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Abstract: Plants belonging to the Launaea genus have been extensively utilized ethnopharmacologically
to treat a variety of diseases, including kidney disorders. Chromium is a common industrial pollutant
that has been linked to kidney disease. The present work was designed for the investigation of the
UPLC-QTOF–MS/MS metabolite profile of the L. mucronate ethanolic extract (LME), along with assessing
the mechanistic protective actions of LME and its nano-silver formulation (LMNS) against K2Cr2O7-
induced nephrotoxicity in rats. LMNE was successfully biosynthesized and confirmed using UV–Visible
(UV–Vis) spectroscopy and transmission electron microscopy (TEM). The nephroprotective effects of LME
and LMNE was assessed in rats exposed to potassium dichromate (K2Cr2O7, 15 mg/kg BW) to cause
nephrotoxicity. LME and LMNS, separately, were administered twice daily for 14 days at doses of 200 and
400 mg/kg BW, respectively. The kidney function, catalase, UGT, Nrf2, PGE2, Cox-2, ERK, and MAPK
levels in renal tissue were all assessed, along with histopathological examinations for exploring their
ameliorative effects. Forty-five bioactive metabolites were annotated belonging to flavonoids, phenolic and
organic acids, coumarins, and fatty acids. Metabolite profiling revealed that chlorogenic acid, apigenin,
and luteolin glycosides were the main phenolics, with chlorogenic acid-O-hexoside reported for the first
time in LME. The findings revealed that the serum kidney function indicators (urea and creatinine) were
markedly elevated in K2Cr2O7-intoxicated rats. Furthermore, inflammatory indicators (COX-2 and PGE2),
MAPK, and ERK were all markedly elevated in kidney tissue, whereas catalase, UGT, and Nrf2 levels were
downregulated. Histological and immunohistochemical assays confirmed the toxic effects of K2Cr2O7 in
the kidneys. In contrast, the administration of LME and LMNS prior to K2Cr2O7 considerably improved
the architecture of the renal tissue, while also restoring levels of most biochemical markers. Functioning via
the inhibition of the MAPK/ERK pathway, activating Nrf2, and modifying the antioxidant and metabolic
enzymes, LME and LMNS exerted their nephroprotective effects against K2Cr2O7-induced toxicity.

Keywords: Launaea mucronata; secondary metabolites; renal injury; potassium dichromate toxicity;
oxidative stress; UPLC-MS
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1. Introduction

Medicinal plants and their bioactive by-products are well recognized for their several
medicinal and pharmaceutical applications [1]. Launaea Cass. (Family Asteraceae), includ-
ing around 54 species, is a common genus around the world, especially in Africa, the South
Mediterranean, and Asia [1,2]. Several traditional uses were reported for Launaea plants
worldwide, including the treatment of the ailments of stomach, breast, hepatic, skin, and
insect infections, alongside of inflammation, wounds, diarrhea, fever, and gastrointestinal
diseases [3–6]. Furthermore, bioassays confirmed many of Launaea species extracts and/or
their isolated chemicals, including antioxidant, antidiabetic, insecticidal, anticancer, antifun-
gal, anti-inflammatory, anti-angiogenic, and antimicrobial activity [1,3–8]. Phytochemical
studies revealed several bioactive metabolites from the different extracts of LME, including
flavonoids, coumarins, sesquiterpenes [9], and essential oil [1] to account for its health
benefits.

The kidney is the primary vital organ that carries out various crucial functions, such as
detoxification, extracellular fluid management, homeostasis, and the excretion of harmful
compounds [10,11]. Nephrotoxicity is defined as a sharp decline in kidney functioning
induced by the toxic effects of drugs and chemical substances [10,12].

Hexavalent chromium (CrVI) has been used in stainless steel manufacturing, leather
tanning, and wood preservation, and was likewise detected in drinking water, thereby
posing as a potential contaminant [13]. It can enter cells and trigger oxidative stress leading
to a variety of issues, including skin rashes, allergic reactions, immune system deterioration,
irritations and bleeding of the nose, genetic material alteration, kidney and liver damage,
and even death for the person [14]. The kidney is the primary target for Cr excretion.
According to a previous study, rats given an acute dose of potassium dichromate had
higher levels of Cr in their kidneys. Cr (VI) compound exposure can induce nephrotoxicity
in humans and experimental animals mediated via the generation of reactive oxygen species
(ROS) concurrent with a decrease in antioxidant enzyme activity, as well as a reduction in
the renal blood flow, perfusion, and oxygenation levels [15].

The creation of nano-formulations of plant extracts has an enormous potential in
the field of nanomedicine, including boosting their biological effects through augmenta-
tion of the active biomolecule’s concentration [16]. Due to their distinctive applications
in pharmaceutics, agriculture, water detoxification, air filtration, textile industries, and
as a catalyst, silver nanoparticles have received increasing attention among these nano-
formulations [17–19].

The loading of bioactive constituents in nano-systems represents one of the most sig-
nificant modern techniques for the development of medicinal drugs via several pathways,
including (1) the enhancement of the bioactivities of the targeting products, (i) decreased
toxicity, (ii) reducing volatility, (iii) increasing stability of the active components, and
(iv) increasing the penetration inside the tissues and cellular uptake. Additionally, the
creation of nano-formulations of plant extracts has an enormous potential in the field of
nano-medicine, including boosting their biological effects through augmentation of the
active biomolecules [17–19].

The objectives of present work were to: (i) investigate the chemical profile of LME
using UPLC-QTOF-MS/MS analysis as a platform for extract profiling in untargeted
manner; (ii) bio-synthesize and characterize the silver nano-formulation of L. mucronata
hydroethanolic extract (LMNS); and (iii) assess the protective mechanisms of LME and
LMNS against K2Cr2O7-induced nephrotoxicity in rats via biochemical and histochemical
assays.

2. Materials and Methods
2.1. Plant Material and Collection

The collection and authentication of L. mucronata aerial parts was conducted by Prof.
Ahmed Abdel Gawad, Prof. of taxonomy, Mansoura University from the Wadi Hagul,
(30◦02′34.3′ ′ N, 32◦05′40.6′ ′ E); El-Kattamyia-El-Ain Sokhna Road, Cairo, Egypt. The collec-
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tion was performed in the early morning (around 4.5 to 6.5 AM) of Monday 26 April 2021.
The collected plant material was assigned a voucher number (LM-yM-8741x/21-06623)
and was deposited at the Herbarium of Faculty of Science, Mansoura University. L. mu-
cronata aerial parts were cleaned, and dried completely in an open, shaded room at a room
temperature (25–28 ◦C) for 10 days, and then ground into a powder.

