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Abstract: Cadmium (Cd) represents a public health risk due to its non-biodegradability and long
biological half-life. The main target of Cd is the kidney, where it accumulates. In the present
narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney
morphological and functional damage caused by Cd and the state of the art about possible therapeutic
managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be
induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and
other research groups studied the possible pathophysiological molecular pathways induced by Cd,
such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy,
that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to
chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the
results of recent studies have confirmed the altered composition and functions of the gut microbial
communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet,
food components, and CKD management, and also taking into account that gut microbiota are very
sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in
foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced
kidney damage and, accordingly, could help in the prevention and treatment of CKD.

Keywords: cadmium; PTE; kidney; CKD; bone; oxidative stress; inflammation; apoptosis; microbiota;
nutraceuticals; Mediterranean diet

1. Cadmium: Who, Where and How

Potentially toxic elements (PTEs) are defined as elements that can be found in water,
soils, and sediments and are able to progressively accumulate and above certain limits to
cause severe damage to humans, animals, and the environment [1,2]. They are classified as
essential or nonessential elements [3]. The former are manganese, iron, nickel, and zinc,
necessary for the processes of growth, development, and other physiological activities of
the organism [4]. Nonessential elements, such as cadmium (Cd), arsenic, mercury, lead,
etc., cause trouble in the biological activities of organisms [5], as they can accumulate in
the body and are used as substitutes for essential elements. As an example, Cd is able
to replace calcium, so that the normal bone structure is altered, inducing bone diseases
(osteomalacia, decalcification, and osteoporosis) [6].

Cd is a PTE with atomic number 48, discovered in 1817 by Friedrich Stromeyer in some
samples of zinc carbonate; its name, in fact, comes from the Latin word “cadmia” meaning
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calamine, a mix of minerals rich in zinc carbonate, or from the Greek word “kadmeia” with
the same meaning [7].

Cd is particularly rare in the Earth’s crust, with a lithosphere concentration of about
0.1–0.2 mg/kg [8], but it can be mobilized into the atmosphere owing to the action of volcanoes
and the weathering of rocks by wind and rain [9], causing pollution of environmental air.

From the atmosphere, Cd is released to agricultural soils in a quantity calculated at
2500–15,000 tons annually [10]. Once in the soil, Cd concentration can increase owing
to the use of unprocessed drain waters, phosphate-based fertilizers, particularly those
obtained from seabed sediments with high Cd content [10], or different anthropogenic
activities. Cd is easily absorbed by plants owing to its high mobility within the soil-plant
system [11], even if its uptake is regulated by many factors related to soil characteristics, for
example particle size, pH, temperature, and plant activity, such as root size and rate of root
exudation and transpiration [12]. Cd absorption from plants may result in serious health
problems. In fact, evidence was provided that in people living in Cd-uncontaminated
locations, Cd-containing foods, such as vegetables, cereals, and legumes, are the main
source of Cd either in animals or in humans [10]. It must be kept in mind that Cd is toxic to
humans at lower concentrations than plants; therefore, apparently healthy plants are not
safe for human feeding [10].

Anthropogenic activities are considered to contribute almost 80–90% of Cd pollution
in the environment [13]. In fact, in addition to the use of phosphate fertilizers because of
incorrect waste management, a higher concentration of Cd in the soil was observed around
mining areas and industries where Cd is used for many purposes [3]. The extraction of
minerals, even if crucial for human progress, causes serious PTE pollution in the environ-
ment [14]. Owing to its peculiar characteristics, including great electrical conductivity,
resistance to corrosion, and low melting point, Cd has many industrial usaes, including
anticorrosive materials production, electronic constituents, plastic stabilizers, nickel-Cd
batteries, paints, and pigments [6].

Once in the environment, Cd is available for absorption by the organism. In humans,
different ways of penetration have been described: the respiratory apparatus, the digestive
apparatus, and the skin.

The main route of Cd exposure is considered cigarette smoke; in fact, Cd is accumu-
lated by tobacco plants in a high concentration (650 to 3630 ng/g tobacco) [15], particularly
when they are grown in contaminated soils. Another important environmental respiratory
entry is found in workers of mines, and in factories producing paints and batteries, owing
to the noteworthy quantities of Cd contained in dust and fumes [16]. It was demonstrated
that particles containing Cd are able to induce a direct noxious effect on both cell types (type
I and type II pneumocytes) of the alveolar epithelium with cellular injury, inflammation,
and fibrosis, increasing the possibility of respiratory diseases [17–19]. A large quantity of
Cd (50–100% of the inhaled particles with diameters smaller than 2–3 µm) [17] is entrapped
in the epithelium, crosses the pulmonary interstice and enters the circulation.

In nonsmokers, food is the main cause of Cd intake, and its absorption is related to
the type of toxicant, the amount, and the rate of exposure [20]. Cell death after chronic
Cd exposure may cause structural changes of the intestinal epithelium, resulting in larger
amounts of Cd permeation. Similarly, Cd-induced lesions of epithelial tight junctions
may allow further penetration of Cd through the intestinal barrier [21]. However, it was
recently demonstrated that gut bacteria can decrease the intestinal permeability of Cd, thus
providing direct protection of the barrier [22]. From the epithelium, Cd is absorbed into the
connective tissue and then into the submucosal capillaries.

