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Abstract: Recently, the concept of a mass spectrometric blood metabogram was introduced, which
allows the analysis of the blood metabolome in terms of the time, cost, and reproducibility of
clinical laboratory tests. It was demonstrated that the components of the metabogram are related
groups of the blood metabolites associated with humoral regulation; the metabolism of lipids,
carbohydrates, and amines; lipid intake into the organism; and liver function, thereby providing
clinically relevant information. The purpose of this work was to evaluate the relevance of using the
metabogram in a disease. To do this, the metabogram was used to analyze patients with various
degrees of metabolic alterations associated with obesity. The study involved 20 healthy individuals,
20 overweight individuals, and 60 individuals with class 1, 2, or 3 obesity. The results showed
that the metabogram revealed obesity-associated metabolic alterations, including changes in the
blood levels of steroids, amino acids, fatty acids, and phospholipids, which are consistent with the
available scientific data to date. Therefore, the metabogram allows testing of metabolically unhealthy
overweight or obese patients, providing both a general overview of their metabolic alterations and
detailing their individual characteristics. It was concluded that the metabogram is an accurate and
clinically applicable test for assessing an individual’s metabolic status in disease.

Keywords: metabogram; metabolomics; blood; diagnostics; mass spectrometry; clinical blood tests;
personalized metabolomics

1. Introduction

The advent of high-throughput analytical methods, which are used in omics sci-
ences, notably metabolomics, is a predicted trend in the development of clinical laboratory
tests [1,2]. However, there might be differences in how metabolomics technologies can
be applied in clinics. A single-subject (N-of-1) study using omics technologies to assess a
person’s biomaterial is the logical strategy. The multi-omics strategy, which uses genomics,
transcriptomics, proteomics, and metabolomics methods to examine the biomaterial of a
single individual in an N-of-1 study, is one of the most widely used [3-6]. In 2012, the
Integrated Personal Omics Profiling (iPOP) project was initiated [7], where different omics
data combined with a set of participant parameters (stress levels, diet, activity, medical
history) are used to characterize an organism’s normal state [8-10]. The 100 K person
wellness project was proposed in 2014, and the Arivale program supported it in 2015 [11].
In this project, the information collected over time for each participant, including genome,
metabolome, microbiome, and digital self-measurement data, was used to provide rec-
ommendations for improving wellness and avoiding disease. In 2017, the Pioneer 100
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Wellness Project (P100) started, which is based on data from genome sequences, clinical tests,
metabolomes, proteomes, and microbiomes, as well as frequent activity measurements for
individuals [12]. Despite the fact that the multi-omics approach is an efficient way to collect
personal molecular data through the application of several omics technologies [13-15], its
implementation in medicine is complicated and therefore slow. The multi-omics initiatives
point out that further standardization of methods and improved quality control are needed
to increase the reproducibility and reliability of multi-omics data [16].

Apart from other omics tests, single-subject (N-of-1) metabolomics studies are also
being introduced into clinical practice, usually in the form of laboratory-developed tests
(LDTs). An LDT is a subset of in vitro diagnostic (IVD) devices [17-20] defined by the US
Food and Drug Administration (FDA) as “in vitro diagnostic tests that are manufactured
and used in a single laboratory”. The LDT format avoids the difficulty of metabolomics
implementation in clinical laboratories by regulating metabolomics test implementation by
the protocols and standardization acts of only one laboratory [21]. In 2018, Metabolon Inc.
developed several LDTs (e.g., Meta UDx™, Meta IMD™, and Meta IMD™Plus) intended
to detect deviations in major metabolic pathways, biomarkers unmeasurable in other ways,
and the diagnosis of some genetic disorders. Another one, Nightingale Health, uses a
CE-marked IVD device and offers to estimate the “age you are likely to live before falling
ill from any of the top 10 diseases” from a single finger prick blood sample [22]. Using
blood NMR spectroscopy, the service estimates healthy years based on previously collected
data on hundreds of thousands of people. Thus, the implementation of metabolomics tests
in the LDT format is one of the options for facilitating the introduction of metabolomics
into medicine.