2.2. Extract Preparation

A 70% EtOH (3 L) extraction was performed on 870 g of air-dried powdered plant aerial
parts for 5 days and then filtered. This extraction was conducted three times successively,
following which the solvent portions were collected, and dried under reduced pressure
at 45 ◦C to yield a dark gum (28.6 g), which was kept at 4 ◦C until further chemical and
biological assays.

2.3. High-Resolution Ultra-Performance Liquid Chromatography-Mass Spectrometry Analysis
(UPLC-qTOF-MS)

For the profiling of LME using UPLC-TOF-MS, 1 g was extracted using 70% EtOH in an
ultrasonic bath (Branson ultrasonic corporation, Danbury, CT, USA) for 1 h. After filtering
and centrifugation for 15 min at 12,000× g, the clear supernatant was used for UPLC-qTOF-
MS analysis. The UPLC-qTOF-MS analysis of the extract was conducted under the exact
conditions reported in [10,18]. The used HSS T3 column (100 × 1.0 mm, 1.8 m particle size;
Waters) was installed on an ACQUITY UPLC system (Waters, Milford, MA, USA) equipped
with a 6540 Ultra-High-Definition (UHD) Accurate-Mass Q-TOFLC/MS (Agilent, Palo Alto,
CA, USA), coupled to an ESI interface, and was operated in a positive or negative ion
mode.

2.4. Biosynthesis of the Silver Nanoparticles of LMNS

A stock aqueous 10 mL AgNO3 solution at 25 ◦C and various concentrations (100–500 µL)
of LME were added to this reaction mixture (1 mM). The reaction mixture was shaken slightly
and allowed to stand in the dark at room temperature overnight, and then filtered with the
filter paper Whatman 1 [20]. Ag NPs were produced when AgNO3 solution was reduced
with LME.

2.5. UV–Vis Spectra and Transmission Electron Microscopy (TEM) Measurements of LMNS

The absorbance spectra of nanoparticle solutions were recorded following the synthesis
(within 1 h) using de-ionized water as the blank. A Shimadzu UV-2401 (PC) S, UV-Vis
spectrophotometer was used and operated using Spectrum TM Version 6.87 (Shimadzu,
Japan) scanning from 200–800 nm. The maximum absorption wavelength, λmax was then
noted [18]. To assess the particle size and shape, a JEOL JEM 1011 (JEOL Ltd., Tokyo, Japan)
transmission electron microscope was employed. Then, 400 µL of nanoparticle solutions
were applied to copper grids (400 mesh) that had been coated with carbon and dried at
30 ◦C prior to image capturing [21].

2.6. Bioassays
2.6.1. Drugs and Chemicals

Potassium dichromate (K2Cr2O7) [CAS# 7778-50-9] was purchased from Sigma-Aldrich
Chemical Co. St. Louis, Missouri, (USA). Ethanol (96%; CAS #: 64-17-5) was pur-
chased from Merck Millipore (MS, USA). Creatinine (cat# CR 12 51), Urea (cat# UR 21 10)
and catalase (cat# CA 25 17) colorimetric kits were both purchased from Bio Diagnostic
(Giza, Egypt), while the ELISA kits, including nuclear factor erythroid 2-related factor 2
(Nrf2, cat# SL0985Ra), prostaglandin E2 (PGE2, cat# SL0601Ra), cyclooxygenase 2 (COX-2,
cat# SL0218Ra), UDP-glucuronosyltransferase (cat# SL1171Ra), mitogen-activated protein
kinase (MAPK) (cat# SL1529Ra), and extracellular signal-regulated kinase (ERK) (cat#
SL1390Ra), were all obtained from (SUNLONG BIOTECH CO., Ltd.), Hangzhou, China.
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2.6.2. Acute Toxicity

As according to the procedures outlined by previous reports [22], 2-month-old male
and female Swiss albino mice with an average weight of 20.4 g were used to assess the
toxicity of the LME and its LMNS applying the OECD guideline no. 420. The mice were
separated into 4 groups consisting of 5 animals each, who were acclimated for 5 days
prior to the test experiments, and then starved overnight before dosing. The mice were
given a single dose of the tested material (2000 mg/kg) by gavage, and their ears, skin,
mucous membranes, eyes, respiration, circulatory, autonomic, and somatomotor activities
were observed for any alterations. In particular, convulsions, tremors, diarrhea, salivation,
lethargy, sleep, and coma, behavior patterns were all observed. The extract under test did
not exhibit any fatalities or toxic indications up to an extract dose of 2000 mg/kg body
weight, indicating that it is non-toxic and safe to use.

2.6.3. Experimental Animals and Ethical Treatments

Around 48 male Albino Wister rats (with an average weight of 140–150 g) were pur-
chased from the Animal Facility of the National Research Centre, Egypt. The animals were
kept in standard cages under pathogen-free conditions, maintained in an environmentally
controlled room (at 22–25 ◦C, and 50–60% humidity with a 12 h light/dark cycle,) and
received a standard laboratory diet and water ad libitum. The rats were allowed to adapt to
these conditions for 2 weeks prior to beginning the experimental protocol. All studies were
conducted in accordance with the Cairo University’s Ethical Committee’s [Approval No:
Vet CU 03162023753] authorized Ethical Guidelines for the Care and Use of Experimental
Animals.

2.6.4. Experimental Design

Animals were randomly allocated into six groups (n = 8), which are as follows: group
1: normal control (healthy normal control), wherein rats received normal saline solution
(0.9%) for 14 days, group 2: (positive control), whereby the selected rats received K2Cr2O7
(15 mg/kg body weight; i.p) once on day 13 of the experiment [15], groups 3 and 4,
wherein rats received LME (200 and 400 mg/kg body weight; p.o, respectively) daily
for 14 days, and groups 5 and 6, wherein rats received LMNS (200 and 400 mg/kg body
weight; p.o, respectively) daily for 14 days. Nephrotoxicity was induced by a single dose of
15 mg/kg BW i.p. injection of K2Cr2O7 to all groups except for the normal control group
on day 13 of the experiment [23] (Figure S1).

