for injection into the HPLC-ESI-MS/MS system. For further
information on the general HPLC and MS/MS conditions, see the previous studies [38,40].

2.5. Total RNA Extraction and RT-PCR Analysis

Fifty mg of the liver tissue was homogenized with a 10-times volume of lysis buffer,
and then total RNA was extracted using the RNeasy Plus Mini Kit. Five-handled ng of total
RNA was reverse-transcribed to cDNA using the PrimeScript RT reagent kit. The mRNA
expressions of Fxr, Shp, Cyp7a1, Cdo, Csd, Bacs, Baat, favin containing monooxygenase (Fmo)
1, Fmo3, Bsep, Ntcp, and hepatocyte nucleus factor 4α (Hnf4α) were quantified with real-time
quantitative PCR using gene-specific primers (Table 1) in the FastStart DNA Master SYBR
Green I and the LightCycler system (Roche Diagnostics). PCR amplification began with
a 10 min preincubation step at 95 ◦C, followed by 40 cycles of denaturation at 95 ◦C for
10 s, annealing at 62 ◦C for 10 s, and elongation at 72 ◦C. The relative concentration of the
PCR products derived from the target gene was calculated using the LightCycler System
software. A standard curve for each run was constructed by plotting the crossover point
against the log concentration. The concentration of target molecules in each sample was
then calculated automatically with reference to this curve (r = −1.00), and the specificity of
each PCR product was assessed by melting curve analysis. The mRNA expression of each
gene was standardized to the expression of Ywhaz as a housekeeping gene that was selected
from the mouse housekeeping gene primers including Atp5f1, B2m, Hprt1, Rplp1, Ppia,
Rps18, Pgk1, Gusb, Tbp, Actb, Tfrc, Ywhaz, 18SrRNA, and Gapdh by geNorm and Bestkeeper
algorisms (Supplementary Table S1) [41].

Table 1. Gene sequences of the PCR primers.

Gene Accession
Number Sequence (5′-3′) Product

Size (bp)

Bacs NM_009512.2
F TCT ATG GCC TAA AGT TCA GGC G

75R CTT GCC GCT CTA AAG CAT CC

Baat NM_007519
F GTG TAG AGT TTC TCC TGA GAC AT

199R CTG GGT ACA GGT GGG TAG AC

Bsep NM_021022
F AGC AGG CTC AGC TGC ATG AC

122R AAT GGC CCG AGC AAT AGC AA

Cdo NM_033037.4
F GGG GAC GAA GTC AAC GTG G

162R ACC CCA GCA CAG AAT CAT CAG

Csd NM_001359126
F CCA GGA CGT GTT TGG GAT TGT

193R ACC AGT CTT GAC ACT GTA GTG A

Cyp7a1 NM_007824
F AAG AGC AAC TAA ACA ACC TG

244R TTC CCA CTT TCA TCA AGG TA

Fmo1 NM_010231.3
F CCA TCA AGT GCT GCC TGG AA

143R CCT GCT GCT GTT AGA AAC CAC AGA

Fmo3 NM_008030.1
F CCA CAG CAG GGA CTA TAA GGA A

129R GAG CTG ATG GTG ACC TTC TGA

Fxr NM_001163700
F GGT CAT GCA GAC CTG TTG GAA

142R TGA CGA TCG CTG TGA GCA GA

Hnf4α NM_008261.3 F ATG CCT GCC TCA AAG CCA TC 67
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Table 1. Cont.

Gene Accession
Number Sequence (5′-3′) Product

Size (bp)

R ATC TTG CCC GGG TCA CTC A

Ntcp NM_001177561
F AAG GCC ACA CTA TGT ACC CTA CGT C

106R GAT GCT GTT GCC CAC ATT GA

Shp NM_011850
F CAA GGA GTA TGC GTA CCT GA

232R GAT AGG GCG GAA GAA GAG AT

Bacs, ATP-dependent microsomal bile acid CoA synthetase; Baat, bile acid-CoA:amino acid N-acetyltransferase;
Bsep, bile salt export pump; Cdo, cysteine dioxygenase; Csd, cysteine sulfinate decarboxylase; Cyp7a1, cytochrome
P450 7a1; Fmo1/3, flavin containing monooxygenase 1/3; Fxr, farnesoid X receptor; Hnf4α, hepatocyte nuclear
factor 4α; Ntcp, sodium/taurocholate co-transporter peptide; Shp, small heterodimer partner; F, forward; R,
reverse; bp, base pair.