The implementation of a personal metabolomics study can also be facilitated by
measuring a small subset of metabolites. The Ajinomoto Group’s AminoIndex® Cancer
Screening (AICS®) offers minimally invasive, early cancer screening through the analysis
of plasma amino acids using LC-MS [23]. Due to the measurement of only a small subset
of metabolites, the AminoIndex® service is an example of how metabolomics has been
successfully applied in clinical settings thanks to its simplification.

Recently, a new personalized metabolomics method called the metabogram has been
introduced [24], which is also a simplified N-out-1 metabolomics study. The blood metabo-
gram was designed using well-known methods such as direct infusion mass spectrometry
(DIMS), principal component analysis (PCA), and metabolite set enrichment analysis
(MSEA). The metabogram avoids the complexity of every N-of-1 metabolomics study and
is characterized by quick execution, high reproducibility, simple data processing, and
straightforward results interpretation, which should facilitate its future implementation in
the clinic in the LDT format (Figure 1).

The metabogram shows a variety of clinically relevant information from the blood
metabolome groups involving humoral regulation, lipid—carbohydrate and lipid—amine
metabolism, eicosanoids, amino acids, lipid intake into the organism, and liver function.
The confirmation of the metabogram’s clinical potential is the major purpose of this work.
To achieve this, patients with diverse degrees of metabolic dysfunction linked to various
stages of obesity are studied using the metabogram.
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Figure 1. Workflow for designing a metabogram and its application as a clinical lab test. To design a
metabogram, blood plasma samples are taken from healthy people (1), and after sample preparation,
the mass spectra of blood metabolites are obtained by direct infusion mass spectrometry (DIMS) (2).
The resulting mass peak lists are analyzed by principal component analysis (PCA) to identify the mass
peak groups to form metabogram components (3). To characterize metabogram components, their
composition was determined by identifying the chemical substances, with which they are enriched (by
metabolite set enrichment analysis, MSEA) (4). Metabogram components are compared with clinical
blood tests to reveal their functional characteristics (5). The design of the metabogram according
to this workflow was conducted in previous work [24]. For routine application of the designed
metabogram as a fast clinical test, characterized sets of mass spectrometry peaks corresponding to
metabogram components are used (6). This workflow for applying the metabogram was used in
this study and is the prototype for the clinical use of the metabogram as a laboratory-developed
test (LDT). Color coding: red indicates upregulation in the corresponding metabogram component;
yellow indicates downregulation in the corresponding metabogram component.
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2. Materials and Methods
2.1. Subjects

Healthy, overweight, and obese volunteers (n = 100) were examined by the medical
board at the Federal State Budgetary Institution “Nutrition and Biotechnology” (Moscow,
Russia). The groups of cases included volunteers with obesity of varying stages with a
diagnosis of E 66.0, according to the International Classification of Diseases (obesity of
exchange-alimentary origin). Subject selection, blood sampling, and mass spectrometry
analysis were conducted within the frame of a previous metabolomics study conducted
in 2020 [25] and supported by the Program of the Presidium of the Russian Academy of
Sciences (“Proteomic and Metabolomic Profile of Healthy Human”).

2.2. Mass Spectrometry Analysis of Blood Samples

Venous blood sampling, sample preparation, mass spectrometry analysis, mass spectra
processing, and mass list processing (alignment, standardization, and normalization) were
conducted as described previously on the same equipment and with the same materials [25].
Aligned and standardized mass lists are presented in Table S2.

2.3. Design of Metabogram

The design of the metabogram using a reference cohort of healthy subjects was con-
ducted in previous work, and the details of this are described in [24]. Briefly, to design the
metabogram, blood plasma samples of healthy men were analyzed using DIMS (Figure 1).
After data preprocessing (alignment, standardization, and normalization), the resulting
lists of mass peaks were analyzed using PCA. The sets of mass peaks corresponding to the
highest positive or lowest negative principal component coefficients (loadings) formed the
blood metabolome components (BMCs). The first seven BMCs, explaining approximately
70% of blood metabolome variance, formed the metabogram components. Applying MSEA,
the composition of metabogram components was determined by identifying the chemical
classes with which they are enriched (Table 1). To clarify the biological specificity of the
metabogram components, clinical blood tests were used. Due to the fact that the principal
components have positive and negative coefficients (loadings) involved in the formation
of the metabogram components, each metabogram component has two Z-score scales
reflecting their measure, called “positive” and “negative” parts, respectively. Z-scores
of the metabogram components from —1.64 to +1.64 are in the normal range; up- and
downregulation correspond to higher and lower Z-score values, respectively.