2.6.5. Blood Collection and Tissue Preparation

Forty-eight hours after the last treatment, rats were anaesthetized for blood sample
collection from the retro-orbital plexus. Blood was first collected in clean centrifuge tubes,
left to clot, and then centrifuged for 10 min at 1409× g using a cooling centrifuge (Sigma
and Laborzentrifugen, 2 k15, Germany). The serum was separated and stored in Eppendorf
tubes at −80 ◦C to be used for the assessment of the creatinine and urea levels. Kidneys
were then carefully dissected and thoroughly cleansed with PBS buffer after all animals
were quickly euthanized by cervical dislocation. For histological analysis, a portion of the
kidney tissues of a predetermined number of animals in each group were fixed in 10%
formalin buffer for 24 h, while the remaining kidney tissues (0.5 g) were homogenized in
10% (w/v) phosphate buffer, which was ice cold. At 4 ◦C for 10 min, the homogenate was
centrifuged at 1800× g. The supernatant was put into Eppendorf tubes and kept at a low
temperature to be used for the measuring of the biochemical parameters.

2.6.6. Assays for Kidney Function

The serum urea and creatinine were determined using colorimetric kits according to
the manufacturer’s instructions (Bio Diagnostic, Giza, Egypt) [24].
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2.6.7. Biochemical Assessment of Renal Tissue

Catalase activity was assessed using the colorimetric method, while the levels of
nuclear factor erythroid 2-related factor 2 (Nrf2), prostaglandin E2 (PGE2), cyclooxygenase
2 (COX-2), UDP-glucuronosyltransferase, mitogen-activated protein kinase (MAPK), and
extracellular signal-regulated kinase (ERK) were all assessed in renal homogenates using
ELISA kits following the manufacturer’s instructions.

2.6.8. Histopathological Assays
Light Microscopic Examination

Fixed kidney samples were dehydrated with a series of 100% alcohol washes followed
by xylene and embedded in paraffin. Sections comprising 4 µm thick were prepared using
a rotatory microtome, deparaffinized, and stained with hematoxylin and eosin (H&E) for
histopathological examination [25].

Immunohistochemical Examination

The presence of the cyclooxygenase 2 protein (COX 2), a dark, brown-colored stained
cytoplasm, was considered as a positive response. According to Cote, 1993 [26], the
used methods were (i) image analysis to assess immunohistochemical observations (area
percentage), and (ii) a digital Leica Quin 500Â image analysis system (Leica Microsystems,
Switzerland) housed at the Faculty of Dentistry, Cairo University for the analysis of sections
stained with anti-COX-2 (Catalogue No.: PA1-37504, ThermoFisher Scientific), Waltham,
MA, USA.

2.6.9. Statistical Analysis

All results were expressed as mean ± SD. Data analysis was achieved by the one-way
analysis of variance (ANOVA, to determine the significance of the mean between the groups)
followed by the Tukey’s multiple comparison test. p-value < 0.05 was considered statistically
significant using the software program GraphPad Prism (version 7.00; GraphPad Software,
Inc., San Diego, CA, USA).

3. Results
3.1. LME’ Phytochemical Profiling Using UPLC-QTOF–MS/MS

The UPLC-QTOF–MS/MS-based metabolic profiling of LME is a powerful tool for
the characterization of natural bioactive metabolites in plant extracts at a high sensitivity
level [27]. A total of 45 compounds were putatively identified belonging to various classes,
viz; phenolic acids, flavonoids, coumarins, and fatty acids based on their characteristic frag-
mentation patterns as acquired in both negative and positive ionization modes (Figure 1a,b),
in addition to the previously reported literature. Details of each class identification are
provided in the next subsections.
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17 9.353 179.035 C9H7O4− 135 −1.76 Caffeic acid 
18 9.722 515.0831 C24H19O13− 353 −0.36 Chlorogenic acid hexoside 

Figure 1. UPLC-qTOF-MS base peak chromatogram of LME metabolites detected in their (a) negative
and (b) positive ionization modes. Peak numbers follow of that listed in Table 1 for the identified
metabolites.

Table 1. Tentative identification of LME metabolites by UPLC-qTOF-MS in their negative and positive
ion modes.

No. Rt. m/z [M−H]−/[M+H]+ MS/MS Error (ppm) Tentative Identification

1 0.951 191.0561 C7H11O6
− 127 −2.54 Quinic acid

2 1.003 133.0142 C4H5O5
− 115 4.08 Malic acid

3 1.059 290.0881 C11H16NO8
− 200, 128 −8.11 Deoxy-dehydro-N-acetyl

neuraminic acid

4 1.493 167.0197 C4H7O7
− 124 −8.18 Tartaric acid

5 2.569 163.0401 C9H7O3
− 145, 119 −1.42 P-coumaric acid

6 2.843 169.0142 C7H5O5
− 125 −2.05 Gallic acid

7 3.558 341.0878 C15H17O9
− 179, 161 −0.57 Caffeoyl hexose

8 7.426 315.0722 C13H15O9
− 153 −4.89 Protocatechuic

acid-O-hexoside

9 7.565 137.0244 C7H5O3
− 119 −2.05 p-hydroxy benzoic acid

10 8.137 311.0409 C13H11O9
− 179, 149 −0.78 Caffeoyl tartaric acid

11 8.402 137.0244 C7H6O3
− 93 −0.6 Salicylic acid

12 8.537 353.0878 C16H17O9
− 191 −1.68 Chlorogenic acid

13 8.610 325.0929 C15H17O8
− 191, 173 −1.56 Coumaroyl hexoside
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Table 1. Cont.

