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Abstract: Vitamins and essential metals have been studied as potential risk and prognostic factors
in amyotrophic lateral sclerosis (ALS). This study aimed to evaluate the prevalence of inadequate
micronutrient intake in ALS patients, comparing subgroups according to the disease severity. Data
were obtained from the medical records of 69 individuals. Assessment of disease severity was
determined by the revised ALS Functional Scale (ALSFRS-R), using the median as the cutoff. The
prevalence of inadequate micronutrient intake was estimated using the Estimated Average Require-
ments (EAR) cut-point method. The prevalence of inadequate vitamin D, E, riboflavin, pyridoxine,
folate, cobalamin, calcium, zinc, and magnesium intake was considered severe. Patients with lower
ALSFRS-R scores had lower intakes of vitamin E (p < 0.001), niacin (p = 0.033), pantothenic acid
(p = 0.037), pyridoxin (p = 0.008), folate (p = 0.009) and selenium (p = 0.001). Therefore, ALS patients
should be monitored regarding dietary intake of micronutrients essential in neurological processes.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects
upper and lower motor neurons, producing a progressive weakness of skeletal muscles
involved in limb movement, swallowing, speech and respiratory function [1].

The major risk factors for the development of ALS are genetics, prolonged exposure to
toxic metals and pollutants, and lifestyle [2]. Nutritional status has been studied as risk and
prognostic factors in ALS. Body composition [3,4], malnutrition at diagnosis [5,6], acquired
malnutrition in the course of the disease [7], and macronutrients intake [8] seem to influence
the survival of patients with ALS. Also, vitamins [9–11] and essential metals [12–14] have
been studied as potential risk and prognostic factors in ALS.

In a Finnish cohort, higher baseline levels of vitamin E were associated with a lower
subsequent risk of ALS [15]. This protective effect of vitamin E against ALS appears to
be related to antioxidant protection against increased levels of free radicals and lipid per-
oxidation, scaling down neuroinflammation [9,11]. Recently, a Mendelian randomization
analysis found that increased blood levels of vitamin E and D appear to be protective
against ALS risk [11]. In ALS, vitamin D potentiates the effect of neurotrophic factors and
protects motor neurons. In addition, vitamin D upregulates calcium-binding proteins and
glutamate-induced reduction of caspase-3 activity, leading to neuroprotection [9,11]. Based
on results from meta-analysis, randomized clinical trials, and clinical cases, vitamins B12
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and C have also been shown to be protective against ALS risk [9]. However, despite the
results showing suggestive conclusions about the protective role of such vitamins against
the risk of ALS, they are still inconclusive [16–19].

The role of metals in ALS varies according to their beneficial or toxic effects. Elevated
serum levels of zinc [20], copper, and iron [14] are suggested as potential risk factors for
ALS. Furthermore, a recent meta-analysis found that mean serum levels of selenium were
significantly higher in ALS patients compared to controls [21]. These metals are known
cofactors for enzymes necessary for proper functioning of the central nervous system, but
in excess, they can be toxic [14,20,21]. Despite these findings, associations between the
concentration of some metals in body fluids and ALS etiology are still inconclusive [22].

The ALS prognosis also seems to be related to some micronutrients. Vitamin D defi-
ciency was associated with a faster progression rate (∆FS) of disease in ALS patients [23,24].
In neuronal cell culture, vitamin D promotes motoneuron survival by potentiating the
activity of neurotrophic factors and blocking death receptors [23]. In addition, intramus-
cular high-dose methylcobalamin decreased the progression of ALS, measured by the
Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) [25]. A possible
mechanism for this may be related to the effects caused by vitamin B12 deficiency, which
can lead to hyperhomocysteinemia. In excess, homocysteine has a neurotoxic effect by
increasing oxidative stress and contributing to neuronal degeneration in patients with ALS.
Vitamin B12 also plays vital roles in deoxyribonucleic acid synthesis, epigenetic modifi-
cation, methylation, and mitochondrial function [25,26]. In contrast, high calcium and
copper levels in the blood were related to a high ALSFRS-R score [14]. In fact, copper and
calcium imbalance has been implicated in various neurodegenerative diseases. In ALS,
increased calcium is related to oxidative stress, mitochondrial dysfunction, excitotoxicity,
and neuroinflammation [27].