Table 1. Composition of the clinical blood metabogram components. Adapted from [24].

Metabogram Component 1

Metabolite Group
12 2 3 4 5 6 7

Phosphatidylcholines
Phosphatidylethanolamines
Monosaccharides

Saturated Fatty Acids °

C18 steroids o

C10 isoprenoids o

C24 bile acids °

Dicarboxylic acids o

Unsaturated Fatty Acids o
Lysophosphatidylcholines
Lysophosphatidylethanolamines

Diacylglycerols °
Retinoids ° o
Amino acids °
Androstane steroids °

C19 steroids ° °
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Table 1. Cont.

Metabogram Component !

Metabolite Group

12 2 3 4 5 6 7
Glycerophosphoglycerophosphates o
Estrane steroids °
Leukotrienes
Prostaglandins

! The blue color corresponds to the positive part of the metabogram components; the red color corresponds to
the negative. 2 Names of metabogram components: 1—regulatory; 2—lipid-carbohydrate; 3—phospholipolytic;
4—lipid-amine; 5—eicosanoid; 6—alimentary; 7—hepatic.

The components of the metabogram are functionally related groups of the blood
metabolites associated with humoral regulation (component 1 called “regulatory”), lipid—
carbohydrate metabolism (component 2), phospholypolysis (component 3 called “phos-
pholipolytic”), lipid—amine metabolism (component 4), the level of different metabolites
including oxidized fatty acids (component 5 called “eicosanoid”), lipid intake into the
organism (component 6 called “alimentary”), and liver function (component 7 called
“hepatic”), thereby providing clinically relevant information.

2.4. Personal Metabograms

Personal metabograms, which are in fact the prototype of the clinical laboratory test,
were obtained using the study cohort (see Section 2.1), which consisted of subjects with
normal, overweight, and obese bodies. The mass lists were standardized, normalized,
and then aligned with the m/z values of the metabogram (i.e., with seven m/z sets corre-
sponding to seven metabogram components) developed using the reference cohort (see
Section 2.3). Then, the Z-scores for the metabogram components, reflecting the increase
or decrease in the concentration of metabolites comprising them, were calculated using
the mass peak intensities (by averaging the Z-scores for peaks belonging to the same
metabogram component) [24].

2.5. Statistical Analysis
2.5.1. Cluster Analysis

To overview metabogram types demonstrating deviations in the blood metabolome in
overweight and obesity, a cluster analysis was carried out. For this, Euclidian distances
between metabograms (Z-scores) were calculated using the pdist function (Matlab). An
agglomerative hierarchical cluster tree was generated by the linkage function using the
“ward” algorithm for computing the distance between clusters. The dendrogram function
was used to plot the dendrogram.

2.5.2. Correlation Analysis

The connection between metabogram components and organismal parameters in
obesity was revealed by a correlation analysis. Spearman’s correlation between the Z-scores
of the metabogram components showing their up- and downregulation and the clinical
test results for each person was calculated using the corr function of the Matlab program.
The correlation between the metabogram components themselves was also calculated to
identify the relationship between them in obesity.

2.5.3. Diagnostic Parameters

To assess the diagnostic potential of the metabogram for overweight and obese pa-
tients, the following diagnostic parameters were evaluated: sensitivity—the percentage of
correctly identified positive results (the illness is correctly assigned to overweight and obese
patients); specificity—the percentage of correctly identified negative results (the illness
is correctly not assigned to control patients); and accuracy—the percentage of correctly
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identified positive and negative results. Diagnostic parameters were measured across
aligned cohorts as well as using sex-stratified cohorts.

3. Results
3.1. Studied Subjects

One hundred volunteers—twenty healthy, twenty overweight, and sixty with class 1,
2, or 3 obesity—were selected for the study. Table 2 summarizes the cohort characteristics.
An anamnesis was collected, the overall condition of the body was evaluated by a doctor,
a laboratory study of blood and urine was carried out, resting energy expenditures were
determined, and the body composition was estimated by bioimpedance measurements
(Table S1). Based on the results obtained, the doctor categorized the volunteers into the
appropriate group. The presence of hyperuricemia, dyslipidemia, and steatosis (in class 3
obesity) in the case groups was allowed.