As to skin absorption, previous experimental papers demonstrated the accumula-
tion of Cd in the shaved skin of mice and rats, causing hyperkeratosis, acanthosis, and
ulcerative changes in a dose-related manner [23]. The role of Cd in the prevention of skin
pathologies was recently shown in psoriatic subjects evaluated in the NHANES study,
which demonstrated a correlation between blood Cd and psoriasis severity [24].



Metabolites 2023, 13, 722 3 of 18

In the circulation, about 90% of Cd binds to α2-macroglobulin and albumin in the
serum [25] and reaches the liver, where the complex is destroyed and small cysteine-rich
proteins, metallothioneins (MT), are produced [26]. Of the four main isoforms (MT-1, -2,
-3, and -4), Cd, likewise to other PTEs, induces the synthesis of MT-1 and MT-2, able to
stimulate specific transcriptional factors, while MT-3 and MT-4 seem to have no role in
the detoxification of PTEs [27]. The complex Cd-MT is taken from hepatocytes to shield
the cells from toxic Cd ions. The excess part of these complexes not stored in the liver
is discharged into the blood, reaching the kidney [16], where they are filtered from the
glomerulus and then reabsorbed by the proximal tubular epithelial cells [28]. Here, the
complex Cd-MT is degraded by lysosomes into amino acids and free Cd ions. In this
way, free Cd can accumulate and cause nephrotoxicity, primarily in the proximal tubular
region [29]. In fact, as demonstrated by our group in a recent paper [30], in healthy kidneys,
tubules have an epithelium with well-evident apical microvilli, elongated mitochondria,
and tight intercellular junctions. On the contrary, in kidneys challenged with Cd, tubules
show evident morphological changes, as epithelial cells have short, few, or even absent
apical microvilli, round or swollen mitochondria, and cytoplasmic vacuoles. Intercellular
spaces are wide (Figure 1).

Figure 1. In a healthy kidney (A), tubules have normal architecture; their epithelium shows well-
evident apical microvilli (arrowhead), elongated mitochondria (arrow), and tight intercellular junc-
tions (asterisk). In kidneys challenged with Cd (B), tubules have evident morphological changes, as ep-
ithelial cells show short, few, or even absent apical microvilli (arrowhead), round or swollen mitochon-
dria (arrow), and cytoplasmic vacuoles (empty arrowhead). Intercellular spaces are wide (asterisk).

In the last few years, it has been focused on the relative roles of apoptotic, necrotic, and
autophagic mechanisms in Cd-induced proximal tubular cell death. So far, these studies
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have implicated, from a pathophysiological point of view, three possible early response
mechanisms in the proximal tubule. These are: (i) disruption of cadherin-mediated cell-
cell adhesion; (ii) modulation of intracellular signaling cascades; and (iii) induction of
oxidative stress [31]. This discovery has crucial implications for biomonitoring Cd-exposed
populations and for the potential treatment of Cd nephrotoxicity. In this context, one novel
marker that has shown exceptional promise in preclinical studies is Kidney Injury Molecule-
1 (KIM-1). KIM-1 is a transmembrane protein that is not detectable in normal kidney but is
expressed at high levels in the proximal tubule after ischemic or toxic injury [32]. Overall,
these findings, along with early detection with novel biomarkers such as KIM-1, suggest that
it may be possible to use specific agents to modulate or even halt these pathophysiological
processes before they become irreversible [31].

The toxic action of Cd was also demonstrated in glomeruli, which showed elongated
and fewer podocytes with reduced or lacking contact with the capillaries [30].

Recent data suggest that up to 50% of the deposits of Cd are accumulated in the
kidney [28], where it induces renal toxicity owing to its mean half-life. Even if it were
stated that the mean half-life of Cd in the kidney is 14 years [33], many variations rang-
ing from 9 to 45 years and correlated with individual variations of MT expression were
described [34]. Cd-induced renal toxicity is, therefore, a major risk for human health, par-
ticularly in countries where environmental controls are lacking. In fact, in patients exposed
to Cd, a significant proximal tubular dysfunction was described, clinically expressed as
increased urinary excretion of low-molecular-weight proteins, glucose, amino acids, and
electrolytes such as sodium, potassium, and calcium [34]. Several studies have shown that
Cd exposure may be related to chronic kidney disease (CKD) [35–37]. However, it is not
easy to find a reliable exposure biomarker since several studies showed differences in study
design (i.e., cross-sectional design) and/or exposure levels. To date, dietary urinary Cd
(UCd) or blood Cd (BCd) have been commonly adopted as exposure biomarkers, as have
urinary N-acetyl-β-d-glucosaminidase and beta-2-microglobulin. Generally, BCd mainly re-
flects recent exposure [38], while UCd may be related to long-term exposure [39,40]. Dietary
Cd intake is also used as a surrogate indicator of Cd exposure [41]. Finally, Kawata [42] indi-
cated that renal tubular function should be controlled during analysis. Overall, longitudinal
studies are needed to better clarify the link between CKD and biomarkers.