A cross-sectional baseline analysis of an American cohort showed that a high intake
of antioxidants and carotenoids from vegetables was associated with a higher ALSFRS-R
score [28]. A similar result was observed in a cross-sectional study with ALS patients in
South Korea in which the intake of vitamin D, vitamin E, thiamine, riboflavin, pyridoxine,
niacin, folate, calcium, phosphorus, sodium, potassium, iron, zinc, copper, and manganese
was significantly lower in patients with a lower ALSFRS-R score, although significance
disappeared after adjustment for energy [29].

Although micronutrients have been studied in relation to ALS risk and prognosis, the
results are still inconsistent indicating a need for more studies in this matter. Therefore, the
aim of this study was to evaluate the prevalence of inadequate micronutrient intake in ALS
patients, comparing subgroups according to the disease severity.

2. Materials and Methods
2.1. Study Design and Population

This cross-sectional study was conducted at the Multidisciplinary ALS Outpatient
Clinic of the Onofre Lopes University Hospital (HUOL), Natal/RN, Brazil. The project was
approved by the Ethics Committee of HUOL-UFRN (CAEE 21921219.1.0000.5292).

We included adult and elderly patients of both genders, with probable or definite
ALS diagnosis [1] and whose food record data were present in their medical records. We
excluded individuals with a suspected or possible ALS diagnosis, patients with alternative
feeding route (gastrostomy), or who had another neurological disease, food allergies and
intolerances, inflammatory bowel diseases, diabetes mellitus, and kidney diseases, due to
the possible interference of these variables in food intake by restricting specific foods. Data
collection was performed between December 2019 and January 2020. Information from 69
patients with ALS regarding the clinical, anthropometric, and dietary characteristics were
obtained from medical records.
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2.2. Clinical Assessment

The ALS severity was determined by the ALSFRS-R [30], which determines the degree
of impairment in ALS patients’ abilities to function independently in activities of daily
living. The ALSFRS-R measures 12 aspects of physical function and each function is scored
from 0 to 4, with a maximum total score of 48 (normal) and a minimum total score of 0
(no ability). Patients were assessed according to all 12 aspects of the scale and the total
ALSFR score was obtained. The ALSFRS-R score was also used to calculate the ∆FS, from
the equation [31,32]:

∆FS =
48 − (Total ALSFRS − R score at initial assessment)

Time f rom onset symptoms to date o f initial assessment in months

The medians of the ALSFRS-R and ∆FS were used as the cutoff point to classify the
sample into lower (below median) and higher (equal to or above median) scores, and
slow (below median) and rapid (equal to or above median) progression, respectively.
Dichotomization based on our median data was performed, as the value may change
among studies [31–33].

2.3. Dietary Assessment

The usual dietary energy, macronutrients and micronutrient intake was determined
according to the mean values of intake registered in the two non-consecutive 24-h dietary
recalls (R24 h). Data were analyzed using the Virtual Nutri Plus® 2.0 software (São Paulo,
SP, Brazil) software. Nonexistent foods were added to the software’s database as neces-
sary, based on the nutrition labels. Then, within-person variability of dietary intake was
removed using the Multiple Source Method (MSM) [34] and the adjustment for energy was
performed by the residue method [35].

Mean energy and macronutrient intake were compared to specific ALS recommen-
dations used in our outpatient clinic [36]. The prevalence of inadequate micronutrient
intake was estimated according to sex and age using the Estimated Average Requirements
(EAR) cut-point method [37,38]. The prevalence of inadequate iron intake was performed
by a probabilistic approach [37,38]. Pantothenic acid, manganese, potassium, and sodium
were assessed based on Adequate Intake (AI). The prevalence of inadequate micronutrient
intake was classified as no problem (≤4.9%), mild (5.0–19.9%), moderate (20.0–39.9%), and
severe (≥40.0%) [39].