Table 2. Study cohort characteristics.

Body Height ! Body Weight Age Body Mass Index Gender
(cm) (kg) (Years) (kg/m?) (Male/Female)

Normal 1735 £ 8.2 669 £9.4 31.3£55 221+19 10/10
Overweight 172.1 £ 12.2 82.0 +£13.1 32967 275+13 10/10
Class 1 obesity 170.6 £11.7 95.1 £13.7 29.7 £8.0 325 +11.7 10/10
Class 2 obesity 1715+ 94 109.1 £13.8 328 £8.1 36913 10/10
Class 3 obesity 1723 £9.9 141.0 £ 274 345+ 6.5 473 £6.1 10/10

Group

1 Mean + standard deviation.

3.2. Metabogram Data

Mass spectrometry of blood plasma generated typical mass spectra of the low molecu-
lar weight fraction of blood. Up to about m/z 600, peaks of metabolites of various classes
were observed, and above m/z 600, intense peaks of various phospholipids were observed.
On average, 9333 peaks were detected in the spectrum. These mass spectrometry data were
used to obtain personal metabograms for all subjects participating in the study (Figure 2).
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Figure 2. Metabogram data for normal (control), overweight, and obese patients. Z-score values are
presented, which are a measure of the metabogram component (from —1.64 to +1.64 is the normal
range; up- and downregulation correspond to higher and lower Z-score values, respectively). Color
coding: red indicates upregulation in the corresponding metabogram component; yellow indicates
downregulation in the corresponding metabogram component.
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Figure 2 shows that overweight and obese patients have deviations in their metabo-
gram components more frequently than control individuals. Several components deviate
from the norm more often. For example, the most frequent is the downregulation of the pos-

itive components 1 and 6, the negative component 5, and the upregulation of the positive
component 7 (Figure 3).
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Figure 3. The frequency of deviations from the norm in the blood metabogram components for
overweight and obese patients. The metabogram component deviates from the norm if its Z-score
is less than —1.64 (the metabolites composing the metabogram component are downregulated) or
above +1.64 (the metabolites composing the metabogram component are upregulated).

3.3. Statistical Data and Diagnostic Parameters

Table 3 presents the results of the t-test showing the significance of differences for the
components of the metabogram in the case-control comparison. Additionally, in this table,
diagnostic parameters for metabogram components are presented, allowing judgment of
their diagnostic potential. The positive components 1 and 7 show the highest statistical
significance in the case—control comparison and the highest diagnostic performance.

Table 3. Diagnostic parameters of the metabogram components for the detection of overweight and
class 1-3 obesity stages.

Metabogram t-Test Diagnostic Parameters (%)
Component (p-Value) Sensitivity Specificity Accuracy
Positive parts of metabogram components
1 0.0007 49 85 56
2 0.504 9 95 26
3 0.024 16 95 32
4 0.143 16 90 31
5 0.011 15 90 30
6 0.204 19 95 34
7 0.002 40 90 50
All (1-7) 0.246 83 45 75
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Table 3. Cont.

Metabogram t-Test Diagnostic Parameters (%)
Component (p-Value) Sensitivity Specificity Accuracy
Negative parts of metabogram components
1 0.093 27 95 40
2 0.851 5 85 21
3 0.010 20 95 35
4 0.102 15 85 29
5 0.023 31 90 43
6 0.122 21 100 37
7 0.515 16 95 32
All (1-7) 0.062 70 70 70

Table 4 displays diagnostic parameters calculated based on divergence from the
normal range of any metabogram component (i.e., based on the detection of any metabolic
alteration regardless of the number of metabogram components). The data in the table on
the sensitivity and specificity of diagnostics show the possibility of detecting obesity-related
metabolic alterations in both overweight and obese men and women.

Table 4. Diagnostic parameters for the detection of obesity by metabogram.

Metabogram Components !