2. Nutraceuticals: Generalities

The word “nutraceutical” (a combination of the terms “nutrient” and “pharmaceuti-
cal”) refers to “foods (or part of a food) that provide medical or health benefits, including
prevention and/or treatment of disease” [43]. Nutraceuticals and pharmaceuticals exhibit
high similarities and overlaps among their properties and functionalities [44]. To date, three
groups of “healthy foods (or part of a food)” are considered: (i) “dietary supplements”,
(ii) “functional foods”, and (iii) “nutraceuticals”. These latter may range from isolated nu-
trients, herbal products, dietary supplements, novel foods, and processed food ingredients.
Indeed, in the global marketplace, nutraceuticals have become a multibillion-dollar indus-
try as consumers in different countries appreciate these substances owing to their plant
origin [45]. The popularity of nutraceuticals is also associated with their easy availability,
low cost, and their intake in low doses. For this reason, the use of nutraceuticals in the
prevention of renal dysfunction and CKD is a very intriguing option [46]. However, for
many products, there is no clear data on their safety and effectiveness, possible side effects,
interactions with prescribed medicines, or impact on preexisting medical conditions. More-
over, some nutraceuticals may present toxicity and cause adverse interactions with drugs
commonly prescribed for CKD [47]. Overall, the topic is debated, and current research
would help understand if it will be possible to employ “nutraceuticals” as an alternative
approach against Cd-induced kidney damage.
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3. Cadmium-Induced Pathophysiological Mechanisms and Kidney Dysfunctionality

Kidney damage induced by Cd has been shown either in vitro or in vivo [48–50]. In
Japan, the Itai-itai disease, which is able to cause typical signs of CKD such as protein-
uria, glicosuria, and aminoaciduria progressively irreversible, was shown to be related to
chronic Cd toxication [51–53]. Generally, the above-mentioned features are typical of either
occupational or environmental Cd poisoning, as experimentally observed. Cd exposure
can also impair calcium metabolism, causing hypercalciuria and the formation of kidney
stones [54]. The negative molecular cascade is amplified by the generation of reactive
oxygen species (ROS), which are able to cause programmed cell death [55]. ROS in turn
cause lipid peroxidation and damage to proteins, including Na+/K+ ATPase [56].

Oxidative stress can also lead to inflammation with increased production of proin-
flammatory cytokines, various chemokines, cellular adhesion molecules, and inducible
enzymes that in turn can contribute to CKD [57–61]. In fact, the ROS increase induced by
Cd challenge activates nuclear factor kappa B (NF-κB), which is a transcription factor able to
control inflammation and regulate some components of the immune system. Once induced,
it moves into the nucleus, regulating the synthesis of different mediators, such as tumor
necrosis factor (TNF)-α, interleukin (IL)-6, IL-12, cycloxygenase-2 (COX-2), inducible nitric
oxide synthase (iNOS), and macrophage migration inhibitory factor [62,63]. Therefore,
inflammatory and immune disorders could be the consequence of NF-κB dysregulation;
moreover, as reported in their intriguing review, Satarug and coworkers [64] highlighted
the role of inflammation and oxidative stress as mechanistic pathways altered by Cd expo-
sure (“the perfect storm”) in the physiopathology of diabetes and hypertension, that, in
turn, cause CKD.

Additionally, Cd-induced renal inflammation through the NF-κB signaling pathway
is able to activate the NLR family Pyrin Domain Containing 3 (NLRP3) inflammasome, a
component of the innate immune system, whose role is still to be fully elucidated [65].

Lipid peroxidation, in turn, induces apoptosis by the following mechanisms: (i) the
endoplasmic reticulum (ER)-mediated pathway through ER stress and calcium release;
(ii) the mitochondria-mediated molecular signals; and (iii) the p53-dependent apoptotic
pathway [50].

Specifically, it has been shown that the Cd-induced oxidative stress/inflammatory
cascade activates apoptosis through the Fas/FasL pathway [66], and this molecular signal
appears crucial in CKD induced by different nephrotoxic agents [67–69]. In the kidney, as
also observed by our research group, a crucial role for mitochondria-dependent apoptosis
is played by the B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) system [70].
Moreover, it has been demonstrated in kidney tubules that, after Cd challenge, autophagia
followed by apoptosis involves the upregulation of KIM-1 expression and changes in the
localization and function of typical transmembrane adhesion molecules such as N-cadherin
and claudin-2 [71,72]. The reduction of N-cadherin and claudin-2, a which are able to
modify tubular epithelial polarization and junctional complexes, can be related to the
presence of KIM-1 [31]. Finally, it was demonstrated that, experimentally, Cd suppressed
renal erythropoietin (EPO) production through a direct effect and destruction of EPO-
producing cells, driving anemia in Cd toxicity [73]. Moreover, it has been suggested that
inhibition of EPO gene expression by Cd depends on the suppression of Hypoxia-Inducible
Factor (HIF)-1 binding activity [74].