2.4. Statistical Analysis

Skewness and Kurtosis tests were used to assess the data normality. Differences
in clinical characteristics and micronutrient intake between the groups formed from the
median ALSFRS-R score were calculated using the t-student, Mann-Whitney U, Chi-square,
and Fisher’s Exact tests, according to the nature and distribution of the variable. Differences
with p < 0.05 were considered statistically significant. All analyses were performed using
SPSS 25.0 software (Chicago, IL, USA).

3. Results

Study participants had a median age of 56.0 (13.6) years, BMI of 23.7 (3.3) kg/m2, and
median duration of symptoms of 25.5 (1.3–248) months. Most participants were male (61%)
and had spinal onset of the disease (75%). The ∆FS indicated that 50% of the sample had
rapid progression and the other half had slow progression. When compared to higher or
lower ALSFRS-R scores, most patients with slow ∆FS had higher scores on the scale (62%),
although the difference was not statistically significant (Table 1).
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Table 1. Clinical characteristics of participants according to ALSFRS-R score.

Variables Total (n = 69)
ALSFRS-R Score

p-Value
≥34 (n = 36) < 34 (n = 33)

Age, years a 56.0 (13.6) 54.5 (14.4) 57.3 (12.7) 0.362 *
BMI, kg/m2 a 23.7 (3.3) 23.9 (3.5) 23.4 (3.2) 0.546 *

Age at onset (years) a 53.0 (14.4) 52.0 (15.8) 53.8 (13.0) 0.576 *
Symptom duration (months) b 25.5 (1.3-248) 31.1 (48.2) 45.5 (35.7) 0.166 **

Gender c

Female 27 (39) 10 (37) 17 (63)
0.052 †Male 42 (61) 26 (62) 16 (38)

Site of onset c

Bulbar 17 (25) 10 (59) 7 (41)
0.585 †Spinal 52 (75) 26 (50) 26 (50)

∆FS cd

Slower (<0.66) 34 (50) 21 (62) 13 (38)
0.145 †Faster (≥0.66) 34 (50) 14 (41) 20 (59)

ALS family history c

No 63 (91) 34 (54) 29 (46)
0.416 ††Yes 6 (9) 2 (33) 4 (67)

Use of medication (Riluzole) c

No 65 (94) 34 (52) 31 (48)
1.00 ††Yes 4 (6) 2 (50) 2 (50)

a Mean (standard deviation); b median (interquartile range); c frequency (%); d median used as cutoff; * Student’s
t-test for independent samples; ** Mann-Whitney U-test; † Square test; †† Fisher’s exact test; ∆FS, progression rate.

Dietary energy intake was below recommended levels in 54.8% of men and 81.5% of
women. Below-recommended intake in both sexes was also observed for protein (52.4%
men and 74.1% women) and total fat (88.1% men and 77.8% women). Most of the male
participants (71.4%) ingested carbohydrates according to the recommendation levels for
ALS patients (Figure 1).
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Figure 1. Dietary intake of energy, macronutrients, and fiber in ALS patients. (a) Men (n = 42);
(b) Women (n = 27). Nutrition recommendations adopted: energy = 35 kcal/kg/d; protein = 1.5 g/d;
lipids = 30% of the total energy value; carbohydrates = remaining percentage to complete the total
energy value; fibers: 20–30 g/d [36].
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The prevalence of inadequate intake of micronutrients in women was considered
severe for vitamin D (99%), vitamin E (40%), riboflavin (55%), pyridoxine (42%, >50y), folate
(77%), cobalamin (40%), calcium (68%, 19–50y; 78%, >50y), zinc (46%), and magnesium
(64%) (Table 2). In men, severe prevalence of inadequate intake was observed for vitamin
D (99%), riboflavin (62%), pyridoxine (52%, >50y), folate (82%), cobalamin (41%), calcium
(61%, 19–70y), zinc (49%) and magnesium (98%) (Table 3).

Table 2. Nutritional recommendation, dietary intake, and prevalence of inadequate micronutrient
intake in women with amyotrophic lateral sclerosis.