No. Rt. m/z [M−H]−/[M+H]+ MS/MS Error (ppm) Tentative Identification

14 8.680 177.019 C9H5O4
− 89 −1.5 Aesculetin

15 8.710 339.0722 C15H15O9
− 177 −0.72 Aesculin

16 8.854 313.0929 C14H17O8
− 179 0.35 Unknown caffeic acid

derivative

17 9.353 179.035 C9H7O4
− 135 −1.76 Caffeic acid

18 9.722 515.0831 C24H19O13
− 353 −0.36 Chlorogenic acid hexoside

19 9.827 611.1607 C27H31O16
+ 449, 287 2.56 Luteolin- dihexoside

20 10.134 595.1657 C27H31O15
+ 449, 287 3.44 Luteolin-O-rutinoside

21 10.152 461.0725 C21H17O12
− 285 0.11 Luteolin-O-glucuronic

acid

22 10.277 447.0933 C21H19O11
− 285 1.87 Luteolin-O-hexoside

23 10.291 443.1042 C15H23O15
− 285 4.15 Unknown luteolin

derivative

24 10.349 195.0652 C10H11O4
+ 179 0.95 Ferulic acid

25 10.451 515.1195 C25H23O12
− 353, 191 0.97 Di-caffeoylquinic acid

26 10.464 197.1172 C11H16O3
+ 179, 133 1.64 Unknown phenolic acid

27 10.745 433.1129 C21H21O10
+ 271 2.37 Apigenin-O-hexoside

28 10.670 445.0776 C21H17O11
− 269 −1.04 Unknown apigenin

derivative

29 10.758 447.0922 C21H19O11
+ 271 2.44 Apigenin-O-glucuronic

acid

30 10.934 187.0976 C9H15O4
− 143 −0.09 Nonanedioic acid

31 11.004 211.0965 C11H15O4
+ 179 8.02 Unknown caffeic acid

derivative

32 11.129 227.1278 C12H19O4
+ 209 1.26 Hydroxy jasmonic acid

33 11.618 461.1078 C22H21O11
+ 271 1.6 Unknown apigenin

derivative

34 11.823 285.0405 C15H9O6
− 257, 199 −2.58 Luteolin

35 11.889 571.0882 C30H19O12
− 285 −1.57 Unknown Luteolin

derivative

36 12.182 209.1536 C13H21O2
+ 173 1.47 Tridecatrienoic acid

37 12.515 269.0455 C15H9O5
− 117 −2.42 Apigenin

38 12.540 331.2479 C18H35O5
+ 313 2.42 Trihydroxy-octadecenoic

acid

39 12.549 337.0354 C18H9O7
− 269 5.85 Unknown apigenin

derivative

40 13.087 301.202 C16H29O5
− 283 0.49 Hydroxy hexadecanedioic

acid

41 13.22 287.2228 C16H31O4
− 269 −1.79 Dihydroxy hexadecanoic

acid

42 13.782 941.5162 C45H83O16P2
− - 7.3 Phosphatidylinositol

phosphate (18:0/18:2)

43 14.648 318.3003 C18H40NO3
+ 303 1.8 Amino octadecanetriol

44 17.273 295.2268 C18H31O3
− 277 1.6 Hydroxy octadecdienoic

acid

45 19.08 271.2279 C16H31O3
− 225 −1.22 Hydroxy-palmitic acid

3.2. Identification of Hydroxycinnamic and Hydroxy Benzoic Acids

Hydroxycinnamic (HCAs) and hydroxy benzoic acids are natural phenolic compounds
with an excellent antioxidant activity. Structurally, the C6-C3 phenylpropanoid skeleton is
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the primary scaffold of HCAs that are recognized by the attachment of hydroxyl group(s)
to an aromatic ring and the carboxyl group present in the lateral chain. The substitution
and the position of these hydroxyl groups contribute to the diversity of the HCAs [28]. In
the current study, both cinnamates and benzoates were detected either in their free form,
esterified with quinic or tartaric acids, or bound to sugar moieties, as depicted in Figure 1
and Table 1.

Delving into further detail, peaks 7 and 18 displayed [M-H]− at m/z 341.00878 (C15H17O9
−)

and 515.0831 (C24H19O13
−), respectively, accompanied with a characteristic loss of the hexose

unit (162 amu) along with the generation of their corresponding acids at m/z 179 and 353, respec-
tively (Otify 23). Both were annotated as caffeoyl-O-hexose and chlorogenic acid-O-hexoside,
respectively (Figures S2 and S3). The former was previously identified in L. nudicaulis aerial
parts [8], whereas chlorogenic acid-O-hexoside was identified for the first time in LME.
Likewise, peak 8 (315.0722, C13H15O9

−) showed an intense ion peak of protocatechuic acid
after the elimination of the hexose unit (Figure S4) [29].

3.2.1. Identification of Coumarins

Coumarins are defined as natural bioactive molecules containing a benzopyranone
core. They have demonstrated diverse pharmacological activities viz; anti-inflammatory,
anticoagulant, antimicrobial, and anti-Alzheimer effects [30]. Indeed, at peaks 14 and 15,
esculetin (m/z 177.019, C9H5O4

−) and its glycoside esculin (m/z 339.0722, C15H15O9
−)

were characterized by the presence of the diagnostic fragment at m/z 177 post-elimination
of hexose (Figures S5 and S6). Esculetin was previously isolated from L. spinosa [31], while,
esculin was the first time to be reported in LME.

3.2.2. Identification of Flavonoids

Flavonoids are natural secondary metabolites containing the main structural unit of
2-phenylchromone. They are ubiquitously distributed across various vegetables and fruits,
with luteolin and apigenin being the most abundant flavones detected in their glycosylated
forms. As illustrated in Table 1, 8 luteolin and apigenin glycosides were identified along
with their parent aglycones. In the MS/MS spectra, peaks 21 (461.0725, C21H17O12

−)
and 22 (447.0933,C21H19O11

−) displayed a diagnostic fragment ion at m/z 285 due to the
successive loss of the glucuronic acid (−176 amu) (Figure S7) and hexose units (−162 amu)
(Figure S8), with the liberation of luteolin aglycone [32]. Therefore, they were assigned
as luteolin-3-O-glucouronic acid and luteolin-3-O-hexoside, respectively. Higher intensity
of fragment ions observed at m/z 285 [M-H-162]− than 284 [M-H-162]− was deemed to
be indicative of the heterolytic cleavage and the glycosylation site at 3-OH (Figure S8).
Luteolin can be distinguished from kaempferol by the presence of a series of diagnostic
fragments at m/z 175, 151, and 133, respectively (Figure S9) [33]. A similar fragmentation
pattern was observed in peaks 27 and 29, which were identified as apigenin-3-O-hexoside
and apigenin-3-O-glucouronic acid, respectively, with the elimination of [M-H-162]− and
[M-H-176]− yielding apigenin aglycone at m/z 271 (Figure S10) [34].

3.2.3. Identification of Fatty and Organic Acids

Linoleic acid is an essential polyunsaturated fatty acid (FA) that plays a crucial role in
reducing the incidence of heart diseases and decreasing cardiometabolic biomarkers, such
as LDL [35]. In the same context, palmitic acid (16:0) is one of the most important saturated
FA that constitutes 20–30% of the total FA in the phospholipid bilayer membranes [36]. No-
tably, hydroxylated linoleic and palmitic acids (at peaks 44 and 45, respectively) displayed
diagnostic fragment ions formed through the loss of water, CO2, or both moieties [8]. The es-
ters of fatty acids have evoked increasing interests due to their potential anti-inflammatory
activity [37].

In regard to the organic acids, four acids were identified based on the characteristic
MS2 spectrum and displayed intense precursor peaks at m/z 191, 133, 167, 290, 187, and 227
for quinic, malic acid, tartaric acid, deoxy-dehydro-N-acetylneuraminic acid, nonanedioic
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acid, and hydroxy jasmonic acid, respectively. These acids were previously detected in L.
nudicaulis alcoholic extract [8].