4. Cadmium and Bone Damage in CKD

Osteotoxicity is a known effect of Cd [75]. In fact, the Itai-Itai disease, caused by a
chronic exposure to Cd due to the use of Cd-polluted water to irrigate the rice fields [38], in
addition to kidney failure, caused osteomalacia and osteoporosis. Skeleton fragility related
to Cd exposure can be induced both by a direct Cd toxic effect on bone mineralization
and by renal failure (Figure 2), even if the critical exposure levels and exact underlying
mechanisms remain unclear [76].
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Cd exerts its direct toxicity either by a reduction in bone formation or an increase
in bone resorption [77]. Indeed, this PTE affects mostly osteoblastic cells via the inhi-
bition of osteoblast differentiation, synthesis activity, and the mineralization process of
the extracellular matrix [78]. Scimeca et al. analyzed bone head biopsies demonstrating
that Cd accumulation was associated with lower bone quality parameters and reduction
and/or absence of osteoblasts; curiously, through an immunohistochemistry method, high
levels of sclerostin, a glycoprotein belonging to the family of bone morphogenetic protein
antagonists, were found in bone tissue of osteoporotic patients with Cd accumulation [79].
Cd exposure also determines an increase of tartrate resistant acid phosphatase (TRAP)
activity and the formation of TRAP positive activated osteoclasts in the presence of receptor-
activated nuclear factor κ B ligand (RANKL), inducing the differentiation of osteoclast
precursors into osteoclasts and consequently leading to increased bone resorption [80].

Figure 2. Effects of a cadmium challenge on the bone. ↑: increased; ↓: decreased.

Furthermore, Cd could induce proximal tubular dysfunction [77] with impaired cal-
cium tubular resorption and consequently augmented urinary calcium excretion [81]; this,
in turn, leads to bone demineralization and an increased risk of kidney stones [82]. In-
terference with parathyroid hormone (PTH) release has also been demonstrated: in the
setting of Cd exposed workers, a significant negative correlation between the Cd-exposure
index and plasma PTH levels was shown [83]. In other terms, Cd exposure leads to a
decrease in PTH levels [84]. A structural and functional damage of the parathyroid glands,
with a dose-dependent behavior and intensity related to Cd exposure duration has been
demonstrated in murine models [85]. This implies a reduced activation of 25(OH)D3 vi-
tamin D, because of impaired 1-alpha-hydroxylation in the kidney from its inactive form
to the active one, 1,25(OH)2D3, followed by reduced intestinal calcium absorption and
decreased reabsorption of bone mineral matrix [54]. Many cross-sectional and prospective
population-based studies showed a negative correlation between Cd exposure and bone
mineral density (BMD) [86–92] (Table 1).



Metabolites 2023, 13, 722 7 of 18

Table 1. Main clinical studies about cadmium exposure and fracture risk.

Authors Study Design Population Measurements Main Findings

Alfvén et al., 2000 [86] Retrospective
cohort study

520 men and
544 women, aged

16–81 years,
environmentally or

occupationally exposed
to Cd for at least

5 years

U-Cd, protein HC
forearm BMD by DXA

U-Cd was negatively related to
BMD, particularly in patients

aged more than 60; in men
over 60 the ORs for

osteoporosis in the highest
U-Cd category were 3.5

(95% CI, 0.6–19) in the group
without tubular proteinuria,

and 4.2 (95% CI, 1.0–20) in the
group with tubular proteinuria

Engström et al., 2012
[87]

Prospective
cohort study

2676 women aged
56–69 years selected

from the Swedish
Mammography Cohort

Dietary Cd exposure
assessed by a food

frequency
questionnaire, U-Cd

BMD at the total body,
femoral neck and

lumbar spine by DXA,
incidence of fractures

High dietary Cd exposure
(≥13 µg/day, median) was

associated with an increased
risk of osteoporosis (OR = 1.32;
95% CI: 1.02–1.71) and of any

first incident fracture
(OR = 1.31; 95% CI: 1.02–1.69)

Chen et al., 2014 [88]
Cross-sectional,

case–control
study

321 Chinese subjects
(202 women and

119 men), aged 27 years
and older living in

control and
polluted areas

U-Cd, U-Pb, B-Cd
and B-Pb

BMD at the proximal
radius and ulna

by DXA

Cd and Pb levels of people in
the polluted area higher than

those in the control area
(p < 0.05); BMD of women in
the polluted area lower than
that of women in the control

area (p < 0.05) and BMD
decreased with increasing of

B-Cd (p < 0.05), B-Pb and U-Pb
in women. The likelihood of

low BMD was associated with
higher B-Cd in women

(OR = 2.5, 95% CI: 1.11–5.43)
and B-Pb in men (OR = 4.49,

95% CI: 1.37–14.6)