Micronutrients EAR/AI * Mean (SD)
Intake Percentiles % Of Inadequacy

10th 25th 50th 75th 90th

Vitamin A, µg/d 500 1376 (2537) 193 470 715 1310 2069 36
Vitamin C, mg/d 60 200 (107) 95 124 162 238 360 10
Vitamin D, µg/d 10 4.3 (2.4) 0.9 3.3 4.2 5.3 7.5 99
Vitamin E, mg/d 12 15 (8.9) 2.6 8.1 15 23 29 40
Thiamin, mg/d 0.9 2.0 (0.4) 1.5 1.7 1.8 2.2 2.4 0.5

Riboflavin, mg/d 0.9 0.8 (0.9) 0.2 0.3 0.5 1.1 1.6 55
Niacin, mg/d 11 18 (9.2) 8.6 12 15 23 32 22

Pantothenic Acid, mg 5 * 3.4 (2.4) 1.0 1.4 3.1 4.6 6.2 -
Pyridoxin, mg/d

19–50y 1.1 1.9 (0.7) 0.7 1.5 1.8 2.7 - 13
>50y 1.3 1.4 (0.7) 0.5 0.9 1.4 2.1 2.3 42

Folate, mcg/d 320 214 (144) 48 105 189 297 469 77
Cobalamin, mcg/d 2 9.9 (31) 0.7 2.1 3.3 4.6 8.0 40
Phosphorus, mg/d 580 1055 (182) 812 953 1010 1156 1363 0.5

Calcium, mg/d 19–50y
>50y

800
1000

649 (266)
780 (290)

324
405

487
575

600
750

794
898

-
1208

68
78

Iron, mg/d 19–50y
>50y

8.1
5

14 (4.0)
16 (6.1)

8.1
10

11
11

14
14

15
20

-
24

14
2.3

Zinc, mg/d 6.8 9.9 (3.1) 7.2 7.8 9.0 11 14 46
Copper, mcg/d 0.7 1.5 (1.0) 0.8 0.9 1.3 1.7 2.5 22

Potassium, mg/d 2600 * 2240 (466) 1516 1982 2225 2541 2856 -
Magnesium, mg/d 265 241 (62) 181 206 232 255 337 64

Selenium, µg/d 45 81 (105) 17 28 65 90 156 37
Manganese, mg/d 1.8 * 1.9 (0.7) 1.1 1.5 1.8 2.0 3.0 -

*AI, Adequate Intake; EAR, Estimated Average Requirement.

Table 3. Nutritional recommendation, dietary intake, and prevalence of inadequate micronutrient
intake in men with amyotrophic lateral sclerosis.

Micronutrients EAR/AI * Mean (SD)
Intake Percentiles % of Inadequacy

10th 25th 50th 75th 90th

Vitamin A, µg/d 625 1445 (2414) 431 577 869 1212 2704 37
Vitamin C, mg/d 75 277.1 (405.0) 130 139 169 263 497 31
Vitamin D, µg/d 10 4.8 (2.2) 2.0 3.2 4.9 6.5 7.3 99
Vitamin E, mg/d 12 15.4 (8.1) 2.5 11 16 21 26 34
Thiamin, mg/d 1 1.9 (0.4) 1.4 1.7 1.9 2.1 2.6 0.8

Riboflavin, mg/d 1.1 0.8 (0.9) 0.2 0.3 0.7 1.1 1.5 62
Niacin, mg/d 12 17 (7.5) 8.6 12 15 22 29 25

Pantothenic Acid, mg 5 * 3.1 (1.8) 1.2 2.0 3.2 3.8 5.0 -
Pyridoxin, mg/d 19–50y

>50y
1.1
1.4

1.7 (0.8)
1.4 (0.5)

0.5
0.7

0.9
1.0

1.4
1.3

2.1
1.6

2.3
2.4

25
52

Folate, mcg/d 320 198 (140) 32 119 193 262 371 82
Cobalamin, mcg/d 2 9.1 (31) 1.6 2.4 3.7 4.9 6.5 41
Phosphorus, mg/d 580 1080 (205) 800 973 1070 1165 1350 0.8
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Table 3. Cont.

