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Abstract: Hydrogen sulfide (H2S) plays a decisive role in kidney health and disease. H2S can ben
synthesized via enzymatic and non-enzymatic pathways, as well as gut microbial origins. Kidney
disease can originate in early life induced by various maternal insults throughout the process, namely
renal programming. Sulfur-containing amino acids and sulfate are essential in normal pregnancy
and fetal development. Dysregulated H2S signaling behind renal programming is linked to deficient
nitric oxide, oxidative stress, the aberrant renin–angiotensin–aldosterone system, and gut microbiota
dysbiosis. In animal models of renal programming, treatment with sulfur-containing amino acids,
N-acetylcysteine, H2S donors, and organosulfur compounds during gestation and lactation could
improve offspring’s renal outcomes. In this review, we summarize current knowledge regarding
sulfide/sulfate implicated in pregnancy and kidney development, current evidence supporting the
interactions between H2S signaling and underlying mechanisms of renal programming, and recent
advances in the beneficial actions of sulfide-related interventions on the prevention of kidney disease.
Modifying H2S signaling is the novel therapeutic and preventive approach to reduce the global
burden of kidney disease; however, more work is required to translate this into clinical practice.

Keywords: hypertension; cysteine; kidney disease; developmental origins of health and disease
(DOHaD); hydrogen sulfide; sulfur-containing amino acids; organosulfur compounds

1. Introduction

Sulfur-containing amino acids cover methionine, cysteine, homocysteine, and taurine.
Methionine and cysteine are precursors of glutathione, which play a prominent role in
oxidative stress [1]. It is known that oxidative stress is involved in the development of
kidney disease [2]. Homocysteine is a non-protein-bound sulfur amino acid implicated in
one-carbon metabolism and kidney disease [3]. Taurine, a major end-product of methionine
metabolism, is also linked to kidney disease [4]. Additionally, hydrogen sulfide (H2S) is
endogenously generated from the metabolic pathway of sulfur-containing amino acids and
plays a key role in kidney health and disease [5,6].

The main sources of sulfur in the diet are sulfur-containing amino acids and inorganic
sulfate. During pregnancy, sulfate is an important nutrient for fetal development [7]. As
fetal tissues have a limited capacity to produce sulfate, the source of sulfate for the fetus is
mainly dependent on maternal circulation. Apart from the metabolism of sulfur-containing
amino acids in pregnant mothers, sulfate can be obtained from sulfur compounds in the
maternal diet. Maternal nutrition is the major determinant of fetal morphology and function
via a process known as developmental programming [8]. An imbalanced process may
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provoke renal programming, resulting in kidney disease later in life [9]. This concept is
recognized as the developmental origins of health and disease (DOHaD) [10].

According to the DOHaD theory, renal programming processes are able to be reversed
or postponed in early life by reprogramming to prevent adulthood kidney disease [9].
Emerging evidence suggests sulfur-containing amino acids, their derivatives, and sulfur
compounds may serve as reprogramming strategies to avert kidney disease and promote
kidney health [11].

Nowadays, chronic kidney disease (CKD) is still on the rise all over the world [12],
despite medical advances made in recent decades. This situation raises questions about
whether more attention is required on global kidney health policy, mostly emphasizing
early prevention of kidney disease from occurring in early life [12].

Therefore, the purpose of this review is to give an overview of the roles of sulfur-
containing amino acids, organosulfur compounds, and sulfate in maternal diets involved in
kidney health and disease (Figure 1). Additionally, the uses of sulfide-related interventions
as reprogramming interventions to prevent adulthood kidney disease are reviewed.
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Figure 1. Schematic representation of impact of sulfur-containing amino acids, hydrogen sulfide
(H2S), and sulfur compounds on kidney health and disease. GSH = glutathione.

A literature review was carried out by searching the databases Embase, MEDLINE,
and Cochrane Library using keywords relevant to hydrogen sulfide, sulfur-containing
amino acid, sulfur, sulfide, organosulfur compound, cysteine, pregnancy, lactation, kidney
disease, hypertension, developmental programming, and DOHaD. We found that there
are more than 2000 publications related to kidney disease and hydrogen sulfide/sulfur.
However, less than 4% belong to DOHaD research. Both positive and negative studies were
included. Original articles account for nearly 90% of searchable publications. In total, we
screened 71 full-text reports for eligibility. The reference lists of articles were also examined
to identify any additional references that would be related to this review.
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2. Sulfur, Pregnancy, and Fetal Development

Sulfur, a fundamental element, is the third most abundant mineral in our body. The
human diet covers a diverse spectrum of inorganic and organic dietary-derived sulfur
compounds [13]. Inorganic sulfate (SO4

2−) and sulfites (SO3
2−) are common in foods and

water, sulfur-containing amino acids present in meat products, and other organosulfur
compounds, such as garlic and onions. The maternal diet is recognized as a critical factor for
determining the life-long health of the offspring [8]. Here, we summarize the physiological
roles and regulation of sulfur-containing amino acids and sulfate during pregnancy, with a
particular focus on their impacts on fetal development.