Lim et al., 2016 [89]
Nationwide

cross-sectional
study

Data of 2429 subjects
from the KNHANES
between 2008–2011

B-Cd, B-Pb and B-Hg
BMD at total hip,
femoral neck and

lumbar spine

In subjects with the highest
quartile of B-Cd (≥1.439 µg/L)

the risk for osteopenia or
osteoporosis increased 2.1
times (95% CI 1.64–2.68)

Wallin et al., 2016 [90] Prospective
cohort study

936 men from the
MrOS study aged 70 to

81 years

U-Cd
BMD at total body, hip,

and lumbar spine,
incidence of fractures

Significant negative
associations between U-Cd
and BMD, with lower BMD
(4% to 8%) for all sites in the

fourth quartile of U-Cd;
positive associations between
U-Cd and incident fractures,

especially nonvertebral
fractures in the fourth quartile

of U-Cd

Lv et al., 2017 [91] Cross-sectional
study

1116 subjects (832 and
284 subjects

from a Cd-polluted
area and a

non-Cd-polluted area
respectively)

U-Cd
BMD at forearm

Significant negative
association of U-Cd

concentrations with BMD
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Table 1. Cont.

Authors Study Design Population Measurements Main Findings

Kim et al., 2021 [92]
Nationwide

cross-sectional
study

Data of 1031
post-menopausal

women ≥50 years of
age from the 4th and

5th KNHANES

B-Cd, nutrient intake
BMD at total hip,
femoral neck, and

lumbar spine by DXA

Significant positive association
between B-Cd levels and the

risk of osteopenia and
osteoporosis, but the OR at the
4th level was lower than that

at the 3rd level (OR and
95% CI for osteopenia: 2nd
quartile: 1.24, 0.88–1.74; 3rd
quartile: 3.22, 2.24–4.64; 4th

quartile: 1.27, 0.87–1.85;
p < 0.001; OR and 95% CI for

osteoporosis: 2nd quartile:
1.54, 1.05–2.25; 3rd quartile:
3.63, 2.31–5.69; 4th quartile:
1.70, 1.03–2.81; p < 0.001)

In detail, U-Cd concentrations have been contrariwise associated with BMD at the total
body, lumbar spine, hip, femoral neck, and volumetric femoral neck [93]. Nevertheless,
Kim et al. recently demonstrated no direct dose-response relationship at the highest Cd lev-
els; this was related to a greater awareness of the disease by participants with osteoporosis
and to higher Cd levels, resulting in improved therapeutic adherence, resulting in better
BMD. Another reason for their results could simply be selection bias [92].

To date, little evidence exists on the protective role of some nutraceuticals against the
damage to bone integrity induced by Cd exposure [94]. The supplementation of a natural
polyphenol, resveratrol (RES), was shown to prevent Cd-induced apoptosis in osteoblastic
MC3T3-E1 cells and to mitigate the inhibition of osteogenic differentiation induced by Cd
chloride (CdCl2) by modulating ERK1/2 and JNK signaling [95]. Zinc supplementation
has been demonstrated to prevent an increased risk of femoral neck fractures in rats with
chronic exposure to Cd [96]. In Cd-exposed rats with a vitamin D-deficient diet, the toxic
effect of Cd on kidney, bone, and hematopoietic systems was significantly higher than in
Cd-exposed rats with a normal diet, suggesting a potential protective role of vitamin D
administration against Cd-induced bone and kidney damage [54]. Through its antioxidant
activity, spirulina, a filamentous cyanobacterium (also called blue-green algae), showed
a significantly reduced frequency of fetal anencephaly, micro maxillary deformity, and
skeletal deformities in pregnant mice orally administered with a high dose of Cd [97].
Essential elements, such as calcium, zinc, and vitamins, with which Cd shares a very
similar way of metabolism and absorption, can attenuate Cd toxicity, particularly in bone
tissue [94].

Notwithstanding, further research is needed to better define dietary strategies for
preventing Cd-induced bone loss.

5. Therapeutic Effects of Functional Foods and Nutraceuticals in Cadmium-Induced
Kidney Dysfunctionality: The Latest Preclinical Updates

In the last few years, the protective role of antioxidants in food against PTEs has been
evaluated [98] (Table 2; Figure 3).

Table 2. Data obtained from in vivo and in vitro studies on nutraceuticals utilized as a possible
approach against Cd-induced kidney toxicity.

Authors Study Design Sample Substance

Morales AI et al., 2006 [63]
Morales AI et al., 2006 [99] In vivo Rats Quercetin
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Table 2. Cont.