3.3. Chemical Biosynthesis of LMNS
3.3.1. UV–Vis Spectroscopic Analysis of LMNS

A plasmon band between 445 and 456 nm, which is typical of silver nanoparticles,
was visible in the samples’ UV–Vis spectra [38]. The Ag NPs solutions vary in color
from colorless to pale yellow to dark brown, depending on the number of nanoparticles
produced. Even after 30 min, the hue remained constant, thereby showing that there
was no obvious particle aggregation. The aggregation was then indicated with a color
shift to darkness, and a clear solution with precipitated black silver was evident. Ag NPs
were produced as a result of reducing the AgNO3 solution with LME. The absorption
band emerged at longer wavelengths when using small spherical LMNS, as shown in
Figure 2a. The surface plasmon resonance (SPR) band strength increased with the sample
concentration, indicating that more Ag+ ions transformed into Ag nanoparticles [20].
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Figure 2. (a) UV–Vis spectroscopic data, and (b) the TEM image of the silver nanoparticle distribution
of LME.

3.3.2. TEM Results of LMNS

The produced LMNS’s size and shape were evaluated using the HRTEM method.
According to Figure 2b, the majority of the LMNS’s were spherical, with particle sizes
ranging from 6.37 to 3.21 nm, respectively. Ag NPs obtained from the LME was spherical
in shape with particle sizes ranging from 22.76–57.24 nm, respectively. Due to the capping
effect of the plant extract during the preparation process, the particles were subsequently
separated from one another [18].

3.4. Biological Results
3.4.1. LD50 Assay’ Result

Swiss albino mice were administered LME and LMNS orally at doses up to 2000 mg/kg,
although neither of these materials caused any visible toxicity or mortality within 24 h.
The median lethal dose (LD50) of LME and LMNS in mice may therefore be greater than
2000 mg/kg. Compounds with LD50 values greater than 50 mg/kg body weight were
regarded as nontoxic [39].

The general condition of animals subjected during the experiment seemed to be well
during the adaptation and protective period, as no significant detected weight gain/loss
was observed except for after K2Cr2O7 i.p. injection. The observed symptoms in animals
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who received potassium dichromate included several sicknesses, dullness, and ascites,
and 1–2 cases of death were recorded per group. Meanwhile, all the protected groups
also seemed to be generally good with no mortality observed, even for the group which
received LMNS at dose of 400 mg/kg.

3.4.2. Effect on Urea and Creatinine

Intraperitoneal injections of K2Cr2O7 caused a significant increase in the serum levels
of urea and creatinine compared to the normal control group, thereby suggestive for its neg-
ative effects. Meanwhile, the administration of LME (at 200 and 400 mg/kg, respectively)
or LMNS (at 200 and 400 mg/kg, respectively) markedly (p < 0.05) decreased urea and
creatinine levels compared to the positive control group in a dose-dependent manner. Of
note, a significant difference was observed between LME and their nanoform in decreasing
urea and creatinine levels (Figure 3), with LMNS showing a better effect than LME in
reducing the serum levels of urea and creatinine.
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Figure 3. Effect of treatment with LME and LMNS on the serum (A) creatinine and (B) urea levels
under nephrotoxicity induced by a single intraperitoneal injection of K2Cr2O7 in rats. Data are
expressed as (mean ± SD) where n = 6. Statistical analysis was performed using the one-way analysis
of variance (ANOVA) followed by the Tukey’s multiple comparison test. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001.

3.4.3. Effect on Catalyzing Enzymes (Catalase and UGTs) and Nrf2

Single intraperitoneal injections of K2Cr2O7 induced marked reductions in the levels
of catalase and UGTs in kidney tissue compared to the normal control group. Meanwhile,
pretreatment with LME (200 and 400 mg/kg, respectively) or LMNS (200 and 400 mg/kg,
respectively) markedly (p < 0.05) alleviated the reduction in catalase and UGT levels
compared with the positive control group in a dose-dependent manner (Figure 4a,b). There
was no significant difference observed between the LME and LMNS in restoring renal
catalase levels, while LMNS exerted a more potent effect than LME in restoring renal UGT
levels.
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Figure 4. Effect of treatment with LME and LMNS on kidney (A) catalase, (B) UGT, and (C) Nrf2
levels in nephrotoxicity induced by a single i.p. of K2Cr2O7 in rats. Data are expressed as (mean ±
SD) where n = 6. Statistical analysis was performed using the one-way analysis of variance (ANOVA)
followed by the Tukey’s multiple comparison test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

Kidney content Nrf2 markedly decreased following K2Cr2O7 i.p. injection compared
to the negative control group. Meanwhile, the administration of LME (200 and 400 mg/kg,
respectively) or LMNS (200 and 400 mg/kg, respectively) caused a significant (p < 0.05)
elevation in Nrf2 levels in the kidney as compared with the positive control group in
a dose-dependent manner (Figure 4c). Furthermore, there was no significant difference
observed between the LME and LMNS in increasing the renal Nrf2 levels.

3.4.4. Effect on Inflammation Biomarkers (COX-2 and PGE2)

Intraperitoneal injections of K2Cr2O7 markedly increased renal COX-2 activity com-
pared to the negative control group. In contrast, the administration of LMNS (200 and
400 mg/kg, respectively) significantly (p < 0.05) decreased COX-2 activities to the basal
level compared to the positive control group. The suppression of COX-2 with LME (200
and 400 mg/kg, respectively) was achieved as a significant change when compared to the
positive control group in a dose-dependent manner. Significant differences were observed
between all the treatment groups where the basal level was only achieved by the LMNS
(400 mg/kg) treatment (Figure 5a).
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Figure 5. Effect of treatment with LME and LMNS on (A) COX-2 and (B) PGE2 levels in the kidney
tissue under nephrotoxicity induced by a single intraperitoneal injection of K2Cr2O7- in rats. Data are
expressed as (mean ± SD) where n = 6. Statistical analysis was performed using the one-way analysis
of variance (ANOVA) followed by the Tukey’s multiple comparison test. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001.

Consequently, K2Cr2O7 intoxication resulted in an increased production of the in-
flammatory mediator, PGE2 by about 1.6-fold compared to the negative control group.
This finding was deemed to be probably due to increased synthesis by the actions of the
COX-2 enzyme. All treatments induced a significant decrease in the renal contents of PGE2
compared to the positive group (Figure 5b). Notably, LMNS (400 mg/kg) showed a better
effect than LME (400 mg/kg) in reducing the renal contents of PGE2.