2.6. Statistical Analysis

Statistical analysis was carried out using Jump, and the threshold for significant
differences was set at a p-value of 0.05; the significance was assessed using unpaired
Student’s t-tests. Data are expressed as the mean ± standard error (SE).

3. Results
3.1. Bile Acid Concentrations in the Liver

Unconjugated and taurine-conjugated forms of all the BA types are shown in Figure 2A.
In the WT group, MCAs (αMCA, βMCA, andωMCA), CA, and DCA of both forms were
abundantly contained in the liver, but the CDCA, DCA, LCA, and UDCA levels were
so low as to be undetectable (Figure 2A). On the other hand, MCAs of both forms were
undetectable, while CDCA and LCA, in addition to CA and DCA, were found in the
DKO liver (Figure 2A). Ursodeoxycholic acid level was still very low in the DKO group.
In the DKO group, both unconjugated and taurine-conjugated CA concentrations were
significantly lower than in the WT group, while the taurine-conjugated forms of other
human-type BAs, TCDCA, TDCA, and TLCA, were significantly higher compared to those
in the WT group (Figure 2A). Any types of BAs conjugated with glycine were undetectable
in the liver of both groups.

Total BA (TBA) concentration (the sum of all BA types with unconjugated and taurine-
conjugated forms) in the liver was significantly decreased in the DKO group as compared
to the WT group (Figure 2B).

Figure 2C shows the BA composition consisting of each BA type (the sum of unconju-
gated and taurine-conjugated forms) in the liver of both groups. There was a significant
difference in the BA composition between the two groups (Figure 2C). In the WT group, the
ratios of MCAs (the sum of αMCA, βMCA, and ωMCA) and human-type BAs (the sum of
CA, CDCA, DCA, LCA, and UDCA) were 59.7 ± 1.6% and 40.3 ± 1.7%, respectively. On
the other hand, all of the BA compositions were changed to the human-type BAs in the
DKO group. Particularly, the ratios of DCA, CDCA, and LCA were 8.0 ± 0.8%, 1.3 ± 0.2%,
and 0.05 ± 0.01%, respectively, in the WT group, while they were increased to 38.6 ± 0.9%,
35.7 ± 0.7%, and 14.2 ± 0.9%, respectively, instead of the disappearance of MCAs, in the
DKO group (Figure 2C). The BA compositions in the DKO liver (Figure 2C) became similar
to those of normal liver tissue in humans previously reported (CA 28.7%, CDCA 46.4%,
DCA 15.7%, LCA 4.5%, and UDCA 4.6%) [42].

As shown in Figure 2D, the proportion of taurine-conjugated BAs (the sum of all BA
types) in the liver was 69.3 ± 2.1% in the WT group; on the other hand, the proportion was
significantly increased to 93.7 ± 0.7% in the DKO group.

3.2. Amino Acid Concentrations in the Liver

Figure 3 shows taurine and its precursor amino acids in the biosynthesis pathway, me-
thionine and cysteine, in the livers of both groups. Taurine concentration was significantly
higher in the DKO group than in the WT group (Figure 3). On the other hand, methionine
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concentration was significantly lower in the DKO group than in the WT group (Figure 3).
Similarly, cysteine concentration tended to be lower, but not significantly, in the DKO group
than in the WT group (Figure 3).
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3.3. The mRNA Expression Levels in the Liver

The mRNA expressions of Fxr and its direct target gene, Shp, were significantly
increased in the DKO group as compared to the WT group, but there was no difference in
Cyp7a1 mRNA between both groups (Figure 4). The mRNA expressions of Bacs and Baat,
the rate-limiting enzymes in BA amidation, were also significantly higher in the DKO group
compared to those in the WT group. In the rate-limiting enzymes of the taurine synthesis
pathway, the mRNA expression level of Cdo was significantly higher in the DKO group
than in the WT group, while there was no difference in Csd mRNA expression between
both groups. The mRNA expression levels of Fmo1, which is also a key enzyme in taurine
biosynthesis [42], and Fmo3, which is the direct FXR target gene [43], were significantly
higher in the DKO group compared to those in the WT group. In addition, the mRNA
expression levels of Hnf4α (NR2A1), which is a nucleus receptor, and Bsep, which is an
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efflux BA transporter, were significantly higher in the DKO group than in the WT group,
while there was no significant difference in Ntcp, which is an influx BA transporter, between
both groups.
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4. Discussion