Authors Study Design Sample Substance

Bagchi D et al., 2002 [100]
Chen Q et al., 2013 [101]

In vitro
In vivo

Human cells
Mice

Grape seed procyanidin
extract (GSPE)

Fan R et al., 2018 [102] In vivo Mice Betulinic acid
Pari L and Murugavel P, 2005 [103] In vivo Rats Diallyl tetrasulfide (DTS)

Hagar H and Al Malki W, 2014 [104] In vivo Rats Betaine
Hwang DF and Wang LC, 2001 [105]

Manna P et al., 2009 [106] In vivo Rats
Mice Taurine

Verma S et al., 2021 [107] In vivo Fish Naringenin
Huang J et al., 2021 [108] In vivo Mice Xianling Gubao

Iserhienrhien LO and Okolie NP, 2021 [109] In vivo Rats Geophila obvallata
Salama SA et al., 2021 [110] In vivo Rats Arctigenin

Rajendran P et al., 2016 [111] In vitro Human cells Mangiferin
Joardar S et al., 2019 [112] In vitro Murine kidney cells Rosmarinic acid
Wang Y et al., 2013 [113]
Zhou YJ et al., 2009 [114]

Shi Q et al., 2019 [115]

In vitro
In vivo

LLC-PK1 cells
Chicken Selenium (Se)

Pallio G et al., 2019 [72] In vivo Mice Myo-inositol
Micali A et al., 2018 [30] In vivo Mice Flavocoxid
Cirmi S et al., 2021 [70] In vivo Mice Bergamot juice extract (BJe)

Figure 3. Effects of nutraceutical treatment on the different pathways triggered by cadmium challenge
in the proximal tubule cells of the kidney.

In fruits, vegetables, and wine, the polyphenolic compounds, flavonoids, are broadly
distributed. Specifically, quercetin is the most abundant (60–75% of the polyphenols in-
gested). Quercetin has antioxidant, anti-inflammatory, and chelating activities, so it is
protected from nephrotoxicity even after Cd intoxication [63,99]. It acts mainly as an an-
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tioxidant by contrasting the action of superoxide anion and lowering xanthine, NADPH
oxidase, and superoxide dismutase (SOD). Moreover, an indirect action through increased
MT-1 and MT-2 activity has been revealed [63,99]. In fact, the administration of quercetin
plus Cd has increased MT-1 and MT-2 expression, thus lowering acute renal Cd toxicity,
probably owing to its antioxidant activity. Quercetin also shows a crucial anti-inflammatory
action through an augmented activity of both MT and endothelial nitric oxide synthase
(eNOS) expression, together with an inhibition of both COX-2 and iNOS expression. Fi-
nally, a potent chelating capacity of quercetin, through the reduction of Cd uptake and
accumulation in the kidney, has been demonstrated to further protect against Cd tubular
damage [63,99].

Another substance with widespread antioxidant and anti-inflammatory action is
grape seed procyanidin extract (GSPE), which is typical of tea leaves, fruits, vegetables,
and seeds of many plants, such as grapes and apples [100]. When compared to vitamins
C, E, and β-carotene, GSPE demonstrated a broad spectrum of antioxidant activity [101].
In Cd-challenged mice, GSPE was able to increase glutathione (GSH)-peroxidase (GPx)
and SOD activities and decrease malondialdehyde levels in the kidneys. Moreover, GSPE
antagonized renal apoptosis, as indicated by the expression of Bax and Bcl-2 [100].

Betulinic acid, a natural pentacyclic triterpenoid present in the bark of a number
of trees, including white birch, bear tree, sycamore, and other members of the Platanus
family, has, among other things, antioxidative, anti-inflammatory, and anti-apoptoptic
properties. A protective effect of betulinic acid in the course of renal ischemia/reperfusion
was demonstrated, as it induced antioxidant responses, improved structural changes, and
renal function by modulating apoptosis of leukocytes [116]. Recently, a positive effect of
betulinic acid on CdCl2-induced kidney injury was demonstrated by a direct inhibition of
apoptosis [102].

Diallyl tetrasulfide (DTS) is a substance with antioxidant effects, found in garlic and,
as an essential oil, in other plants [103]. It protects tubular cells, either in vivo or in vitro,
after CdCl2 toxicity, owing to its antioxidant and metal chelating activities [48].

Betaine (glycine betaine or trimethylglycine), a natural antioxidant, can be obtained
from the diet or from its precursor, choline [117]. As a result, reduced lipid peroxidation,
an increased antioxidant status, a blunting of caspase-3 activity, and a reduction of tubular
morphological changes were observed in the kidneys of rats challenged with Cd plus
betaine [104].

An evident protection against oxidative stress caused by a Cd challenge was also
observed after administration of the essential amino acid taurine (2-aminoethanesulfonic
acid) [105,106]. When taurine is administered before Cd challenge, a reduction of mor-
phological damages and of antioxidant enzyme levels, such as catalase (CAT), glutathione
S-transferase (GST), glutathione reductase (GR), SOD, GPx, and glucose-6-phosphate dehy-
drogenase, was observed in mice’s kidneys [105].

Another substance with strong nephroprotective activity (antioxidant and metal chelat-
ing properties) is the bioflavonoid naringenin (4,5,7-trihydroxy flavonone), particularly
abundant in citrus fruits [49,107]. A significant reduction of the structural changes and
an increase of antioxidants and glutathione metabolizing enzymes were observed in the
kidneys of Cd-exposed rats after oral coadministration of naringenin [49].