Positive 2 Negative Both
Groups w »n %) 9] »

(Cases Versus Controls) é éj § % E 'E % E FE

=iy &8 - - =g ] - =g =

z & 8 % a 8 % & 8

= = < [~ - < = - <

= = S = 3 S = PR

g g < 8 & = 8 8 F

Overweight M2 versus Normal males 3 80 60 70 60 80 70 90 60 50
Overweight ™2 versus Normal 2!! 80 55 60 60 70 65 90 45 60
Overweight females yersus Normal females 60 50 55 60 60 60 90 30 60
Overweight females yersus Normal #!! 60 55 57 60 70 67 90 30 50
Overweight 2!l versus Normal 2! 70 55 63 60 80 70 90 45 68
Class 1 obesity ™ls versus Normal ™2les 80 60 70 60 80 70 80 60 70
Class 2 obesity ™ versus Normal males 90 60 75 90 80 85 100 60 80
Class 3 obesity males yorsys Normal ™Males 100 60 80 90 80 85 100 60 80
Class 1 obesity ™21 versus Normal 2!! 80 55 60 60 70 67 80 45 57
Class 2 obesity ™21 versus Normal 2!! 90 55 67 90 70 77 100 45 63
Class 3 obesity ™3¢ versus Normal /! 100 55 70 90 70 77 100 45 63
Class 1 obesity females yorgys Noormal females 70 50 60 100 60 80 90 30 60
Class 2 obesity females yorgys Noormal females 80 50 65 50 60 55 80 30 55
Class 3 obesity females yersus Normal females 90 50 70 60 60 60 90 30 60
Class 1 obesity females yersus Normal 21! 70 55 60 100 70 85 90 45 60
Class 2 obesity females yersus Normal 2!l 80 55 63 50 70 63 80 45 57
Class 3 obesity females yersus Normal 21! 90 55 67 60 70 65 90 45 68

1 All seven components of the metabogram were involved in the calculation. 2 “Positive” and “negative”
correspond to two parts of Z-score scales reflecting component measures (see Section 2.3). 3 The superscript
corresponds to the group used (“males”: only males; “females”: only females; “all”: males and females together).

3.4. Relationship between Metabogram Components

To reveal the connection between metabogram components in obese individuals, the
correlation between them was calculated (Figure 4). Connection strength varies widely
from strong positive (e.g., between positive components 2 and 3) to strong negative (e.g.,
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between positive component 1 and negative 7), and has approximately the same pattern
for men and women.

Males Females
metabogram components metabogram components
| positive 1] negative | | positive 1] negative |
12345671234567 123456712345671
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Figure 4. Correlation of metabogram components with each other and calculated for normal, over-
weight, and class 1-3 obesity patients.

Cluster analysis was used to identify patterns formed by metabogram components
(Figure 5). Clustering by stage of obesity was not revealed. Some clusters, formed by
different combinations of the most often deviating metabogram components, may be
considered typical for overweight and obese patients. See, for example, the upper clusters
on the dendrograms for males and females (Figure 5).
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Figure 5. Dendrograms of blood metabograms of overweight and obese patients involved in the
study. Color coding: red indicates upregulation in the corresponding metabogram component; yellow
indicates downregulation in the corresponding metabogram component.
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BLOOD CHEMISTRY

DIET PARAMETERS

BODY PARAMETERS

GENERAL BLOOD TEST

The correlation of the metabogram components with clinical tests is presented in
Figure 6. There is an inverse correlation between the positive 1 and 6 and negative 5
components and diet, body, and bioimpendasometry data. A positive correlation for these
tests is observed with the positive component 7 of the metabogram. This fact is in full
accordance with the deviation in these components for overweight and obesity, as shown

in Figure 3.
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Figure 6. Correlation of clinical tests and body parameters with metabogram components calculated

for normal (control), overweight, and class 1-3 obesity patients.
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3.5. Metabogram Types in Obesity

Based on the results obtained, several types of metabograms can be distinguished.
Metabograms with the most frequent deviations in the four components, observed in 76% of
cases, can be considered typical for individuals with overweight and obesity (Figure 7). In
total, 4% of people have metabogram values that are marginal for the norm. This suggests
that the metabograms may fall outside the norm at retesting. A total of 2.5% (5% of men
and 0% of women) had no abnormalities, which does not mean their complete absence
since the metabogram covers only 70% of the variance in the blood metabolome.