2.1. Sulfur-Containing Amino Acids

During pregnancy, amino acids represent one of the major nutrients for fetal develop-
ment [8]. A net gain in protein by increasing the demand for amino acids during gestation
is required by both the mother and the fetus. These amino acids are derived from the
diet, as well as from the turnover of maternal proteins. Sulfur-containing amino acids
methionine and cysteine account for approximately 4% of maternal proteins [14].

Methionine is essential for protein synthesis and methylation reactions. In both
human and animal studies, low dietary consumption of methionine is related to fetal
growth retardation [15–17]. In pregnant women, the transsulfuration rate of methionine
in early gestation and its transmethylation rate in late gestation were higher than those
in nonpregnant women [17]. The high rate of transsulfuration in the first trimester is
necessary for supplying cysteine and glutathione to the fetus, suggesting a higher demand
for methionine.

One-carbon metabolism maintains the critical function of synthesis of purines, thymidy-
late, and methylation via multiple methyl transferases driven by the methyl donor s-
adenosylmethionine (SAM) [18]. Methionine is a key element of the one-carbon metabolism
essential for the transfer of methyl groups from folate to SAM. One-carbon metabolism
has profound effects on fetal growth and development, implicating long-term morbidity
in the offspring [18]. A high rate of transmethylation during late gestation proposes a
greater demand for methyl donors [17]. Although deficit methionine is linked to adverse
pregnancy and offspring outcomes, excess dietary methionine may lead to a deficiency of
glycine and serine [17]. As any imbalance may worsen the supply of particular amino acids
to the fetus, one would need to be extremely cautious in considering maternal methionine
supplementation to improve fetal growth and development.

High levels of homocysteine, an intermediate of methionine metabolism, in humans,
was associated with adverse pregnancy and fetal outcomes, including spontaneous abortion
and premature delivery [19]. Compared to nonpregnant women, plasma concentration of
homocysteine was lower in normal pregnancies [17]. Nevertheless, the exact mechanism of
homocysteine-lowering during pregnancy remains unclear.

Plasma cysteine levels are lower in the third trimester [20], suggesting cysteine is es-
sential for the fetus. As the fetus is incapable of synthesizing adequate cysteine, transsulfu-
ration in the maternal compartment becomes a great source, other than protein breakdown
and diet, of cysteine for the fetus. Cysteine is utilized not only in protein synthesis, but
also for the biosynthesis of various sulfur-containing molecules. One important product
of cysteine is hydrogen sulfide (H2S). H2S is a gasotransmitter, which regulates placen-
tation, vascular adaptation, and fetal development during normal pregnancy [21]. In
addition, cysteine is the precursor for glutathione synthesis. As glutathione is considered
the most abundant endogenous antioxidant, this antioxidant response maintains cellular
homeostasis during pregnancy [22].

Taurine, a non-protein amino acid, has long been considered an end-product of the
metabolism of sulfur-containing amino acids. Prenatal taurine deficiency induces low
birth weights and, in later life, risk of adult disease [23]. Emerging evidence supports the
notion that taurine coming from the maternal compartment is crucial for fetal development,
resulting in different adult phenotypes [24].
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2.2. Sulfate

In addition to sulfur-containing amino acids, the major dietary sources of sulfur are
inorganic sulfur (sulfate and sulfite) and other forms of organic sulfur present in foods such
as onion, garlic, broccoli, etc. Sulfate is present in foods, beverages, and drinking water. In
the gut, sulfate-reducing bacteria (SRB) can reduce sulfate to sulfide [25]. Sulfate reduction
uses sulfate as the electron acceptor, producing H2S as a metabolic end-product [26]. Sulfate
is an important nutrient for fetal growth and development [27]. In pregnant women, plasma
sulfate concentrations are higher than nonpregnant women and increased by twofold with
levels peaking in late gestation [28].

Increased plasma sulfate concentrations originate in increased tubular sulfate reab-
sorption, which was mediated by increased SLC13A1 expression (encoded for sodium-
dependent sulfate transmembrane transporter) in the mother’s kidneys [29]. Sulfate can
be actively transported from mother to fetus via the placenta. As sulfate is essential for
sulfonation reactions to maintain normal structure and the development of tissues [30],
maternal sulfate deficiency is detrimental to fetal development [28]. The findings above
provide significant insights into the importance of sulfur-containing amino acids and sulfate
in normal pregnancy and fetal development.

2.3. Organosulfur Compounds

Organosulfur compounds have shown health-promotion benefits due to their ability
to participate in metabolism, cellular functions, and protection of cells from oxidative
damage [31]. Vegetables in the Allium and Brassica genus, i.e., garlic, onion, broccoli,
cauliflower, cabbage, etc., are good sources of organosulfur compounds.

Organosulfur compounds contain sulfur atoms that are bound with a cyanate group
or a carbon atom in a chain or cyclic configuration. Allium species contain diverse bioactive
compounds, such as alk(en)yl cysteine sulfoxides; S-allyl cysteine; diallyl; mono-, di-, and
tri-sulfides; thiosulfinates; and vinyldithiins. Cruciferous vegetables consist of a diverse
group of vegetables containing glucosinolates (GLCs), the precursors of ITCs [32].