Micronutrients EAR/AI * Mean (SD)
Intake Percentiles % of Inadequacy

10th 25th 50th 75th 90th

Calcium, mg/d 19–70y
>70y

800
1000

707 (304)
1177 (266)

364
972

492
988

635
1086

855
1457

1151
-

61
25

Iron, mg/d 6 13 (8.4) 7.2 10 12 16 20 4.9
Zinc, mg/d 9.4 9.6 (2.9) 6.2 7.7 9.3 11 13 49

Copper, mcg/d 0.7 1.5 (1.1) 0.7 1.0 1.3 1.7 2.5 23
Potassium, mg/d 3400 * 2303 (521) 1669 2045 2243 2610 2991 -

Magnesium, mg/d 350 229 (61) 144 198 216 261 308 98
Selenium, µg/d 45 53 (32) 9.3 30 52 71 96 39

Manganese, mg/d 2.3 * 1.7 (0.7) 0.9 1.1 1.6 2.2 2.5 -

*AI, Adequate Intake; EAR, Estimated Average Requirement.

Significant differences were observed in micronutrient intake between the groups
according to the ALSFRS-R score. Patients with higher scores had higher intakes of vitamin
E (p < 0.001), niacin (p = 0.033), pantothenic acid (p = 0.037), pyridoxine (p = 0.008), folate
(p = 0.009) and selenium (p = 0.001), compared to patients with lower ALSFRS-R scores
(Table 4).

Table 4. Differences in usual dietary intake of micronutrients according to ALSFRS-R score.

Variable
ALSFRS-R Score a

p-Value≥34 (n = 36) <34 (n = 33)

Vitamin A, µg/d 1020 (3386) 715 (687) 0.361
Vitamin C, mg/d 152 (451) 197 (100) 0.140
Vitamin D, µg/d 4.5 (2.2) 4.7 (2.4) 0.505
Vitamin E, mg/d 19 (7.9) 10 (6.9) <0.001
Thiamin, mg/d 1.9 (0.3) 1.8 (0.4) 0.065

Riboflavin, mg/d 0.7 (1.1) 0.6 (0.5) 0.255
Niacin, mg/d 18 (8.3) 13 (7.8) 0.033

Pantothenic Acid, mg 3.4 (2.0) 2.2 (2.1) 0.037
Pyridoxin, mg/d 1.8 (0.7) 1.2 (0.6) 0.008

Folate, mcg/d 223 (146) 139 (125) 0.009
Cobalamin, mcg/d 4.1 (43) 3.3 (4.0) 0.121
Phosphorus, mg/d 1067 (165) 1061 (225) 0.895

Calcium, mg/d 627 (312) 822 (307) 0.079
Iron, mg/d 13 (9.2) 12 (4.7) 0.073
Zinc, mg/d 9.1 (2.4) 9.2 (3.1) 0.266

Copper, mcg/d 1.3 (1.3) 1.2 (0.8) 0.749
Potassium, mg/d 2144 (463) 2277 (552) 0.349

Magnesium, mg/d 208 (51) 230 (73) 0.355
Selenium, µg/d 64 (91) 35 (35) 0.001

Manganese, mg/d 1.6 (0.5) 1.8 (0.8) 0.057
Data presented as mean (standard deviation); a median as cutoff; Independent sample U Mann-Whitney test.

4. Discussion

In our study, some vitamins and essential metals with an important role in ALS
showed a severe prevalence of inadequate intake. For example, intake of vitamin E, niacin,
pantothenic acid, pyridoxine, folate, and selenium was lower in the group with the lowest
ALSFRS-R score. Whereas the functional impairment of the patient with ALS can interfere
with the adequate intake of nutrients, micronutrient deficiency, in turn, can play a negative
role in the neurodegenerative processes [40].