The present study evaluated the alterations of BA amidation and taurine biosynthesis
properties in the livers of the DKO mice, which have abundant FXR agonist human-type
BAs, in comparison to the WT mice, which have FXR antagonistic BAs. As shown in
our previous studies [28,33], the BA composition in the liver was completely changed to
human-type BAs by the DKO of Cyp2C70 and Cyp2a12, which are the enzymes that convert
CDCA to αMCA, and the secondary BAs to the primary BAs. In the DKO liver, the ratio
of CDCA and DCA, which have the most and second highest FXR agonist activity, was
increased up to approximately 40%, while the WT liver was occupied by MCAs, which
are the endogenous FXR antagonist, and CA, which has little activity as an FXR agonist.
Upon the change to a human-like BA composition, the proportion of taurine-conjugated
BA in the DKO liver reached over 90%, a 20% point increase compared to the WT liver.
Furthermore, the taurine concentration was significantly increased by 25% in the DKO liver
compared to the WT liver.

In the evaluation of the mRNA expression levels, the significant increase in Shp in
the DKO liver implies that the FXR was activated by the increase in endogenous FXR
agonists CDCA and DCA. This FXR activation should induce the enhancements of BA
conjugation with taurine and taurine biosynthesis reactions through the upregulations of
FXR target genes involving these reactions. In BA amidation, the mRNA expressions of
Bacs and Baat were significantly increased in the DKO liver; particularly, the increase in
the Bacs gene was markedly higher than the Baat expression. Both Bacs and Baat have been
shown to be the direct target of FXR in human and rat hepatocytes, and the upregulations
of them were induced in the synthetic FXR agonist GW4064-treated rat liver [26]. The
present results agree with the previous observations of Pircher et al. [26]. Furthermore, the
mRNA expression of Bsep, which is an efflux BA transporter, was significantly increased
in the DKO liver. According to the increased BA-taurine conjugation ratio, along with the
upregulation of mRNA expressions of the BA amidation enzymes as well as the efflux BA
transporter, the significantly decreased TBA concentration in the DKO liver was highly
suggestive of the enhancement of efficient biliary BA excretion from the liver. In the taurine
biosynthesis pathway, the present study showed significantly increased mRNA expression
levels of Cdo, but not Csd, in the DKO liver, and this can be considered to be related to
the significant increase in taurine concentration in the DKO liver. From this result, the
gene expression of Cdo is suggested to be upregulated by a direct or indirect FXR–SHP
axis pathway. In the Cyp2c70 single KO mice with higher CDCA concentration, but not in
the Cyp2a12 single KO mice with MCAs, reported in our previous study [28], the increases
of BA-taurine conjugation ratio and mRNA levels of these enzymes in BA amidation and
taurine synthesis were also observed in the liver, supporting the positive regulations on the
reactions by FXR activation (Supplementary Figure S1).

However, the previous study reported opposite responses with regard to the gene
expressions in BA–taurine conjugation and taurine biosynthesis in the WT mice treated with
GW4064, i.e., the significantly decreased mRNA expression levels of Baat and Csd in the
synthetic FXR-agonist-treated liver [27]. A possible reason for the opposite response to the
FXR agonist in the WT mouse liver as compared to the present and previous findings [26]
might be related to the balance of the endogenous FXR agonists and antagonists that
were permanently present. The opposite results for these gene expressions under GW4064
treatment between mice [27] and rats [26] were likely due to the different ratios of MCA
and CDCA contents in the liver, because rats do not metabolize all CDCA to MCA, and the
amount of CDCA is still maintained to the MCA level in rats [44]. However, further study
is needed to clarify how the different balances of endogenous FXR agonists and antagonists
influence the response of gene expressions to the synthetic FXR agonist.