So far, only one cohort study has demonstrated that intake of garlic in pregnancy was
associated with a decreased risk of spontaneous preterm delivery [33]. Garlic contains
diverse organosulfur compounds, such as alliin, dialyllsulfides, and allicin [34]. However,
safe doses of organosulfur compounds that could be used by pregnant and lactating women
await further clarification.

3. Hydrogen Sulfide in Kidney Health and Disease
3.1. H2S Biosynthesis and Metabolism

H2S is a colorless gas with a distinctive smell of rotten eggs. In the 1700s, H2S was
identified as an environmental toxin [35]. Investigations on the biological effects of H2S
began around the turn of the 20th century. The production of H2S can occur via three
origin pathways: enzymatic, non-enzymatic, and bacterial. Figure 2 summarizes enzymatic
and non-enzymatic H2S synthesis pathways and gut microbial H2S production that have
been described.

H2S is synthesized from L-cysteine via three enzymes, namely cystathionine β-synthase
(CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) [26].
3-MST exists in both the mitochondria and cytoplasm, while CBS and CSE are primarily
located in the cytosol.

CBS and CSE can decompose L-cysteine and generate H2S. They both can also pro-
duce H2S using other substrates. Homocysteine can be catalyzed by CBS to generate
cystathionine, followed by CSE to produce cysteine. 3-MST can also produce H2S through
a reaction involving the generation of pyruvate from 3-mercaptopyruvate (3-MP), which
is provided by cysteine aminotransferase (CAT) and D-amino acid oxidase (DAO). H2S
can also be derived from D-cysteine by DAO in peroxisomes [36]. Figure 2 illustrates how
these enzymes all together regulate physiological H2S concentrations in a complex and
overlapping manner.
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Figure 2. Three major H2S synthesis pathways are of enzymatic, non-enzymatic, and gut microbial
origin. Cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) catalyzes homocysteine to pro-
duce L-cysteine. Both CBS and CSE can catalyze L-cysteine to generate H2S. 3-mercaptopyruvate sul-
furtransferase (3MST) produces H2S from 3-mercaptopyruvate (3-MP), which is formed by D-amino
acid oxidase (DAO) cysteine aminotransferase (CAT) from D-cysteine and L-cysteine. Another source
of endogenous H2S is derived from the non-enzymatic synthesis pathway. The other source of H2S
comes from intestinal bacteria, mainly from sulfate-reducing bacteria. H2S is metabolized by sulfide
quinone oxidoreductase (SQR) to form persulfide, which can be oxidized by persulfide dioxy-genase
(ETHE1) to yield sulfite. Sulfite is converted to sulfate or thiosulfate, which can be excreted into
the urine.

In addition to enzymatic pathways, H2S can also be generated via non-enzymatic
reactions. Non-enzymatic H2S production occurs through thiosulfate, glutathione, glu-
cose, inorganic sulfur, and organic polysulfides (e.g., garlic). Thiosulfate is not only an
intermediate of sulfur metabolism, but also a metabolite of H2S that can contribute to
H2S production [37]. Thiosulfate generates H2S through a reductive reaction involving
pyruvate, which acts as a hydrogen donor. H2S can also be formed from glucose, either
from phosphogluconate via NADPH oxidase or through glycolysis. Glucose interacts
with cysteine, methionine, or homocysteine to yield gaseous sulfur compounds—H2S and
methanethiol. Additionally, H2S is produced through a direct reduction in glutathione and
inorganic sulfur. Organic polysulfides can undergo nucleophilic substitution at a sulfur
atom, yielding H2S and hydropolysulfide [38].

H2S can also be produced in the gut by SRB, which obtains energy from the oxidation
of organic compounds, reducing sulfate to H2S [25]. Approximately 66% of all SRB account
for Desulfovibrio in the human colon [39]. Other gut bacteria can also generate H2S by
sulfite reduction, covering species E. coli, Salmonella, Enterobacter, Bacillus, Corynebacterium,
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Klebsiella, Rhodococcus, Staphylococcus, etc. [39]. On the other hand, fecal H2S can be removed
by sulfur-oxidizing bacteria (SOB) via sulfur oxidation. In addition, gut-bacteria-derived
H2S can also be generated through the fermentation of sulfur-containing amino acids.
Large amounts of H2S are oxidized by colonocytes into thiosulfate [39].

As shown in Figure 2, H2S can be metabolized by a series of enzymatic reactions.
Sulfide is oxidized to sulfite in a two-step reaction [40,41]. First, sulfide quinone oxidore-
ductase (SQR) oxidizes sulfide to generate persulfide [42]. Then, persulfide is oxidized
by persulfide dioxygenase (ETHE1) to yield sulfite. As a result, sulfite can be converted
to sulfate or thiosulfate by sulfite oxidase (SUOX) and thiosulfate sulfurtransferase (TST),
respectively [41]. Sulfide is excreted primarily as sulfate and thiosulfate in the urine.

3.2. Biological Function of H2S in Kidney

H2S has multi-faceted biological functions, including but not limited to antioxidant,
anti-inflammation, vasodilatation, mitochondria bioenergetics, metabolic modulation, an-
giogenesis, and anti-apoptosis [43–45]. In the kidney, H2S increases the glomerular filtration
rate (GFR), inhibits tubular sodium reabsorption, regulates renin release, controls blood
pressure (BP), and increases ATP production as a sensor for oxygen [45,46].