3.4.5. Effect on the MAPK/ERK Pathway

Administration of K2Cr2O7 led to significant increases in the MAPK and ERK levels in
the kidney tissue compared with the negative control group. Meanwhile, the administration
of LME (200 and 400 mg/kg, respectively) or LMNS (200 and 400 mg/kg, respectively)
markedly (p < 0.05) decreased MAPK and ERK levels compared to the positive control
group in a dose-dependent manner (Figure 6). No significant differences were observed
between the LMNS and LME in reducing the renal MAPK and ERK levels.

3.4.6. Histopathological Examination
Light Microscopic Observations

H&E-stained kidney tissues obtained from the control rats (Group I) showed a normal
histoarchitecture of the renal cortex that consisted of a renal corpuscle with a normal
diameter and housed glomerular capillaries, and enclosed with the Bowman’s capsule were
the proximal convoluted tubules (PCT), which were lined with the truncated pyramidal
cells with narrow lumina, and distal convoluted tubules (DCT) which were lined with the
cuboidal cells with a wide lumina (Figure 7a). However, the renal tissue of K2Cr2O7-treated
rats (Group II) displayed several histological changes of the renal cortex compared to
the control rats. The renal cortex showed enlarged renal corpuscles with a wide renal
space, tubular degeneration, while the proximal convoluted tubules displayed vacuolar
degeneration with a luminal cast, and the distal convoluted tubules showed a complete loss
of the cytoplasmic content with the sloughing of the lining cuboidal cells into the tubular
lumen (Figure 7b). Meanwhile, rats pretreated with 200 mg/kg LME (Group III) displayed
renal tissues with attenuated histopathological lesions compared to group II, as manifested
by the less enlarged renal corpuscle with a narrower renal space, with several PCTs and
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DCTs appearing with a nearly normal histoarchitecture, though also accompanied with the
tubular degeneration of a few distal convoluted tubules and a few proximal convoluted
tubules showing vacuolar degeneration (as shown in Figure 7c). Moreover, rats pretreated
with 400 mg/kg LME (Group IV) showed less structural alterations in the renal tissue
compared with Group II. The renal cortex had a nearly normal-sized renal corpuscle with a
normal renal space, and most proximal and distal convoluted tubules displayed a nearly
normal cellular architecture except for a few tubules that appeared to be degenerated
(Figure 7d). Furthermore, rats pretreated with 200 mg/kg and 400 mg/kg LMNS (Group V
and VI), respectively, showed a marked recovery of the renal tissue compared to Group
II. The renal cortex displayed nearly normal renal corpuscles accompanied with a normal
renal space, and most of the proximal and distal convoluted tubules had nearly normal
lining cells, except for a few proximal and distal convoluted tubules that had a loss of
cytoplasmic acidophilia (Figure 7e,f).
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*** p ≤ 0.001, **** p ≤ 0.0001.

Immunohistochemical Examination of Cyclo-Oxygenase 2 (COX-2)

The immunohistochemical examination of COX-2-stained renal tissue of control rats
(Group I) showed negative immune-expression (Figure 8a). However, renal tissue of rats
treated with K2Cr2O7 (Group II) showed a strong positive COX-2 immunoreaction in the
cytoplasm of proximal and distal convoluted tubules that was significantly increased by
16.6 compared to control rats (Figures 8b and 9). In contrast, rats pretreated with LME
200 mg/kg (Group III) showed a moderate COX-2 immuno-expression in the cytoplasm of
proximal and distal convoluted tubules that significantly decreased by 10.4 compared to
group II (Figures 8c and 9). Meanwhile, rats pretreated with LME 400 mg/kg (Group IV)
and LMNS 200 mg/kg (Group V) respectively displayed a mild COX-2 immunoreactivity
in the cytoplasm of proximal and distal convoluted tubules that significantly reduced
by 5.9 and 3.6 versus group II (Figure 8d,e and Figure 9) suggestive for the improved
effect of LMSN compared to LME. Additionally, rats pretreated with LMNS 400 mg/kg
(Group VI) had a negligible COX-2 immuno-expression in the cytoplasm of proximal
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and distal convoluted tubules that significantly diminished by 0.8 compared to group II
(Figures 8f and 9).
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Figure 7. The renal cortex tissue of rats. H&E stain. X400. (a) The renal cortex of control rats showed
normal renal corpuscles (RC), proximal convoluted tubules (PCT), and distal convoluted tubules
(DCT). (b) Rats treated with K2Cr2O7 revealed an enlarged renal corpuscle (RC) with a wide renal
space (red star), tubular degeneration (yellow circle), vacuolar degeneration (yellow arrow) of the
proximal convoluted tubules (PCT) with a luminal cast (yellow arrowhead), and distal convoluted
tubules (DCT) with a loss in the cytoplasmic content (green arrow) with the sloughing of the lining
cuboidal cells (black arrowhead) into the tubular lumen. (c) Rats pretreated with 200 mg/kg LME
had a less enlarged renal corpuscle (RC) with a narrower renal space (red star), with some PCTs
(yellow arrow) and DCTs (green arrow) appearing with nearly normal histoarchitecture, but there
was the tubular degeneration of several DCTs (black circle) and PCTs (black arrow) which displayed
vacuolar degeneration. (d) Rats pretreated with 400 mg/kg LME exhibited a nearly normal-sized
renal corpuscle (RC) with a normal renal space (red star), with most proximal (PCT) and distal (DCT)
convoluted tubules appearing nearly normal except for a few DCTs (yellow arrow) and PCTs (black
arrow) appearing degenerated. (e) Rats pretreated with 200 mg/kg LMNS and (f) 400 mg/kg LMNS
showed a renal cortex had nearly normal renal corpuscles (RC) with a normal renal space (yellow
star), and most of the proximal (PCT) and distal (DCT) convoluted tubules appeared to have nearly
normal lining cells, except for a few proximal (green arrows) and distal (yellow arrows) convoluted
tubules that displayed a loss in cytoplasmic acidophilia.
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cortex of control rats showed negative COX2 immuno-expression in the cytoplasm of proximal
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4. Discussion

Potassium dichromate (K2Cr2O7), is the most toxic form of Cr, and has been shown
to induce nephrotoxicity. Post K2Cr2O7 administration, kidneys accumulate the highest
concentration of hexavalent chromium, which is specifically deposited into the proximal
convoluted tubules [40]. Immediately, K2Cr2O7 is reduced to trivalent chromium [Cr(III)],
promoting reactive oxygen species (ROS) production via the Fenton reaction. Thus, ox-
idative stress has been predominantly linked to K2Cr2O7-induced nephrotoxicity [41]. In
the current study, K2Cr2O7 administration at a single dose of 15 mg/kg BW caused renal
dysfunction, as detected by the marked changes in the serum creatinine and urea. This
result was deemed to be in agreement with El-Demerdash et al., 2021 [15]. Meanwhile,
pretreatment with LME and LMNS alleviated the renal toxicity of K2Cr2O7, as manifested
by the decreased levels in creatinine and urea.