The severe prevalence of inadequate vitamin D intake in our study, added to the
difficulty of exposure to the sun in more advanced stages of ALS, is concerning. Deficient
levels of vitamin D (<20 ng/mL) have been found in patients with ALS [19,41,42]. In animal
models of ALS, low vitamin D intake exacerbated the disease’s pathophysiology by increas-
ing inflammation and oxidative damage and reducing antioxidant capacity [43]. Although
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associations between vitamin D and ALS prognosis remain inconclusive [19,23,24], the organic
functions performed by the vitamin in the neurological context must be considered [9,40,44],
as well as adequate supplementation [41] when food intake and sun exposure are inevitably
inefficient to meet the needs of patients with ALS.

In this study, the prevalence of inadequate vitamin E intake was also considered
severe. Furthermore, the lowest intake occurred among patients with the lowest ALSFRS-
R score. Although the associations between vitamin E and the ALS prognosis remain
controversial, the antioxidant property of this vitamin may contribute to the reduction of
neuronal damage and delay the neurodegenerative process of ALS [18,45]. Even with no
solid rationale for indiscriminate vitamin E supplementation to slow disease progression,
maintaining adequate vitamin E intake in these patients should be prioritized, especially in
patients with reduced ALSFRS-R scores.

B Vitamins are essential in macronutrient metabolism, gene regulation, neurotransmit-
ter synthesis, and antioxidants [46]. Our study found a severe prevalence of inadequate
intake of thiamine, riboflavin, folate, pyridoxine, and cobalamin. Additionally, we observed
that the intake of pyridoxine, folate, niacin, and pantothenic acid was lower in patients
with lower ALSFRS-R scores. A deficiency of one or more B vitamins leads to neurological
impairment [9,46–48]. In patients with ALS, elevated homocysteine levels in the plasma
and cerebrospinal fluid have been found. Elevated homocysteine has neuropathologic ac-
tivity and can be reversed by an adequate supply of folate and cobalamin [26,49]. Therefore,
adequate nutrient intake that supports an already weakened neurological system must be
addressed. It is also essential to consider the hydro-solubility of these vitamins, which may
incur bioavailability losses in food processing [50]. Thus, in patients with compromised
functional capacity, attention should be paid to niacin, pantothenic acid, pyridoxine, and
folate intake.

Zinc is an essential metal in the structure and activity of several enzymes. Studies
evaluating the relationship between zinc and the risk and prognosis of ALS are contradic-
tory [51]. However, a recent systematic review concluded that environmental exposure to
zinc is a factor strongly associated with ALS risk [52]. Accordingly, a prospective observa-
tional study found an association between an increased risk of ALS with increased zinc
intake [53]. In our study, patients with a higher ∆FS had a higher zinc intake (Table S1).

In contrast, higher RBC zinc levels in a European cohort were associated with a
decreased risk of ALS [20]. Higher zinc levels in whole blood were also inversely associated
with ALS, especially among patients with poor functional capacity [13]. A Brazilian cross-
sectional study found zinc deficiency in ALS patients [54]. Contradictorily, in a sample
of patients with sporadic ALS in China, zinc blood levels did not differ from the control
group [14]. It is essential to highlight that one of the factors involved in the etiology of
hereditary ALS, which comprises 20% of ALS cases, is the protein aggregates formed due to
the genetic mutation of superoxide dismutase 1 (SOD1), an enzyme dependent on copper
and zinc [1]. Zinc loss in SOD1 induces neuronal death and may have a causal role in
familial ALS [55]. Although studies are controversial, zinc is related to ALS and adequate
intake is advised.

Another essential metal of interest in ALS is selenium due to its antioxidant properties
and role in hormonal functions, immunity, and inflammatory response [51]. While lower
levels of selenium in whole blood were inversely associated with ALS risk [13], environ-
mental exposure to the metal may have a causal effect on the disease [22]. However, some
authors hypothesize that selenium plays a protective role in ALS, due to its role as an
antioxidant in the central nervous system and the fact its deficiency causes neurological
damage [51]. Recognition of the benefits of selenium in ALS, however, is not hegemonic.
Even in the face of the biological plausibility of their functions, the contradictory results of
studies do not ensure a solid conclusion [56–59].