All H2S-generating enzymes are localized in the kidney. Dual inhibition of CSE and
CBS decreased GFR, urinary sodium, and potassium excretion [47]. Conversely, exogenous
NaHS administered for 4 weeks increased GFR, urinary sodium excretion, and fractional
sodium excretion in spontaneously hypertensive rats (SHRs) [48]. In a two-kidney-one-
clip (2K1C) model of renovascular hypertension, NaHS prevented hypertension from
accompanying by inhibiting the upregulation of renin mRNA and protein levels in the
clipped kidneys [49]. Additionally, H2S is able to enhance ATP production and prevent
ischemia-reperfusion (IR)-induced kidney damage [50]. Total, cortical, and medullary
renal blood flow were reduced in rats with inhibition of CSE and CBS [51]. Meanwhile,
renal blood flow can be increased by intrarenal arterial infusion of NaHS [52]. Addition-
ally, a CSE inhibitor decreased blood flow in the renal artery in rats, suggesting CSE-
derived H2S has a prominent role in regulating renal blood flow and vascular resistance in
renal circulation [53].

H2S-induced vasodilation has been attributed to several mechanisms, covering the re-
duction in oxidative stress and inflammation [54], improvement in endothelial function [55],
opening of vascular potassium channels [56], augmented NO signaling [57], and activation
of vascular endothelial growth factor receptor-2 (VEGFR-2) [58]. The results above reveal
that H2S is involved in renal physiology and that deficient H2S may participate in the
pathogenesis of kidney disease.

3.3. Impact of H2S on Renal Programming

As kidney disease can take its origins in early life via renal programming [59,60],
a deeper understanding of how H2S impacts renal programming will aid in targeted
therapy and the prevention of adult kidney disease. Developing kidneys are vulnerable to
adverse environmental stimuli that disrupt fetal development during gestation, resulting
in structural changes and functional adaption [59,60]. These risk factors cover imbalanced
nutrition, maternal illness, environmental toxins, medication use, etc.

Maternal protein restriction results in harm to kidney development and causes a
permanently low nephron endowment [9]. Because the nephron is the basic functional
unit of the kidney, a low nephron number can result in glomerular hyperfiltration and
compensatory glomerular hypertrophy, and lead to further loss of nephrons [61]. Although
methionine and cysteine are essential for protein synthesis [14], whether their deficiencies
in the maternal diet are related to low nephron number in renal programming remains
unknown. One previous study demonstrated that a maternal methyl-deficient diet caused
938 renal transcripts to be modified and programmed hypertension in adult progeny [62].
In consideration of the view that methionine is part of methyl-donor nutrients [63], its link
to H2S signaling in renal programming deserves further clarification.
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As reviewed elsewhere [59], several maternal illnesses have been related to renal
programming, just like hypertensive disorders of pregnancy, preeclampsia, CKD, and
diabetes. Interestingly, these maternal diseases are more or less related to abnormal H2S
signaling [64]. Furthermore, emerging evidence from human evidence and animal models
supports the link between environmental toxin exposure during gestation and the devel-
opmental programming of kidney disease later in life [65]. It is needless to mention that
H2S has traditionally been viewed as a toxic gas at high concentrations devoid of any
physiological function [66]. Another risk factor for renal programming is medication use.
Existing research demonstrates that several drugs administrated during pregnancy may
induce renal programming [67]. One example is glucocorticoids. Antenatal glucocorti-
coid exposure has been relevant to low nephron numbers and renal programming [68].
As glucocorticoids can inhibit CSE expression and H2S production [69], glucocorticoid-
induced renal programming might be related to abnormal H2S signaling. Together, the
findings presented above point toward the roles played by abnormal H2S signaling in
renal programming.

4. Sulfide-Related Reprogramming Intervention

The utilization of sulfide-related therapy has been proven to yield benefits in several
kidney diseases, such as acute kidney injury [70], CKD [71], diabetic nephropathy [72],
drug-induced nephropathy [73], obstructive nephropathy [74], glomerulosclerosis [75],
urolithiasis [76], and kidney transplant [77,78]. Still, little attention has been paid to
understanding H2S signaling pathway during pregnancy and lactation for the prevention
of offspring kidney disease. Early intervention, even prior to the disease appearing, is
key to preventing the development of adult kidney disease [9]. Studies documenting
sulfide-related interventions in animal models for renal reprogramming are summarized in
Table 1, restricting interventions to start before the onset of disease [79–93].

Table 1. Summary of sulfide-related interventions utilized as reprogramming strategies in animal
models of renal programming.

Sulfide-Related Intervention Animal Models Species/
Gender Age at Evaluation Reprogramming

Effects Ref.