According to Sharma et al., 2022 [42], chromium toxicity is associated with the pro-
duction of ROS, which causes oxidative stress and disturbs the equilibrium between the
oxidants and the antioxidants. Rats treated with K2Cr2O7 showed a notable reduction in
the antioxidant enzyme catalase, which is crucial for preserving the cellular redox equi-
librium, and preventing oxidative damage by converting hydrogen peroxide (H2O2) into
water and oxygen, respectively. Catalase may be inhibited by the chromium attaching
to the enzyme’s active site and/or by overusing the enzyme to neutralize the free radi-
cals produced by the metal, which results in an irreversible inhibition of the enzyme’s
activity [43]. In the present work, pretreatment with both LME and LMNS ameliorated
the reduction in the catalase levels induced by K2Cr2O7. Therefore, LME exhibited a
strong antioxidant scavenging activity, which was mostly attributed to its rich phenolic
composition that was exemplified by flavonoids, such as luteolin, and phenolic acids,
such as protocatechuic acid, both of which are potential antioxidants and thus protect
the kidney from K2Cr2O7-induced oxidative damage and alleviate nephrotoxicity [44–46].
UDP-glucuronosyltransferase (UGT) is an essential enzyme in the metabolism and elimi-
nation of drugs and other xenobiotics from the body [47]. In the present study, K2Cr2O7
significantly downregulated UGT levels in the K2Cr2O7-treated group compared with
the control group, which was likely attributed to either the disruption of the structure,
or by altering the catalytic activity of UGT enzymes by K2Cr2O7, leading to interference
with their normal functioning [48]. Pretreatment with both LME and LMNS prevented
the reduction in the UGT levels relative to the K2Cr2O7-treated group. LME is rich in
antioxidant phytochemicals, including especially the flavonoids and phenolic acids, which
promote the induction of phase II enzymes, such as UGT through a variety of signaling
pathways, thereby enhancing metabolism, xenobiotic detoxification, and antioxidant and
free radical scavenging activity capacity [49]. Numerous ligand-activated transcription
factors, particularly those belonging to the nuclear receptor superfamily and their natural
or synthetic ligands, have been demonstrated to activate these UGT genes. Nuclear factor
erythroid-related factor 2 (Nrf2) is one of these factors [50,51]. Nrf2, a key redox regulator,
controls antioxidant genes and phase II detoxifying enzymes to maintain the intracellular
redox equilibrium, and to further exert a significant protective effect against oxidative
stress [52]. Rats treated with K2Cr2O7 showed a marked reduction in Nrf2 levels compared
to the control rats. A previous study reported that K2Cr2O7 decreased the expression of
Nrf2 in lung tissue, which was likely mediated via the inhibition of the Akt/GSK-3β/Fyn
signaling pathway [53]. Both LME and LMNS mitigated against reductions in the Nrf2 level
compared to the K2Cr2O7-treated group, which was indicated to be one of the involved
action mechanisms. This protective effect may be due to the rich flavonoid content in LME,
such as apigenin and luteolin, both of which have proven to increase the Nrf2 level in
human hepatoma HepG2 cells [54].

Another explanation of renal injury induced by dichromate is through the modulation
of the inflammatory process, as manifested by the increased COX-2 and PGE2 levels in the
K2Cr2O7 group relative to the control rats. Studies have shown that K2Cr2O7 enhances the
thyroid expression of COX-2, an inducible enzyme that catalyzes the conversion of arachi-
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donic acid to prostaglandins, which are involved in inflammation and pain progression [55].
ROS generated by K2Cr2O7 have the power to significantly alter the regulation of redox-
sensitive genes, including the upregulation of COX-2 [55,56]. In this study, pretreatment
with LME and LMNS limited the elevation in COX-2 and PGE2 levels and reduced the
inflammation relative to the K2Cr2O7-treated group. The anti-inflammatory effect of LME
may be likewise attributed to flavonoids and phenolic acids, such as luteolin, apigenin, and
protocatechuic acid which were all found to abrogate the inflammatory response through
the inhibition of COX-2 and PGE2 [57,58].

The mitogen-activated protein kinase (MAPK) pathway is triggered when intracel-
lular ROS levels are consistently elevated [59]. This explains why the K2Cr2O7-treated
group in this study displayed the higher MAPK and ERK levels. According to Yin et al.,
2019 [60], K2Cr2O7-induced kidney damage is mediated by the overexpression of MAPK
and ERK. Hexavalent chromium has also been reported to promote ROS production and
activate the MAPK/ERK pathway, which was shown to mediate the overexpression of
COX2 and the production of PGE2 [61,62]. As opposed to the group treated with K2Cr2O7,
pretreatment with LME and LMNS reduced the MAPK and ERK levels in the renal tis-
sue. Protocatechuic acid, a phenolic acid in LME, was found to reduce kidney damage
induced by lipopolysaccharides through the downregulation of the MAPK/ERK signaling
pathway [63]. Furthermore, apigenin and luteolin, the two major flavonoids detected in
LME, inhibited the MAPK/ERK pathway in LPS-stimulated microglia cells [64]. LMNS
demonstrated a better activity than LME in reducing the levels of urea, creatinine, COX-2,
and PGE2, as well as in restoring UGT levels. This could be due to the enhancement of the
biological effects of LME by silver nanoparticles through the augmentation of the active
biomolecule’s concentration [16].