Xianling Gubao Capsule, a preparation of a mixture of Chinese herbs [Epimedii Folium
(Epimedium brevicomu Maxim), Salvia miltiorrhiza Radix Rhizoma (Salvia miltiorrhiza
Bunge), Anemarrhenae Rhizoma (Anemarrhena asphodeloides Bunge), Psoraleae Fruc-
tus (Cullen corylifolium (Linnaeus) Medikus), Dipsaci Radix (Dipsacus asper Wallich ex
Candolle), and Rehmanniae Radix (Rehmannia glutinosa Libosch. ex Fisch. et Mey)]
showed an important protective role in Cd-exposed mice, as it positively regulated oxida-
tive stress, autophagy, and apoptosis, owing to the actions of the single components of the
mixture [108].

The methanolic extract of Geophila obvallata (Rubiacea), a medicinal herb used in
African ethnomedicine for treating kidney diseases, possesses bioactive principles able to
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show potent antioxidant action and downregulate KIM-1 and MT-1 in rats, thus providing
renal protection against Cd-induced nephrotoxicity [109].

Arctigenin, a lignan naturally present in several plants, showed anti-inflammatory
and antioxidant actions and reduced the expression of KIM-1 in the kidneys of Cd-treated
rats [110].

Mangiferin (MGN) is a glucosylxanthone particularly abundant in the leaves and
edible mango fruits of Mangifera indica. In vitro studies showed that MGN showed a
potent antiinflammatory effect against Cd toxicity in human glomerulus renal endothe-
lial cells through the reduction of IL-6 and IL-8, which play a significant role in renal
inflammation [111].

Rosmarinic acid (RA), a naturally occurring polyphenolic nutraceutical, is an active
constituent of Rosmarinus officinalis. In vitro and in vivo data revealed that RA treatment
significantly counteracted the Cd-induced nephrotoxicity by blunting ROS, promoting cel-
lular redox defense, and Cd clearance, thus positively modulating the altered pathological
signal transduction [112].

An evident protection from oxidative stress of the kidney both in vivo and in vitro
was observed after treatment with selenium (Se), which was related to ROS scaveng-
ing [113,114], through the activation of c-Jun N-terminal kinase phosphorylation [115]. Se
inhibited the oxidative stress based on a reduction of ROS and blunted apoptosis through
mitochondrial dysfunction, then confirmed a cytoprotective role against Cd toxicity in the
kidney [113,114].

The treatment with the natural nutraceutical myo-inositol (MI) in Cd-treated mice
showed protection against kidney damage. In fact, MI significantly reduced urea nitro-
gen and creatinine levels, oxidative marker expression, modulated apoptosis, increased
GSH content and GPx activity, and preserved kidney morphology, suggesting a strong
antioxidant role against Cd with harmful effects on kidney lesions [72].

Flavocoxid, a flavonoid containing both baicalin from Scutellaria baicalensis (Chinese
skullcap) and catechin from Acacia catechu (Black catechu), reduced CdCl2-induced oxida-
tive damage secondary to ROS generation in the kidney of C57 BL/6J mice. A significant
reduction of iNOS, phosphoextracellular signal-regulated protein kinase 1/2, and matrix
metalloproteinase-9 expression and of morphological changes of glomeruli and proximal
tubules was in fact observed [30].

Recently, our research group evaluated the effects of a flavonoid-rich extract of berg-
amot juice (BJe), alone or in association with curcumin and resveratrol, in the kidneys of
mice exposed to CdCl2 [70]. BJe, obtained from Citrus bergamia Risso et Poiteau (bergamot)
fruits, showed antioxidant, anti-inflammatory, and antiapoptotic properties, as it signifi-
cantly decreased urea nitrogen and creatinine levels, along with p53, Bax, Nos2, and IL-1ß
mRNA, while increasing Bcl2, glutathione content, and glutathione peroxidase activity.
Moreover, there was also a reduction of the glomerular and tubular damage, and of nuclear
factor erythroid factor 2-related factor 2, NAD(P)H:quinone acceptor oxidoreductase 1
and heme oxygenase 1 gene expression, thus suggesting a new potential strategy in the
management of CKD in subjects exposed to environmental toxicants.

6. Nutraceuticals and Microbioma: Putative Role in Cadmium-Induced
Kidney Damage

The importance of the complex interactions between the microbiome and the human
body is now well recognized, and the contributions of this relationship to host health are
increasingly appreciated [118].

Indeed, any discussion of functional foods, nutraceuticals, or dietary supplements in
the context of PTE-induced organ damage should address the impact on the microbiome of
food and all potential interactions with a preventive and/or therapeutic intervention [119].

Several nutraceuticals act as “prebiotics”, which according to a description by a panel
of experts convened by the International Scientific Association for Probiotics and Prebiotics
(ISAPP), are defined as “a substrate that is selectively utilized by host microorganisms
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conferring health benefit” [120]. In this context, the metabolic products of the microbiota,
such as short-chain fatty acids (SCFAs) and gases [121,122], appear to play a crucial role in
the host.