Sulfur-containing amino acids

L-cysteine (8 mmol/kg/day)
from 4 to 6 weeks of age High-salt SHR SHR/M 12 weeks Prevented hypertension

and kidney damage [79]

D-cysteine (8 mmol/kg/day)
from 4 to 6 weeks of age High-salt SHR SHR/M 12 weeks Prevented hypertension

and kidney damage [79]

L-cysteine (8 mmol/kg/day)
during gestation Maternal CKD SD rat/M 12 weeks

Prevented hypertension
and reduced renal

oxidative stress
[80]

D-cysteine (8 mmol/kg/day)
during gestation Maternal CKD SD rat/M 12 weeks

Prevented hypertension
and reduced renal

oxidative stress
[80]

3% taurine in drinking water
during gestation and lactation

Maternal high-
sugar diet SD rat/F 8 weeks

Prevented hypertension
and improved
renal function

[81]

3% taurine in drinking water
during gestation and lactation

Genetic
hypertension model SHR/M 22 weeks Prevented hypertension [82]

5% taurine in drinking water
during gestation and lactation

Genetic
hypertension model SHRSP/M 3 months Prevented hypertension [83]

N-acetylcysteine

Sulfide-Related Intervention Animal Models Species/
Gender Age at Evaluation Reprogramming

Effects Ref.

1% NAC in drinking
water during gestation

and lactation

Prenatal
dexamethasone

plus post-weaning
high-fat diet

SD rat/M 12 weeks
Prevented hypertension

and reduced renal
oxidative stress

[84]
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Table 1. Cont.

1% NAC in drinking
water during gestation

and lactation

Maternal L-NAME
exposure SD rat/M 12 weeks

Prevented hypertension
and altered renal

transcriptome
[85]

1% NAC in drinking
water during gestation

and lactation

Maternal suramin
administration SD rat/M 12 weeks Prevented hypertension [86]

1% NAC in drinking
water during gestation

and lactation

Maternal
hypertension SHR rat/M 12 weeks Prevented hypertension [87]

NAC (500 mg/kg/day) in
drinking water from gestational

day 4 to postnatal day 10

Maternal nicotine
exposure SD rat/M 8 months

Prevented hypertension
and reduced

oxidative stress
[88]

2% NAC in drinking
water from 4 to 12 weeks of age

Genetic
hypertension model SHR/M 12 weeks Prevented hypertension [89]

H2S donors

NaHS (14 µmol/kg/day) daily
intraperitoneal injection from 4

to 8 weeks of age

Genetic hypertension
model SHR/M 12 weeks Prevented hypertension [90]

NaHS (56 µmol/kg/day) daily
intraperitoneal injection during

gestation and lactation

2-kidney, 1-clip
renovascular

hypertension model
SD rat/M and F 16 weeks Prevented hypertension [91]

Organosulfur compounds

Garlic oil (100 mg/kg/day)
during gestation and lactation Maternal CKD SD rat/M 12 weeks Prevented hypertension [92]

Garlic oil (100 mg/kg/day)
during gestation and lactation

Maternal high-
fat diet SD rat/M 16 weeks Prevented hypertension [93]

NAC = N-acetylcysteine. NaHS = sodium hydrosulfide. CKD = chronic kidney disease. L-NAME = NG-nitro-L-
arginine-methyl ester. M = male. F = female. SHR = spontaneously hypertensive rat. SD = Sprague–Dawley.

Table 1 illustrates that rats are the most frequently used animal species. Several de-
velopmental programming models have been used to study renal programming, covering
the genetic spontaneously hypertensive rat (SHR) model [79,82,83,89,90], maternal CKD
model [80,93], maternal high-sugar-diet model [81], prenatal dexamethasone and postnatal
high-fat diet [84], NG-nitro-L-arginine-methyl-ester (L-NAME) exposure model [85], ma-
ternal suramin administration model [86], maternal hypertension [87], maternal nicotine
exposure [88], maternal renovascular hypertension model [91], and maternal high-fat-diet
model [92]. Hypertension is the major renal-programming-induced adverse outcome being
evaluated. Reported sulfide-related interventions include sulfur-containing amino acids,
N-acetylcysteine (NAC), H2S donors, and organosulfur compounds. It has been reported
that sulfide-related interventions have reprogramming effects in rat offspring aged 8 weeks
to 8 months, which is in line for adolescents to middle adulthood in humans [94].

4.1. Sulfur-Containing Amino Acids

L-cysteine is a substrate for the production of H2S. Another substrate for H2S genera-
tion is D-cysteine [95]. Prior work reported that the D-cysteine pathway is 80-fold greater
at H2S-producing activity than the L-cysteine pathway in the kidneys [36]. Prior work
revealed that high-salt-treated young SHRs supplemented with D- or L-cysteine over a
period of 2 weeks were protected against hypertension and kidney damage at 12 weeks
old [79]. Another study evaluated whether L- or D-cysteine supplementation in preg-
nancy can prevent maternal CKD-primed offspring hypertension [80]. Administration of
L-cysteine has been shown to enhance renal H2S-generating enzyme CBS and CSE expres-
sion, increase renal H2S-releasing activity, and increase plasma concentration of H2S and
thiosulfate [80]. Furthermore, D-cysteine supplementation restored CKD-primed reduc-
tion in plasma thiosulfate levels, while it had a negligible effect on renal H2S-generating
enzymes [80].