Unexpectedly, the Fxr mRNA level was significantly higher in the DKO liver than
in the WT liver. Although the regulation of Fxr transcription has been clarified, chronic
treatment of the semisynthetic FXR agonist 6α-ethyl CDCA (INT-747, obeticholic acid)
has been reported to increase Fxr expression in the penile tissue of rabbits and rats [45].
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Therefore, there is a possibility that Fxr transcription might be ligand-dependent and
positively regulated. However, the increased Fxr mRNA expression was not found in the
Cyp2c70 single KO liver [28], and it is unclear if the Fxr transcriptional system in the mouse
liver has a similar system in the Fxr transcription to the penile tissue in rabbits and rats.
Thus, this point also requires more investigation.

In the DKO liver, the taurine precursor amino acids, methionine and cysteine, were
lower, while taurine was higher, compared to those in the WT liver. The decreased level of
these amino acids might be due to the enhanced synthesis of taurine. Recently, Veeravalli
et al. reported that the subtype 1 of FMO (FMO1) is the new candidate to be the key
enzyme in the taurine synthesis pathway to oxidize hypotaurine to taurine (Figure 1) [42].
In the DKO liver, Fmo1 and another subtype, Fmo3, expressions were significantly higher
compared to those in the WT liver. Flavin-containing monooxygenase type 3 is the direct
FXR target gene and oxidizes trimethylamine (TMA), which is metabolized from choline
and carnitine in the gut by intestinal bacteria, to trimethylamine oxide in the liver [46].
It is notable that methionine is the metabolic source of the methyl group donor in many
metabolic pathways of trimethyl products, including choline and carnitine, and is not only
used in taurine biosynthesis. Therefore, the significant decrease in methionine is likely due
to the utilization of other metabolites such as choline and carnitine. Similar to Fmo3, Fmo1
is suggested to be also regulated by FXR and might contribute to the significant increase of
taurine concentration in the DKO liver. However, further studies are needed to clarify the
details of the regulation of Fmo1 by FXR.

The DKO mouse with the human-like BA composition is considered to be a model that
extrapolates FXR regulation on BA amidation and taurine synthesis in humans. However,
there is a species difference in the taurine synthesis property; rodents can highly synthesize
taurine, while taurine synthesis is very low in humans [47]. If taurine biosynthesis is pro-
moted by FXR activation, a question arises as to why taurine synthesis is high in mice with
MCAs. The reason is still unclear, but there is a high possibility that the taurine synthesis
pathway is mainly regulated by another uncertain mechanism, in addition FXR, under the
presence of MCAs. However, it is also certain that the taurine synthesis pathway might be
additionally promoted by FXR activation in liver under human-like BA compositions.

In addition, the proportion of BA amidation is different among animal species; all BAs
in mice are conjugated with taurine, while the conjugation ratio with taurine and glycine
is 1:3~3.5 in humans [20,21]. In humans, the reason for the low taurine conjugation ratio
is considered to be due to the lower taurine pool in the liver compared to mice, and the
taurine pool in humans is capable of only one quarter of the conjugation demand of BAs
in the liver [21]. On the other hand, there is no species difference in the affinity of BAAT
to taurine, and the affinity of BAAT in the human liver is higher with taurine than with
glycine [48]. Furthermore, the ratio of conjugation with taurine is increased by taurine
supplementation even in humans, while glycine supplementation does not increase the
ratio conjugated with glycine [13,21]. Therefore, because the determining factor of the lower
ratio of BA–taurine conjugation in humans is the lower taurine pool, the proportion of BA
conjugation with taurine would be enhanced by the promotion of taurine synthesis through
FXR activation. Because the conjugation with taurine increases the hydrophilicity of the
BA molecule, as opposed to the conjugation with glycine [49], and because taurine itself
has many beneficial effects on various tissues and cells [6–11,25], the increase in the taurine
pool would lead to important physiological and pathological effects on bile excretion,
cholesterol reduction, and hepatic protection. Recently, the relationship between taurine
level in the body and healthy life span has been reported in the study of various animals
including humans [50]; taurine abundance decreased during aging and the prevention of
this decline by taurine supplementation increased health span and lifespan in the monkeys
and rodents. Because the decrease of taurine synthetic ability is a high possible reason for
the age-related decline of taurine pool, clarification of the regulation of taurine synthesis
contributes healthy life and longevity. In the clinic, therapeutic effects for BA analogs and
synthetic FXR agonists on various liver injury and metabolic disorders, including primary
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biliary cholangitis, nonalcoholic fatty liver disease, nonalcohol hepatitis, and lipodystrophy,
have been reported [51]. Considering the present results, the enhancement of BA amidation
and taurine synthesis might contribute to the therapeutic effects of these FXR agonists.