Males Females

OTypical deviation

O Close to typical deviation
] Atypical deviation

ONormal

Figure 7. Distribution of the metabogram types in overweight and obese men and women. The
positive 1, positive 6, and negative 5 components (in one of them or their various combinations)
have been downregulated or the positive 7 has been upregulated in a metabogram with a “typical
deviation”. If the metabogram component(s) is close to the limit of the norm, the “close to a typical
deviation” metabotype is detected (when retesting, a metabogram may fall into a group with a typical
deviation). “Atypical metabograms” have component deviations that are not the same as those of
typical metabograms.

Metabogram displays personal metabolic data which can be presented in various
formats (as a table or diagram). Figure 8 shows the metabogram in a simple format, which
shows the number of the metabogram component, the variance in the blood metabolome
explained by the component, the name given to the component, and the values of the
component on the Z scale. The figure also provides an overview of the factors contributing
to obesity developments and obesity-related metabolites in the metabolic network reflected
in the metabogram components.

Personal M etabogram Obesity related metabolites in metabolic network

Phospholipids €— Triglycerides

Metabogram component Z-score *f
j Choline
#Y" Name Positive  Negative | Fattyacids 4> Fatstorage
1284%  Regulatory -3.20 -110 i
i 2 ™% Phospholipid-carbohydrate 4 138 o Glucose g Glycogen
375 Phospholipolytic 105 130 )
| 4 7% Phospholipid-amine 113 097 - ;:"i Lactate «— Pyruvate < Acetyl-CoA —»  TCAcycle
e — 5 4% Eicosanoid 058  -271 l
6 “2%  Alimentary -230 -0.86 | l
738%  Hepatic 331 -026 Sy
G{yscier":e BCCA Glutamine
Creatinine

Figure 8. An example of metabogram. “Var” superscript shows the percentage of the variance
explained by the metabogram component. The Z-score value is a measure of the metabogram
component (from —1.64 to +1.64 is the normal range). “Up-" and “downregulation” correspond to
higher and lower Z-scores, respectively. The frequently deviated components of the metabogram in



Metabolites 2023, 13, 798

12 0f 18

overweight and obese patients are selected by color (red indicates upregulation in the correspond-
ing metabogram component; yellow indicates downregulation in the corresponding metabogram
component). To the left of the metabogram are the factors contributing to the development of obesity
(adapted from [26]) and where they are mainly reflected in the metabogram. The reflection of the
microbiota and genome in the components of the metabogram (indicated by the sign “?) will be
established in future studies. To the right of the metabogram is the relationship of obesity-related
metabolites in the metabolic network (adapted from [27]) and in which metabogram components
they may be reflected.

4. Discussion

The concept of the metabogram is to introduce metabolomics into the clinic by simplify-
ing the single-subject metabolomics study. The metabogram approach makes it possible to
dispose of the identification and analysis of individual metabolites, of which there are thou-
sands in biological samples, making any metabolomics study complex, time-consuming,
and expensive [24]. For this, in the metabogram, only groups of related metabolites are
processed, and the application of MSEA [28] quickly estimates the enrichment of these
groups with metabolite classes. Thus, the complex identification of individual metabolites
is replaced by group analysis using this well-known and fast method. Moreover, averaging
metabolite data (peak intensities) within one group leads to increased data reproducibility.
The coefficient of variation (CV) for metabogram components is as low as 1.8% [24], which
is not achievable for most individual metabolites [29]. In this study, individuals with varied
metabolic alterations related to overweight and obesity were assessed using a metabogram
in order to validate the clinical value of the metabogram.

Obesity is an adaptation of the body to additional energy intake and reduced energy
expenditure. Obesity plays a crucial role in the development of metabolic syndrome, insulin
resistance, dyslipidemia, arterial hypertension, type 2 diabetes, and an increased risk of
cardiovascular disease [30-34]. Additionally, obese individuals are more likely to suffer
from cancer, asthma, gallbladder disease, osteoarthritis, and chronic pain [35]. It can be
argued that the metabolic features of obese patients have long been under the scrutiny of
researchers and, in many ways, are already well described, which makes this pathology
attractive for metabogram testing.