Another sulfur-containing amino acid used for reprogramming is taurine. Perinatal
taurine supplementation was able to protect adult rat offspring against hypertension and
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kidney dysfunction induced by a maternal high-sugar diet [81]. In SHRs and stroke-prone
spontaneously hypertensive rats (SHRSPs), taurine supplementation during pregnancy
and lactation had antihypertensive effects on adult offspring [82,83]. Taurine treatment
has shown benefits for several kidney diseases, such as diabetic nephropathy [96], renal
ischemia/reperfusion injury [97], glomerulonephritis [98], and nephrotic syndrome [99].
Nevertheless, further clarification is needed regarding the reprogramming effects of perina-
tal taurine supplementation on offspring’s kidney disease.

4.2. N-Acetylcysteine

NAC, an N-acetyl derivative of L-cysteine, can also be used to produce H2S in ex-
perimental studies. Similar to cysteine, early NAC therapy at age 4–12 weeks displayed
protection against hypertension in adult SHRs [89]. In addition, administration of NAC
during gestation and lactation has been shown to prevent offspring hypertension in several
models of renal programming, covering antenatal dexamethasone administration plus
post-weaning high-fat diet [85], maternal L-NAME exposure [86], maternal suramin admin-
istration [87], maternal hypertension [88], and maternal nicotine exposure [89]. Although
several animal models in response to different early-life insults presented protection against
hypertension, data are still lacking regarding other reno-protective benefits. It should be
noted, however, that NAC is widely used as a pharmacological antioxidant [100].

4.3. H2S Donors

Inorganic sulfide salts such as sodium hydrosulfide (NaHS) and sodium sulfide (Na2S)
are the most commonly utilized exogenous H2S donors [101,102]. NaHS therapy between
4–8 weeks of age prevented the development of hypertension in 12-week-old SHRs [90].
Another study demonstrated that maternal NaHS therapy protects adult progeny against
hypertension in a 2K1C hypertensive model [91].

Inorganic sulfide salts provide direct and prompt release of free H2S. As a result,
these H2S donors might be unsuitable for clinical use due to the rapid increase in H2S
concentration to supraphysiological concentration. Later on, some organic slow-releasing
H2S donors are synthesized to better mimic the physiological H2S production and overcome
this limitation [101,102].

GYY4137 was produced as one of the first slow-releasing H2S donors [102]. Even
though GYY4137 exerted protective action against hypertension in a CSE inhibition model
and an L-NAME-treated SHR model [103,104], organic slow-releasing H2S donors have not
yet been assessed in terms of their reno-protective effects on renal-programming-induced
models. Moreover, thiosulfate can be considered a H2S mimetic, which presents the thera-
peutic potential of sodium thiosulfate for kidney disease [105,106]. We recently found that
sodium thiosulfate therapy can produce H2S and prevent hypertension concurrently in an
adenine-induced CKD model [107]. However, there is little knowledge on whether sodium
thiosulfate treatment during gestation and lactation can prevent renal-programming-related
adverse offspring’s outcomes.

4.4. Organosulfur Compounds

In addition to synthetic H2S donors, researchers have focused their attention on
natural H2S donors. These organosulfur compounds include polysulfides derived from
Alliaceae—diallyl di- and tri-sulfide—and GLS-derived ITCs [108].

Garlic-derived organic polysulfides have shown potential benefits as a treatment op-
tion in kidney disease and related complications [109–111]. Supplementation of garlic oil
during gestation and lactation protected against maternal CKD-primed offspring hyperten-
sion at 12 weeks of age [92]. In another study examining the reprograming effect of garlic
oil in a maternal high-fat model, the rise of BP in 16-week-old offspring was prevented by
perinatal garlic oil supplementation [93].
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Though interest in exploring the potential therapeutic effects of ITCs has grown
with the finding of their ability to release H2S [108], their beneficial effect against renal
programming has not yet been explored.

4.5. Others

The impact of gut-derived H2S on renal programming has not been studied, while
gut microbiota denotes the greatest source of H2S in the body. Abundant SRB and SOB
control the generation and degradation of H2S in the gut [112]. High concentrations of
H2S are toxic for the gut epithelium and may contribute to bowel disease. Therapeutic
targeting of SRB has been tested to regulate gut-inflammation-related H2S production [113].
More research on gut-bacteria-derived H2S is required as they may turn into a potential
therapeutic target for renal-programming-related diseases.

H2S is also regulated by several presently used drugs, such as aspirin, amlodipine,
atorvastatin, carvedilol, testosterone, digoxin, metformin, paracetamol, ramipril, vitamin
D, and 17β-estradiol [114]. Although metformin was reported to protect maternal high-
fructose plus post-weaning high-fat-diet-induced offspring [115], whether it is beneficial
for kidney health and related to H2S signaling is unclear. It would be interesting to see
whether targeting H2S-signal-related mechanisms by these drugs would become a practical
approach to prevent renal programming for further clinical translations. A summary of
potential sulfide-related interventions as reprogramming strategies for renal programming
is illustrated in Figure 3.
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5. Mechanisms behind Protective Actions of H2S on Renal Programming

Investigation of the potential mechanisms underlying renal programming has gained
increasing attention [9,60]. Currently, the mechanisms accounting for renal program-
ming include deficient NO [116], oxidative stress [2,117], the aberrant renin–angiotensin–
aldosterone system (RAAS) [118], and gut microbiota dysbiosis [119,120]. The results of
animal experiments indicate that the H2S signaling pathway interacts with the abovemen-
tioned mechanisms. A summary of the link between H2S and other mechanisms involved in
renal programming and reprogramming by sulfide-related interventions for the prevention
of kidney disease is depicted in Figure 3. Each of these mechanisms are discussed in turn.