In the present study, the renal tissue of K2Cr2O7-treated rats (Group II) displayed
several histological changes in the renal cortex compared with the control rats. The renal
cortex had enlarged renal corpuscles with a wide renal space, tubular degeneration, and
proximal convoluted tubules which displayed vacuolar degeneration with a luminal cast,
and distal convoluted tubules which showed the complete loss in the cytoplasmic content
with the sloughing of the lining cuboidal cells into the tubular lumen. These findings are in
accordance with previous reports [65–67], which were suggestive that K2Cr2O7-induced
toxicity and the induction of oxidative stress and apoptosis arise through the generation
of reactive oxygen species (ROS). Consequently, ROS triggered K2Cr2O7 toxicity owing to
the reduction of hexavalent chromium to the trivalent form, thereby inducing damage to
the cellular components [68]. Importantly, the unique molecular structure of the identified
chlorogenic acid with its multiple active hydroxyl groups enhances its antioxidant capacity.
Moreover, it effectively attenuated the activation of the NF-κB signaling pathway either
directly or indirectly leading to the blockage in the expression of several pro-inflammatory
factors, such as interleukin 6 (IL-6), TNF-α, and interleukin 1β (IL-1β) at the gene level [69].
Similarly, Cheng et al. [70] highlighted the potential activity of chlorogenic acid through
the inhibition of the Pb-induced increase of cytoplasmic NF-κB, Bax, cytochrome C, and
caspase-9 protein expressions.

Of note, Veeren et al. [71] reported the nephroprotective potential of caffeic acid, the
major phenolic acid of Antirhea borbonica mediated through the downregulation of the
pro-inflammatory molecules associated with the elevation in Nrf2 mRNA expression and
CAT enzyme activity, which was likewise detected using UPLC-MS in LME.

Recently, luteolin has shown a good reno-protective against renal injury caused by
multiple stimuli, such as renal ischemia, and nephrotoxic drugs mediated via its antioxidant
potential [72]. Importantly, apigenin and its glycosides, which have been identified as major
flavones in the L. mucronata extract are considered as one of the most potential flavonoids
containing a myriad of effects, such as anti-inflammatory, antioxidant, anti-cancer, and anti-
hypertensive effects. Recently, Alam et al. [73] highlighted the promising protective effect
of apigenin against cisplatin-induced nephrotoxicity. Moreover, it effectively protected the
renal mitochondria against carbon nanotube-induced mitochondrial dysfunction [73].
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With regard to coumarins, another phenolic subclass detected in LME, and more
specifically esculetin, the unique Launaea coumarin, has been reported to exert a higher
antioxidant and anti-inflammatory potential than other coumarins. It was able to prevent
apoptosis in tert-butyl hydroperoxide-induced oxidative stress in HEK294 cells which
is involved in chronic kidney diseases [74]. The production of advanced glycation end
products (AGEs), the disruption of proinflammatory cytokines, and the activation of cellular
pathways, such as the TGF-β/Smad, NF-kB (p65), and NLRP3/Caspase 1 axis, have all
been reported to be decreased by coumarins [75,76]. According to the mounting evidence,
coumarins may also prevent the kidneys from producing extracellular matrix components,
and from activating myofibroblasts that secrete α-smooth muscle action [77].

Unfortunately, most of the bioactive metabolites, including phenolic acids, flavonoids,
and coumarins are lipophobic, and their use has been limited due to their low bioavailabil-
ity, poor absorption, and tailored distribution to the target site. Herbal nano-formulations
can provide avenues to improve their cellular uptake and increase their transport from the
blood stream to the kidneys [78]. Interestingly, our findings were in line with [79], who
highlighted the promising antioxidant activity of the encapsulated apigenin for the treat-
ment of hepatocellular carcinoma with an excellent stability and bioavailability. In the same
context, the authors of [80] confirmed that the crystal structure of quercetin nanoparticles
demonstrated a higher bioavailability than quercetin itself due to the increased surface area
with a higher solubility. Notably, quercetin nanoparticles were able to inhibit the expression
of profibrogenic genes.

In our study, LMNS at a dose of 400 mg/kg exhibited a higher activity in the reduction
of renal PGE2, and serum urea and creatinine compared to a similar dose of LME. Regarding
the histopathological examination, LMNS treatment at both doses demonstrated a marked
recovery of the renal tissue with the renal cortex having nearly normal corpuscles with a
normal renal space. Future studies should now focus on identifying active agents in these
nano-formulations using isolation and spectroscopic techniques in order for the results to
be conclusive.

Histopathological and immunohistochemical assays as another measure type for the
demonstration of nephrotoxic and protective effects revealed enlarged renal corpuscles
that were observed in this study, coming in line with Saber et al. and Stoev et al., [81,82]
who hypothesized that an increased glomerular size may be attributed to glomerular
endothelial proliferation. In contrast, pretreatment with LME and LMNS demonstrated
the amelioration of K2Cr2O7 nephrotoxicity, which was evident in the form of decreased
histological lesions in the rat renal tissue. This amelioration was clear and marked in rats
the pretreated with LME and LMNS, as the renal cortex had nearly normal renal corpuscles,
and most of the proximal and distal convoluted tubules had nearly normal lining cells,
thereby indicating the powerful antioxidant effect of LME.

Likewise, proximal convoluted tubules exhibited vacuolar degeneration with a luminal
cast that was consistent with Hegazy et al. [83], who reported the tubular damage and
nephrotoxic effects of chromate owing to its accumulation in vacuoles inside the proximal
tubular cells, causing the slow excretion and staying of Cr in the kidney.

Furthermore, immunohistochemically, the renal tissue of rats treated with K2Cr2O7
(Group II) showed strong positive COX-2 immunoreactions in the cytoplasm of the proximal
and distal convoluted tubules compared to the control rats. These results are in accordance
with Salama et al. [84], who reported an increase in COX-2 immuno-expression in the
brain and lung tissues of rats that received a single i.p. injection of K2Cr2O7 (15 mg/kg).
Our results indicated that K2Cr2O7 likewise exhibits an inflammatory effect on the renal
tissue. Meanwhile, rats pretreated with LME and LMNS displayed a significant decrease in
COX2 immunoreaction in the renal tissue, with highest effects observed in the case of rats
pretreated with 200mg/kg LMNS.
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5. Conclusions

The present investigation has been regarded as the first examination of the possibility
of LME and LMNS against K2Cr2O7-intoxicated rats. The LME and LMNS dosing prior to
K2Cr2O7 significantly improved the renal tissue architecture, while also restoring the levels
of most biochemical indicators through inhibiting the MAPK/ERK pathway, activating
Nrf2, and altering antioxidant and metabolic enzymes (Figure 10). These findings imply
that LME and LMNS both provide nephroprotection against K2Cr2O7-induced toxicity,
which could be attributed to the chemical components of flavonoids, phenolic acids, organic
acids, coumarins, and fatty acids characterized using UPLC-ESI-qTOF-MS. Therefore, the
current findings support the conclusion that LME and LMNS could be prospective agents
and an innovative form of defense against nephrotoxicity. To demonstrate the effects of the
active compounds identified in the extract, subsequent research should standardize and
evaluate individual components.
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