The clinical manifestations of overweight or obesity are heterogeneous. In contrast to
metabolically healthy obesity (MHO), metabolically unhealthy obesity (MUO) has unfavor-
able metabolic profiles characterized by low insulin sensitivity, abnormal blood pressure,
and unfavorable lipid, inflammation, hormone, liver enzyme, and immune profiles [36].
The blood metabolome abnormalities in such MUO people may be responsible for the com-
paratively high level of diagnostic specificity, sensitivity, and accuracy of the metabogram
demonstrated in the study (Table 4).

One of the major groups in the metabolic signature of obesity is steroids [37]. For
example, testosterone has been described as antiadipogenic; its administration in adult
men reduces abdominal fat by stimulating lipolysis and thereby reducing fat accumulation
in adipocytes [38]. A strong inverse correlation was found between testosterone levels
and obesity in overweight adult men [39-41]. In women, however, the data are less
uniform, ranging from no association [40] or a positive correlation observed in overweight
and obese women [39,42] to an inverse correlation [43,44]. The metabogram data are
consistent with scientific evidence on the relationship between steroids and obesity. The first
metabogram component, named regulatory due to its enrichment with steroids (Table 1), is
downregulated in people with overweight and obesity. Moreover, the metabogram brings
clarity for women; there is a clear decrease in steroid levels, at least in women in the fertile
period involved in the study (Figures 2 and 3).

The second major group of metabolites dysregulated in obesity is amino acids, partic-
ularly branched-chain amino acids and aromatic amino acids [37]. For example, phenylala-
nine concentrations are higher in obese individuals [45-47]. Tyrosine levels, a hydroxylation
product of phenylalanine metabolism, are associated with an increase in the hepatic fat
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content [48]. The metabogram has several components related to amino acids (Table 1). A
small part that positively correlates with phospholipids is represented in negative com-
ponent 4. The main part of amino acids is in the positive part of components 5 and 7,
which in both women and men are either normal or upregulated and never downregulated
(Figures 2 and 3). Component 7 is upregulated more frequently. Thus, the metabogram is
completely consistent with amino acid dysregulation in obese patients.

The next group altered in obesity is lipids other than steroids. Many studies have re-
ported different results, namely changes in saturated and unsaturated fatty acids, lysophos-
pholipids, and phospholipids. It is reported that saturated fatty acids positively correlate
with the development of obesity [49,50]. There are studies demonstrating that some sat-
urated fatty acids, especially long-chain, have a weak correlation with MUO compared
with unsaturated fatty acids, except for palmitic and oleic acids [51-53]. Levels of both
eicosapentaenoic acid and docosahexaenoic acid [52,54] increased in the MUO group, but
they are associated with a lower risk of developing metabolic syndrome [55].

Saturated and unsaturated fatty acids associated with steroids are presented in compo-
nent 1 of the metabogram (Table 1). Additionally, unsaturated fatty acids are presented in
negative component 5, which is normal or downregulated in women and normal, downreg-
ulated, or, twice as rare, upregulated in men. Therefore, these unambiguous data for women
and less unambiguous data for men are not contradicted by the present scientific facts.

Controversial scientific data are associated with lysophospholipids and phospholipids.
Some studies report decreased levels of these compounds [56-60], while other data suggest
a correlation between the levels of lysophospholipids and phosphatidylcholines in plasma
in obese individuals, although the mechanisms are not yet fully understood [61,62]. Thus,
these molecules are not considered critical metabolites in obesity signatures.

Phospholipids in the metabogram are represented in the negative components 2 and 4,
which are either normal or occasionally elevated in patients, which does not contradict the
scientific data and is consistent with their weak diagnostic significance. Lysophospholipids
are presented in negative component 7, which deviates from the norm rarely and in different
directions, which is also consistent with the obscurity of their behavior described in the
scientific data.

Acylcarnitines, metabolites formed intracellularly from carnitine during the metabolism
of fatty acids and amino acids, show differences in the levels between the MUO and MHO
subjects [63,64]. However, there are no components in the metabogram that are enriched
by acylcarnitines.

The agreement between the metabogram patterns (the most frequent deviations in
regulatory, alimentary, and hepatic metabogram components for overweight and obese
individuals; Figures 3 and 6) and body parameters, diet, and bioimpedance measurements
(Figure 4) is an additional contribution to confirming the validity of the metabogram as a
clinical test.