5.1. Deficient NO

NO, a vasodilator, plays a key role in embryogenesis, regulation of fetoplacental vas-
cular reactivity, and fetal development during gestation [121]. NO deficiency participates
in the development of kidney disease, as well as hypertension [122,123]. The critical role
of deficient NO implicated in renal programming is supported by several animal models,
as we reviewed elsewhere [116]. Renal NO deficiency can be attributed to L-arginine defi-
ciency (the substrate for NOS), diminished NOS activity and abundance, NO inactivation
by oxidative stress, and inhibition by asymmetric or symmetric dimethylarginine (ADMA
or SDMA) [116].

As revealed in Table 1, renal programming induced by maternal L-NAME adminis-
tration [85], maternal suramin administration [86], and maternal CKD [92] is associated
with impaired NO pathways. Prior work revealed that maternal NO deficiency induced by
L-NAME caused renal programming and hypertension in adult offspring [85]. Protective
actions of maternal NAC therapy against L-NAME-induced offspring hypertension were
associated with increases in renal H2S synthesis and H2S-producing enzyme expression [85].
In another maternal suramin-induced hypertension model [86], the beneficial effects of
NAC were accompanied by increased renal 3MST protein abundance, an increase in plasma
glutathione level, and restoration of NO. Another line of evidence for the interplay be-
tween H2S and NO implications in renal programming was obtained in a maternal CKD
model, which showed that the protective effects of perinatal garlic oil supplementation
against offspring hypertension coincided with enhanced H2S signaling and increased NO
bioavailability [92].

Increasing evidence supports the assumption that H2S and NO affect not only the pro-
duction of each other but also the further downstream signaling pathway [124]. H2S causes
the increase in NO bioavailability in several ways, such as reduction in ADMA [125], acti-
vation of eNOS via calcium influx or Akt activation [126,127], diminished cGMP degrada-
tion [128], reduction in nitrite [129], and augmenting eNOS activity by S-sulfhydration [130].
Though there is a lot of evidence pointing towards their close connection, additional re-
search is needed to explore the crosstalk between H2S and NO in renal programming
and reprogramming.

5.2. Oxidative Stress

The developing kidney is vulnerable to oxidative damage stress due to the low antiox-
idant capacity of the fetus [131]. Oxidative stress is a phenomenon caused by an imbalance
between oxidants and antioxidants in favor of the oxidants. Oxidative stress and renal pro-
gramming are intertwined in several animal models, covering maternal CKD [80], prenatal
dexamethasone plus post-weaning high-fat diet [84], maternal suramin administration [84],
and maternal nicotine exposure [88], as listed in Table 1.

The role of H2S as an antioxidant in the renal oxidative stress response has been
widely noted [45]. This occurs through scavenging ROS; increasing antioxidants, such as
glutathione, superoxide dismutase (SOD), and nuclear factor E2-related factor 2 (Nrf2); and
downregulating ROS-generating enzymes, such as NADPH oxidase [45].

Accumulative evidence has supported the reprogramming effects of perinatal an-
tioxidant therapy on renal programming and how this may prevent adult-onset kidney
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disease [132]. In a maternal CKD model [80], the protective effect of both L- and D-cysteine
against hypertension in adult rat offspring was accompanied by the reduction in renal
oxidative damage. Additionally, the utilization of NAC during gestation and lactation
was reported to reprogram hypertension and reduce renal oxidative stress concurrently in
animal models of prenatal dexamethasone plus post-weaning high-fat diet [84], maternal
suramin administration [86], and maternal nicotine exposure [88].

Although some sulfide-related interventions have previously been shown to coun-
terbalance oxidative stress to protect offspring against renal programming, whether the
antioxidant property of H2S has the greatest impact in preserving kidney health compared
to other mechanisms still awaits further elucidation.

5.3. Aberrant RAAS

The RAAS is a key hormone cascade regulating BP and the renal system [133]. There
are two pathways of the RAAS: classic and non-classic systems. The classic RAAS is
composed of angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and angiotensin
type 1 receptor (AT1R). On the other hand, the ACE2–angiotensin (1–7)–Mas receptor
pathway is a counter-regulatory RAAS system that offsets the harmful effects of Ang
II signaling.

H2S is known to influence several elements of the RAAS system, including decreasing
the release of renin [134], inhibiting ACE activity [135], and reducing AT1R expression [136].
Conversely, pharmacological inhibition of CSE leads to increases in ACE and AT1R expres-
sion [137]. Taken together, existing evidence indicates that H2S suppresses the biological
effects of the classic RAAS.

During kidney development, RAAS genes are highly expressed and have a transient
biphasic response with the downregulation of the classic RAAS in neonates that becomes
normalized over time [60,138]. Various early-life environmental insults interrupt this nor-
malization and improperly initiate the classic RAAS, resulting in kidney disease and hy-
pertension later in life [118]. Meanwhile, early blockade of the classic RAAS has revealed
benefits against offspring hypertension in several models of renal programming [118]. These
observations can provide support for the role of aberrant RAAS inrenal programming.