The prevalence of inadequate selenium intake was considered moderate in our sample,
and patients with worse function ingested less selenium. Although there is no confirmation
of the role of selenium in the progression of ALS, dietary intake of this metal is required
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for maintaining adequate brain levels of the antioxidant enzyme selenoprotein P [60–62].
Vigilance regarding the intake of this essential metal for proper neurological functioning is
required in patients with lower ALSFRS-R scores.

Other essential metals such as magnesium and calcium had a prevalence of severe
inadequate intake. Data on the role of magnesium in the risk and progression of ALS remain
inconclusive, despite its essential role in neural and neuromuscular transmission [22,51,63].
Elevated serum calcium levels in ALS patients have been reported in the literature [51] and
positively correlated with high ALS severity, although the results are still inconclusive [14].
Furthermore, dysregulation of calcium homeostasis related to mitochondrial dysfunction is
a pathogenetic mechanism of ALS [64,65]. However, dietary intake of these elements does
not appear to be related to ALS progression and risk [26,53,63].

In general, studies involving antioxidant micronutrients in ALS show a possible asso-
ciation with lower risk and better motor function [66]. However, consuming food sources
of micronutrients does not necessarily imply their absorption and use by the body. Ingested
amounts, chemical form, interactions with other nutrients, in addition to homeostatic
mechanisms that regulate absorption, all can interfere with nutrient bioavailability [67].
Consequently, promoting adequate nutritional intake in these patients is fundamental.

The prevalence of severe intake of nutrients observed in our sample considered the
EAR cut-point method. The EAR was conceived as a value that meets the daily requirement
of a nutrient in only 50% of healthy individuals [37]. Thus, it is possible that the real needs
of our patients have been underestimated. Due to the lack of specific recommendations for
micronutrient intake to ALS patients, in individualized care we recommend the use of the
Recommended Dietary Allowance (RDA), whose values were designed to meet the needs
of 97% to 98% of healthy individuals [36,37].

Nutritional needs differ between the sexes due to large differences in their physiologi-
cal and hormonal states [68–70]. Added to this, sex influences the phenotypic presentation
of ALS. Women aged 60 years and older commonly develop bulbar onset [1], which di-
rectly affects nutrient intake early in the disease. This result adds one more variable to
the impairment of nutritional status, as patients with ALS have unintentional weight loss
caused by muscle atrophy and hypermetabolism, capable of leading these patients to a
state of malnutrition [71]. In addition, impairment of muscles involved in mastication
and swallowing, modification in diet consistency, changes in appetite, lack of adequate
assistance and psychological factors also affect the food intake of ALS patients [71,72].

The damage caused by energy intake below the recommendations goes beyond the
commitment of the anthropometric nutritional status, as it directly affects the intake of
micronutrients, since the consumption of most nutrients is associated with the total energy
intake [35]. Thus, dietary counseling for patients with ALS should include adequate caloric
intake, micronutrient intake, dietary changes and, in some cases, the use of gastrostomy,
since the nutritional status of patients with ALS directly interferes with survival [66,73].

A limitation in our study was the lack of biomarkers for vitamins and essential metals
in ALS patients, indicators of nutritional status that could help in understanding the
association between low micronutrient intake and prognosis, measured by ALSFRS-R
and ∆FS. A strong point of our study was the use of appropriate statistical methods to
obtain a more accurate estimate of usual nutrient intake and the prevalence of inadequate
micronutrient intake.

5. Conclusions

In our study, the prevalence of inadequate intake of micronutrients was considered
severe for vitamin D, vitamin E, riboflavin, pyridoxine, folate, cobalamin, calcium, zinc,
and magnesium. Also, the disease severity of patients with ALS assessed by the ALSFRS-R
score was related to the lower intake of vitamin E, niacin, pantothenic acid, pyridoxine,
folate and selenium, which are important micronutrients in the context of ALS. Given the
factors that interfere with food intake, patients with ALS are more likely to have inadequate
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dietary intake of micronutrients. In view of this, periodic nutritional assessment should
include monitoring micronutrient intake, either preventively or correctively.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13060696/s1, Table S1: Differences in usual intake of
micronutrients according to progression rate.
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