Therefore, CKD is associated with the presence of dysbiosis, and the results of recent
studies have confirmed the altered composition and functions of the gut microbial commu-
nities in CKD. In fact, during CKD, protein-bound uremic toxins are progressively accu-
mulated [123]. Moreover, the presence of CKD may be accompanied by the development
of intestinal inflammation and epithelial barrier impairment, leading to the translocation
of bacterial-derived uremic toxins to the submucosal compartment, where they activate
mast cells and lymphocytes, causing the release of proteases, cytokines/chemokines, and
other crucial mediators of inflammation. In other words, the loss of kidney function re-
sults in structural and functional alterations of the intestinal barrier, contributing to the
syndrome of uremia. This finding strongly suggests that a complex bidirectional metabolic
and immunological crosstalk involving the kidney and gut is present [124]. Moreover, the
aforementioned molecules can activate sensory afferents leading to local reflex responses
and/or central transmission, as well as gain access to the portal and systemic circulations
via the submucosal vasculature, leading, in turn, to oxidative stress injury, particularly
involving the cardiovascular and endocrine systems [125].

Recently, it has been suggested that one of the useful properties of probiotic bacteria is
their capacity to bind different targets, thus eliminating them through feces [126]. Specifi-
cally, it is supposed that one of these targets could be Cd. As a matter of fact, Djurasevic
and coworkers experimentally showed that the rise in lactobacilli number in the feces of
rats treated simultaneously with Cd and probiotics resulted in a strong correlation between
the increase in Cd concentration in their feces and the decrease in Cd concentration in
their blood. These findings suggest that probiotics actively contribute to Cd excretion
through feces, probably by binding to the bacterial cell wall, opening the possibility of their
therapeutic applications against Cd toxicity [126].

So far, gut microbiota are very sensitive to nutraceuticals, functional foods, probiotics,
diet, and even environmental pollutants. Then, it is undeniable that dietary components
and supplements interact in one way or another with the gut microbiome. Therefore,
the possible effects on the health of environmental pollutants such as antibiotics, PTEs
(including Cd), persistent organic pollutants, pesticides, nanomaterials, and food additives
on the gut microbiota and their subsequent effects will continue to represent a major focus
of future experimental [127] and clinical research [128].

7. Nutraceuticals and CKD: Chances and Limits in Routine Clinical Setting

Currently, there is no effective treatment for Cd poisoning. The principal therapeutic
protocol involves the employment of metal chelators, although they cause several unde-
sirable effects, such as redistribution/translocation of PTEs and other serious toxic events.
This caught the interest of scientists who have sought an effective remedy from natural
sources and/or from foods/healthy eating habits that are less likely to produce toxic effects.
In this context, it appears crucial to add more information on the molecular mechanisms of
Cd-induced structural damage of the kidney leading to CKD. So far, although in the present
narrative review we considered a lot of preclinical studies and new data are currently
available, unfortunately, to date, it is very hard to define Cd exposure levels related to
the described biological effects on the kidney and the overall human health risk assess-
ment. However, despite this scarcity of information and the limitations related to the
type of review, dietary strategies and the use of nutraceuticals, which are present in foods
typical of Mediterranean-style eating patterns, appear very useful in the management of
non-communicable diseases, particularly CKD [129–131]. Pérez-Torres and colleagues, in
their recent review [131], suggest a practical approach to Mediterranean diet adaptation as
nutritional treatment in CKD patients. Indeed, there are several studies that suggest the
use of a Mediterranean-style eating pattern as the dietary approach of choice for patients
with CKD, regardless of the CKD stage [132,133]. In this context, it is well-known that the
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traditional Mediterranean diet is particularly abundant in cereals, legumes, nuts, fruits,
vegetables, and herbs, and low in red meat [134]. Moreover, this dietary pattern includes a
moderate intake of fish, seafood, eggs, white meat, and dairy products, and a moderate
intake of alcohol (mainly red wine); finally, extra virgin olive oil is the main source of
added fat [134]. So far, foods typical of Mediterranean-style eating patterns and the related
compounds are well-known and under current careful investigation by several research
groups for their potential benefit in positively modulating of the endothelial function,
inflammation, oxidative stress, lipid profile, and blood pressure, that are crucial risk factors
for the development of non-communicable diseases, including CKD [135,136]. Of course,
in this context it should be carefully focused on a synergistic or antagonistic action between
different bioactive foods or nutraceuticals of the Mediterranean-style eating pattern and,
more generally, in plant-based diets, on neuroendocrine immune system modulation and
gut microbiota dysbiosis, even more so in the presence of environmental pollution [129,130]
caused by PTEs as Cd.

8. Conclusions

The molecular mechanisms of Cd-induced structural and functional damage to the
kidney are a research topic of current interest. Experimental and clinical data analyzed
in the present narrative review suggest that the multifaceted mechanism of action of
nutraceuticals needs to be taken serious to effectively counteract the detrimental molecular
cascade in kidney injury caused by environmental PTEs such as Cd.
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