Therefore, the collected scientific evidence to date supports that the metabogram
is interpretable and accurate in terms of determining known abnormalities in the blood
metabolites in obese patients. Moreover, the metabogram provides new diagnostic possibil-
ities through a panoramic overview of the metabolites in the patient’s blood. So, only 2.5%
of the subjects in the study had no deviations in the metabogram (Figure 7). This suggests
that the identification and systematization of metabolic abnormalities in the diagnosis and
treatment of obesity may now be at a new level.

From the results of this study, it is feasible to identify the benefits offered by the
metabogram in overweight and obesity:

e The metabogram’s broad coverage of the metabolites enables the identification of
the molecular phenotypes of patients (metabotypes), frequency distributions for
particular metabotypes in overweight and obese patients, deviations in the blood
metabolome associated with these metabotypes, and the most prevalent combinations
of these deviations.
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e  The metabogram allows us to measure these deviations, rank them, and identify the
most significant of them in overweight and obesity.

e  The metabolite group-based approach used in the metabogram is an efficient way to
retrieve and interpret data from the metabolome, which is challenging when dealing
with individual metabolites.

e  The classification of metabotypes, measurability, and interpretability of deviations
in the blood metabolome using the metabogram make it possible to personalize the
treatment of obesity.

Therefore, simplification of the N-of-1 metabolome study in the metabogram concept
is not only technically beneficial for metabolomics implementation in clinical practice
but also a way of efficient data extraction from the blood metabolome, which makes the
metabogram a promising method of personalized metabolomics.

Regarding the weaknesses of the metabogram, the sample preparation protocol with
methanol chosen to design the metabogram leads to a decrease in the detection of triglyc-
erides [65], which would not be superfluous to detect metabolic deviations associated with
obesity. Additionally, besides the fact that the used mass spectrometer was equipped with
an ESI source, which is considered to be soft [66], some metabolites are susceptible to in-
source fragmentation. This is especially true for phospholipids fragmenting into lysoforms
and fatty acids [67], which affects the composition of metabogram components where
such compounds are present. The next issue is associated with the metabolite databases
that were used to design the metabogram, where redundancy in compound names exists.
Together with the high combinatorial capabilities of lipids (e.g., phospholipids have a
variety of fatty acid chains, resulting in many compounds with the same molecular weight),
it makes the metabogram components enriched with such lipids less reliable.

As for the prospects of the development of the metabogram, before the metabogram is
used in the clinic, it is necessary to define how the components of the metabogram relate
to the genome and gut microbiota because these factors have a well-known impact on
the blood metabolome [68]. The next prospect of the implementation of metabograms in
laboratory diagnostics may be related to their combination with dried blood spot (DBS)
samples [69], allowing the unaided collection of capillary blood at home. The subsequent
transportation of DBS samples to the laboratory by mail can make metabogram tests
convenient for customers and available almost everywhere, which is especially important
given the prevalence of obesity.

5. Conclusions

It can be argued that the metabogram has clinical value, as demonstrated in overweight
and obese individuals. The metabogram detects the metabolic signature of obesity, which
is consistent with the accumulated scientific data. The metabogram adds new meaning
to blood analyses in obese patients because it is an omics test, which provides both a
general overview of metabolic abnormalities and details the individual character of these
abnormalities. In addition, the metabogram brings clarity to the analysis of the blood of
obese patients, eliminating inconsistencies in the vast amount of scientific data and making
it clinically applicable. According to the metabogram, the most frequent deviations in
the metabolome, corresponding to overweight and obesity, are associated with humoral
regulation (40% and 48%), liver function (38% and 43%), the level of fatty acids in the
blood (20% and 32%), and, to a lesser extent, with the nutritional factor (27% and 13%
frequency of occurrence for men and women, respectively). The metabogram indicates not
only the severity and frequency of the occurrence of these deviations but also their role in
the functioning of the body, as reflected in the variance in the blood metabolome covered
by the metabogram components. The individual picture of each patient is made up of
deviations in certain components, which provide information about the obesity metabotype
and provide grounds for personalizing its treatment. Thus, the design of the metabogram
as a rapid clinical test, together with its demonstrated clinical relevance, justifies further
efforts to introduce it into clinical practice.
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