In the present and our previous studies [28], the mRNA expressions of Cyp7a1 and Ntcp,
which are negatively regulated by FXR, were not reduced, but the FXR–SHP pathway was
activated, in the DKO liver. Competitively to the downregulations by FXR activation, the
transcriptions of Cyp7a1 [52–54] and Ntcp [52,55] are positively regulated by HNF4α, and
the transactivation of Hnf4α is inhibited by BAs [56]. The marked increases of Cyp7a1 and
Ntcp expressions have been observed in the liver with decreased BAs of the patients with
cerebrotendinous xanthomatosis which is the inherited deficiency of key-enzyme (sterol 27-
hydroxylase) in BA synthesis, although the FXR–SHP pathway was normally activated [57].
The significantly increased Hnf4a expression in the DKO liver was induced concomitantly
with the significant decreases of TBA in the liver and the body pool in the present and
previous studies [28]. Furthermore, the significantly increased taurine concentration in the
DKO liver is likely to be a factor to increase Cyp7a1 expression, because taurine itself has
the effect to increase Cyp7a1 mRNA expression as well as its activity in rodents [58–60].
In addition, taurine has been reported to act as an agonist of the nucleus receptor, liver
X receptor α (LXRα; NR1H3) [61], which positively regulates Cyp7a1 expression [62,63].
In the DKO liver, we showed that the expressions of target genes for Lxrα, including
sterol regulatory element-binding protein 1 and ATP-binding cassette transporter A1, and the
biliary proportion of cholesterol were significantly increased, suggesting the activation of
Lxrα [28]. Thus, the change to human BA composition also causes a concomitant decrease
in BA content and an increase in taurine content in the DKO liver. Therefore, the absence of
Cyp7a1 and Ntcp expression suppression despite Fxr activity may be related to competitive
regulation by activation of Hnf4α and Lxrα in the DKO liver.

5. Conclusions

In the present study, using a model with a human-like BA composition in the liver, we
confirmed, for the first time in mice, that a high content of BAs with FXR agonist activity
upregulates taurine biosynthesis in addition to BA conjugation with taurine. Because the
hydrophilicity of taurine-conjugated BAs is higher than that of glycine-conjugated BAs, and
because taurine itself has various beneficial actions, the promotion of taurine conjugation
and biosynthesis through FXR activation is considered meaningful for human health.
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Abbreviations

APDS 3-Aminopyridyl-N-hydroxysuccinimidyl carbamate
BA bile acid
BAAT bile acid-coenzyme A:amino acid N-acetyltransferase
BACS ATP-dependent microsomal bile acid coenzyme A synthetase
BSEP bile salt export pump
CA cholic acid
CDCA chenodeoxycholic acid
CDO cysteine dioxygenase
CoA coenzyme A
CSD cysteine sulfinate decarboxylase
CYP cytochrome P450
DCA deoxycholic acid
DKO double knockout
FXR farnesoid X receptor
FMO1/3 flavin containing monooxygenase 1/3
GCA glycocholic acid
GCDCA glycochenodeoxycholic acid
GDCA glycodeoxycholic acid
GLCA glycolithocholic acid
GUDCA glycoursodeoxycholic acid
GW4064 3-[2-[2-chloro4-[[3-3(2,6-dichlorophenyl-5-(1-methylethyl-4-isoxazolyl]meth

oxy]phenyl]ethenyl]benzoic acid
HNF4α hepatocyte nuclear factor 4α
HPLC-ESI-MS/MS high-performance liquid chromatography–electrospray ionization tandem

mass spectrometry
IS internal standard
LCA lithocholic acid
LXRα liver X receptor α
MCA muricholic acid
NTCP sodium/taurocholate co-transporter peptide
PBS phosphate-buffered saline
SE standard error
SHP small heterodimer partner
TBA total bile acid
TCA taurocholic acid
TCDCA taurochenodeoxycholic acid
TDCA taurodeoxycholic acid
TLCA taurolithocholic acid
TUDCA Tauroursodeoxycholic acid
TαMCA tauro-α-muricholic acid
TβMCA tauro-β-muricholic acid
TωMCA tauro-ω-muricholic acid
UDCA ursodeoxycholic acid
WT wild type
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