In SHR, downregulated H2S-generating enzymes and low concentrations of H2S were
reported in hypertensive rats, accompanied by activation of the classic RAAS [90]. NaHS
treatment protected against hypertension coincided with the downregulation of classic-
RAAS-related gene expression [87]. In a maternal renovascular hypertensive model, NaHS
treatment also prevented the rise in BP in adult offspring, together with reducing the AT1R
protein level [136]. Although the beneficial action of H2S has been linked to the activation
of non-classic RAAS systems [139], no information currently exists regarding whether the
reprogramming effect of H2S on renal programming is due to non-classic RAAS.

5.4. Gut Microbiota Dysbiosis

Gut microbiota have been implicated in the regulation of the absorption and metabolism
of dietary nutrients that influence human health and disease [140]. The bidirectional
link between the gut microbiota and kidney disease is termed the gut–kidney axis [141].
Gut–kidney axis dysfunction due to gut microbiota dysbiosis is implicated in kidney dis-
ease [119,120]. So far, some mechanisms underlying gut microbiota dysbiosis have been
connected to kidney disease, including increases in trimethylamine-N-oxide (TMAO), al-
terations of short-chain fatty acids (SCFAs), and increases in tryptophan-derived uremic
toxins [142,143]. Kidney disease can be treated or modified through agents that modu-
late the gut microbes and their metabolites, including prebiotics, probiotics, postbiotics,
etc. [142–144].

Maternal nutritional insults alter gut microbiota composition and function, result-
ing in an increased risk of developing adult diseases [145]. Nevertheless, whether early
gut-microbiota-targeted therapy may serve as a reprogramming strategy to prevent the
developmental programming of kidney disease remains largely unknown [120]. In a ma-
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ternal CKD model, L-cysteine supplementation protection against offspring hypertension
is related to reshaping the gut microbiome [80]. Tryptophan metabolites, such as indole
derivatives, are well-known uremic toxins [146]. The beneficial actions of L-cysteine sup-
plementation are associated with the depletion of indole-producing genera Akkermansia
and Alistipes, reduction in several indole metabolites, and enhancement of beneficial genera
Butyricicoccus and Oscillibacter.

Another study reported that maternal NAC therapy protects male SHR progeny
against hypertension and is connected to increased fecal thiosulfate levels and alterations
of gut microbiota compositions [87]. NAC therapy increased the abundance of genus
Bifidobacterium and its related phylum Actinobacteria, a common SOB [147]. Given that NAC
enhanced Actinobacteria abundance and fecal thiosulfate levels concurrently, and that SOB
can oxidize H2S to thiosulfate, it is possible that the beneficial actions of NAC are relevant
to increased SOB and their derived thiosulfate production.

Maternal garlic oil supplementation prevented maternal CKD, and high-fat-diet-
primed offspring hypertension was also relevant to modifications in gut microbiota [92,93].
Apart from the increased abundance of the genus Lactobacillus, a known probiotic, garlic oil
supplementation increases plasma concentrations of SCFAs [93].

Together, these results establish a tight connection between H2S and other important
mechanisms behind renal programming. The advantageous effects of sulfide-related
therapy on renal programming are associated widely with deficient NO, oxidative stress,
aberrant RAAS, and gut microbiota dysbiosis. Nevertheless, additional research is required
to gain an understanding of how H2S may play a major role in mediating other mechanisms
to develop a specific reprogramming strategy for the prevention of kidney disease.

6. Conclusions and Perspectives

The kidney is a major contributor to overall endogenous H2S generation, and H2S ap-
pears to play a significant role in kidney health and disease. Similar to adult kidney disease,
deficient H2S is present in early life, resulting in renal programming. The dysregulated H2S
signaling underlying renal programming is connected to deficient NO, oxidative stress,
aberrant RAAS, and gut microbiota dysbiosis. The importance of sulfide-related interven-
tions during gestation and lactation in reprogramming kidney disease is highlighted by
the observations that sulfur-containing amino acids, NAC, H2S donors, and organosulfur
compounds prevent offspring’s renal adverse outcomes in a variety of animal models.

One crucial aspect to consider is that research carried out so far has mainly focused
on H2S-releasing drugs. However, how gut-bacteria-derived H2S participate in renal pro-
gramming is largely unclear. Whether gut-derived H2S is beneficial for kidney health and
whether gut-microbiota-targeted therapies may alter SRB/SOB to affect gut-derived H2S
seems worthy of investigation. Another important aspect of H2S biology that remains
unexplored is the identity of the molecular targets of H2S in the kidney, especially during
kidney development. As H2S can impact multiple proteins and signaling pathways via
sulfhydration in the kidney [130], it may act through the crosstalk with other molecular
mechanisms to induce renal programming. It should be kept in mind that H2S at supra-
physiologic concentrations is toxic. Clinical trials should be performed to test whether
promising data from animal studies can be translated into human therapies. Attention
needs to be paid to accurately monitor the concentration of H2S in vivo, to increase the
efficiency of sulfide-related interventions, and improve kidney-targeting properties.
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